• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Bradford Featured Masters Courses
University of Leeds Featured Masters Courses
"combustion" AND "engines…×
0 miles

Masters Degrees (Combustion Engines)

  • "combustion" AND "engines" ×
  • clear all
Showing 1 to 15 of 23
Order by 
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. Read more
This programme enables students to work effectively in an engineering design role, whether that role concerns the design of products, processes or systems, at an overall or detail level. A balance of theory and practice is applied to the solving of real engineering design problems. All projects meet the product design requirements of one of our many co-operating companies.

Core study areas include structural analysis, engineering management and business studies, computer aided engineering, product design and human factors, engineering design methods, sustainable product design, the innovation process and project management, sustainable development: the engineering context and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Programme modules

Compulsory Modules:
- Structural Analysis
- Engineering Management and Business Studies
- Computer Aided Engineering
- Product Design and Human Factors
- Engineering Design Methods
- Sustainable Product Design
- The Innovation Process and Project Management
- Sustainable Development: The Engineering Context
- Project

Careers and further study

Engineering design related jobs in product, process and system design environments, providing project management and communication skills and direct technical input. Graduates may also study for an MPhil or PhD with the School.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/engineering-design/

Read less
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry. Read more
This programme produces engineers who are highly skilled in the techniques of manufacturing management and its related technologies, providing the basis for effective careers as managers who can meet the challenges of the rapidly changing global manufacturing industry.

Core study areas include manufacturing system and process modelling, lean and agile manufacture engineering management and business studies, product information systems - product lifecycle management, the innovation process and project management, sustainable development, advanced manufacturing processes and automation, additive manufacturing and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Programme modules

- Manufacturing System and Process Modelling
The objective of this module is to provide an understanding of manufacturing and its management that recognises breadth and depth of required resources and information. This is done through developing an understanding of the hierarchy of computer based modelling relevant to manufacturing, ranging from the detail of material behaviour in processed parts, through macroscopic process models to the integration of processes within manufacturing systems and higher level business processes.

- Lean and Agile Manufacture
This module allows students to gain an understanding of lean and agile concepts in the manufacturing business, including its distribution chains. Students will learn to specify, design and evaluate an appropriate lean or agile business system.

- Engineering Management and Business Studies
The aim of the module is to introduce the concepts of management techniques that are applicable to running an engineering company. Students will learn to evaluate commercial risk, plan and organise engineering activities for improved company effectiveness and communicate technical and business information to ensure maximum impact.

- Product Information Systems – Product Lifecycle Management
The objectives of this module are for students to understand and critically evaluate the emerging product information systems for designers in the form of Product Lifecycle Management (PLM) systems. Students will learn to use modern information and process modelling techniques to define the information integration and workflow requirements of a PLM configuration.

- The Innovation Process and Project Management
Students will establish a clear overview of the innovation process and an understanding of the essential elements within it. They will learn strategies for planning and carrying out innovative projects in any field.

- Sustainable Development: The Engineering Context
This module provides students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- Advanced Manufacturing Processes and Automation
Students will gain an in-depth knowledge of state-of-the-art manufacturing techniques, processes and technologies. They will learn to understand and critically evaluate advanced manufacturing processes and technologies, assessing their advantages and disadvantages.

- Additive Manufacturing
The module will introduce and develop the concepts of Additive Manufacturing (AM) and demonstrate the different AM techniques available at Loughborough University. The module will emphasise the strengths and weaknesses of the various technologies and highlight applications and case studies from the AM industry.

- Projects
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research. Following eight taught modules, students pursue an individual project typically based on the diverse range of industrially focused manufacturing research strengths within the School. Part time students may base their projects on particular needs of their current employer.

Examinations are in January and May / June with coursework throughout the programme. The project is assessed by written report, presentation and exhibition.

Careers and further study

Within national or multinational manufacturing industry companies working as a Manufacturing Engineer, Project Engineer, Systems Analyst or Software Development Specialist. Graduates may also study for an MPhil or PhD with the School’s research groups.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/advanced-manuf-eng-mgt/

Read less
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. Read more
The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. The aim of this postgraduate course is to train and educate thermofluid engineers to enable them to meet present and future demands of the industry and to equip them with the necessary skills to engage in employment or further research.

The course is suitable for engineering/science graduates and professionals who not only wish to enhance their expertise in thermofluids but also to develop their competence in the use of state-of-the-art analytical, computational and experimental methods; advanced methods which are specifically designed for the analysis of heat and fluid flow in both industrial and research applications.

The objectives of this course are to produce postgraduate specialists with:
-Advanced understanding of heat and fluid flow processes and their role in modern methods of power generation
-In-depth understanding of numerical and experimental techniques in heat and fluid flow

Teaching on the course is delivered by academics from our world-leading research group in the field of turbulence modelling and heat transfer.

Special features

The three students who achieve the highest performance in this MSc course in 2016-17 will receive an award.

The winners of the Thermal Power and Fluid Engineering Merit Award are presented with a certificate by the Head of the School, Prof Andy Gibson, and are awarded a cash prize. The awards are £3,000 for the top student, £2,000 for the second and £1,000 for the third student in each semester.

The winners of the award this semester were: Aseem Bhavnesh Desai (1st), Robert O'Donoghue (2nd) and Luca Cappellone (3rd).

Teaching and learning

This is a full-time course studied over 12 months with one start date each year in September. Every year this MSc course in Thermal Power and Fluid Engineering attracts a large number of applications from all around the world, which allows us to select only the best candidates.

Throughout the course, alongside the teaching, special emphasis is placed on both computational and experimental work; the aim is to provide insight through experimentally observed phenomena, and also to provide practical/computational experience of a wide range of measurement and data analysis techniques. Thus, the course has a strong practical orientation which is supported by our School laboratories and facilities and it aims to produce engineers who are able to engage in the design, development and testing of internal combustion engines, turbines or power producing devices. Whilst on the course, students have the opportunity to participate in a number of industrial visits. Relevant companies sometimes offer projects to our students as a result of these visits.

The MSc is continually reviewed and now includes course units such as research and experimental methods, advanced fluid mechanics, advanced heat transfer, engineering thermodynamics, power engineering and computational fluid dynamics. Students are assessed based upon a combination of coursework, laboratory calculations, exams and projects. Upon successful completion of taught modules the students are required to do a research dissertation.

Career opportunities

The MSc in Thermal Power and Fluid Engineering trains graduates in the theory and practice of a broad range of industrially relevant topics within the fields of thermodynamics and fluid mechanics. It is specifically designed to meet the needs of the modern engineer both in industry and in research. Most of our research is derived and funded by industry, and we have always been proud of maintaining strong links with our industrial partners. Teaching staff on this course have research-based collaborations with multinational companies such as Boeing, Airbus, Rolls Royce, Jaguar Land rover, Électricité de France, Procter and Gamble, Unilever, Dyson, Alstom and many others.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

Our recent graduates have gone on to work in internationally renowned companies including:
-Airbus, UK
-Électricité de France, UK
-Jaguar Land Rover, UK
-Dassault Systèmes, France
-Honda Motors, UK
-Doosan Global, UK
-ExxonMobil, UK
-Saudi Aramco, KSA
-Engro Chemicals, Pakistan
-Abu Dhabi National Oil Company, UAE
-ANSYS, UK
-ABB Group, UK
-Exa GmbH, UK

Accrediting organisations

This Masters Course is accredited by the IMechE, the Institution of Mechanical Engineers which is the UK's professional body of Mechanical Engineers. This means that graduates from this course are recognised by the IMechE as having the academic qualifications required of candidates for the status of Chartered Engineer.

Read less
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems. Read more
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems.

Our graduates have the technical and managerial skills and expertise that are highly sought after by the automotive industry.

Our course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/automotive/index.html

Learning outcomes

By studying our MSc in Automotive Engineering you will:

- Understand the vehicle design process and the operation and performance of important sub-systems
- Analyse current and projected future environmental legislation and the impact this has on the design, operation and performance of automotive powertrain systems
- Analyse in detail the operation and performance indicators of transmission systems, internal combustion engines and after treatment devices.

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#B) for more detail on individual units.

Semester 1 (October-January):
The first semester of our course allows students to choose from a range of fundamental and more advanced lecture courses covering the analysis methods and modelling techniques that are used in the simulation, design and manufacture of modern vehicles and powertrains.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
The full time summer project gives students the opportunity to develop their understanding of aspects of the automotive material covered in the first semester, through a detailed study related to the research interests and specialisations of a member of the academic staff. The students will often be working as part of a larger group of researchers including postgraduates, research officers and undergraduates and as such have access to the state of the art automotive test facilities within the department.

- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects covered

- Heat transfer
- Engineering systems simulation
- Engine & powertrain technologies
- Professional skills for engineering practice
- Vehicle engineering
- Vehicle dynamics & aerodynamics

Career Options

Our MSc graduates now work all over the world in various industries, while a number of them pursue their Doctorates in universities worldwide. Recent graduates have secured jobs as:

- Calibration Engineer, Ford Motor Company Ltd
- Product Engineer, Renault
- Engineering Consultant, D'Appolonia

Companies which have hired our recent graduates include:

British Aerospace
Airbus UK
Intel
Ricardo
Cambstion
Panama Canal Authority
Moog Controls Ltd

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
The MSc in Mechanical Engineering provides a broad base in engineering science and technology, with specialist streams in Automotive, Aerospace, Bioengineering, Materials and Manufacturing. Read more
The MSc in Mechanical Engineering provides a broad base in engineering science and technology, with specialist streams in Automotive, Aerospace, Bioengineering, Materials and Manufacturing.

These streams reflect our research strengths and strong industrial links, so modules are delivered by international experts in their fields.

All students take Advanced Technology Review to study the latest developments in engineering research. Other subjects studied depend on the chosen stream, and include Internal Combustion Engines, Aircraft Propulsion, Biomechanics, Fibre Reinforced Composites and Robotics.
Optional groups allow students to develop their interests in specific areas of science and technology.

Taught modules are followed by a full-time individual project, often linked to industrially sponsored research.


To apply for the course go to https://pgapps.nottingham.ac.uk/

Read less
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems. Read more
This programme has been designed to meet the challenges of the rapidly changing global market by providing the skills and abilities to contribute to the availability of well-designed products, process and systems.

As a broad-based Mechanical Engineering degree this programme provides a wide variety of career options in the engineering sector.

Core study areas include experimental mechanics, simulation of advanced materials and processes structural analysis, computer aided engineering, engineering design methods, sustainable development: the engineering context, the innovation process and project management, thermofluids and a project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Programme modules

- Experimental Mechanics
This module introduces the following elements: experimental techniques for analysis and characterisation of various engineering materials and full-field, non-contact optical methods for deformation and strain measurements. Students will learn to identify the most appropriate experimental techniques for evaluating material response in a specific setting and for different types of materials.

- Simulation of Advanced Materials and Processes
The objective of this module is to introduce students to the concepts in numerical simulation of advanced materials and processes. To enable students to gain theoretical and practical experience in simulating mechanical behaviour of advanced materials and modelling processes related to these materials using finite element modelling techniques.

- Structural Analysis
Students will gain an understanding of modern concepts of structural analysis. They will gain practical experience in analyses of structures using finite-element modelling and understand the need for structural analysis in design.

- Computer Aided Engineering
Students will learn how to evaluate, choose and implement CAE systems. Students will learn to select and apply appropriate computer based methods and systems for modelling engineering products; analysing engineering problems; and assisting in the product design process.

- Engineering Design Methods
The aims of this module are to provide students with a working understanding of some of the main methods which may be employed in the design of products and systems. Students will learn to identify appropriate methods and techniques for use at different times and situations within a project.

- Sustainable Development: The Engineering Context
The objective of this module are to provide students with an understanding of the principles and practices of sustainable development and to provide them with an understanding of how engineers can help manufacturing businesses develop into more sustainable enterprises.

- The Innovation Process and Project Management
This module allows students to gain a clear overview of the innovation process and an understanding of the essential elements within it. Students will learn strategies for planning and carrying out innovative projects in any field.

- Thermofluids
In this module students study the fundamentals of combustion processes and understand key aspects relating to performance and emissions. Students develop knowledge and skills required by engineers entering industries involved in the design and use of combustion equipment.

- Project
In addition to the taught modules, all students undertake an individual major project. Part-time students normally undertake a major project that is based on the needs of their employing company.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling and independent research.

The programme consists of eight, week-long, taught lecture modules plus project work. Each taught module is self-contained and covers a complete target. This programme is available in both full-time and part-time forms. Full-time students commence their studies on the first Monday in October for a period of 12 months. Part-time students may commence their registration at any time between October and the following March, and take 3 years (typical) to complete the programme.

On completion of this programme, students should be able to:
- Plan and monitor multi-disciplinary projects;
- appreciate the central role of design within engineering;
- demonstrate competence in using computer based engineering techniques;
- analyse and understand complex engineering problems; and
- use team working skills and communicate effectively at an advanced technical level.

Facilities

As a student within the School of Mechanical and Manufacturing Engineering you will have access to a range of state-of-the-art equipment. Our computer labs are open 24/7 and use some of the latest industry standard software including STAR-CCM and CAD.

We have high-tech laboratories devoted to:
- Dynamics and control
- Electronics
- Fluid mechanics
- Materials
- Mechatronics
- Metrology
- Optical engineering
- Structural integrity
- Thermodynamics

Careers and further study

The programme will allow students to acquire the technical and transferable skills required to succeed in a career in industry or academic research. Graduates may also study for an MPhil or PhD with the School.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a country outside the European Union. These scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why Choose Mechanical and Manufacturing Engineering at Loughborough?

The School of Mechanical and Manufacturing Engineering is a leader in technological research and innovation, with extensive national and international industrial links, and a long standing tradition of excellent teaching.

Our Industrial Advisory Committee, comprising of engineers at senior levels in the profession, ensures that our programmes contain the optimal balance of subjects and industrial relevance, with our programmes accredited by the Institution of Mechanical Engineers, Institution of Engineering and Technology and Institution of Engineering Designers.

- Facilities
The School has laboratories devoted to disciplines such as; dynamics and control, automation, fluid mechanics, healthcare engineering, internal combustion engines, materials, mechatronics, metrology, optical engineering, additive manufacturing, sports engineering, structural integrity and thermodynamics.

- Research
The School has a busy, multi-national community of well over 150 postgraduate research students who form an important part of our internationally recognised research activities.
We have seven key research centres (Electronics Manufacture, Intelligent Automation, Regenerative Medicine Embedded Intelligence, High Efficiency SCR for Low Emission Vehicles and High Value Manufacturing Catapult Centre) and we are a lead governing partner in the newly formed UK Manufacturing Technology Centre.

- Career prospects
90% of our graduates were in employment or further study within six months of graduating. Our graduates go on to work with companies such as Airbus, BAE Systems, Caterpillar, EDF Energy, Ford, IBM, Jaguar Land Rover, Millbrook Proving Ground, Rolls Royce and Tata Steel.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/mechanical-manufacturing/mechanical-engineering/

Read less
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Read more

Mission and goals

Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc.
The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Professional opportunities

Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_MI.pdf
Energy Engineering is the branch of engineering concerned with the design and the management of energy plants and their components in order to ensure the best use of the available resources with the minimum environmental impact. Energy plants are
systems in which energy forms are transformed and utilized. To name a few examples: large thermal power stations, air-conditioning and climate control equipment for residences and offices, vehicle engines, airplane propellers, solar panels etc. The Master of Science in Energy Engineering prepares professionals to design, select and use the main technologies in energy transformation, to actively follow scientific improvements and to operate effectively in a competitive and multi-disciplinary industrial context, characterized by significant environmental, regulatory and safety constraints. Students will analyze broad themes as well as specific subjects for which both a rigorous methodological approach to thermodynamics and an open attitude towards related interdisciplinary topics are required.
Graduates can find employment in several sectors: in the technical area of designing, testing, running, and maintaining the energy systems, like heating and cooling systems, thermal power and hydro-electric power plants, engines, oil and gas fields; in the energy management area; and in utilities and public boards that supply energy as electricity and natural gas. The programme is taught in English.

Subjects

- Five tracks available: Power Production; Heating, Ventilation and Air-Conditioning; Oil and Gas Engineering; Energy Engineering for an Environmentally Sustainable World (offered on Piacenza campus, see separate leaflet); Energy for Development.

- Subjects and courses common to all the tracks: Heat and Mass Transfer; Fundamentals of Chemical Processes; Advanced Energy Engineering and Thermoeconomics;; Combustion and Safety; Energy Conversion or Refrigeration, Heat Pumps and Thermal Power Systems and Components; Energy Economics or Project Management or Management Control Systems; Graduation Thesis.

- Optional subjects according to the selected track: Development Economy; Engineering and Cooperation for Development; Power Production from Renewable Sources; Engineering of Solar Thermal Processes; Petroleum Reservoir Engineering; Petroleum Technology and Biofuel; Transport Phenomena in the Reservoirs; CFD for Energy Engineering Analysis; System and Electrical Machines; Advanced Energy Systems; Dynamic Behavior and Diagnostics of Machines; Materials for Energy; Turbomachinery; Internal Combustion Engines; Air Conditioning and Room Pollutant-Controlling Plants, Energy Savings and Renewable Energies in Buildings; Applied Acoustics and Lighting; Design of Thermal Systems; Energy Systems and Low-Carbon Technologies; Air Pollutions and Control Engineering; Operation and Control of Machines for Power Generation; Bio-energy and Waste-to-Energy Technologies; Smart Grids and Regulation for Renewable Energy Sources.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. Read more

Mission and Goals

The Master of Science programme in Energy Engineering for an Environmentally Sustainable World (EEE-SW) is taught in English and offers a broad overview of the various technical issues related to energy and the environment. This special programme aims to prepare technicians capable of following and actively directing technological advances, operating effectively in a competitive and multi-disciplinary industrial context.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Career Opportunities

Graduates find employment in numerous industrial sectors, including industries producing and distributing energy, thermal, thermal-electric, air-conditioning and refrigeration plant design and management companies, energy management in companies or bodies with production objectives which may be far-removed energy. A Master of Science Engineer has openings in research and development as well as in activities related to the feasibility study and design of large-scale plant, innovative processes and development of technologically advanced machines and components.

For the academic year 2014-2015 prospective students with a university qualification obtained abroad can apply only for the 1st semester. This study course does not accept applications for the 2nd semester.
Applicants are required to take the GRE test (Graduate Record Examination) through ETS DI code 6939 in due time to have test scores sent to Welcome Desk Piacenza (welcome.piacenza(at)polimi.it) within the last day of the application period.

Recommended minimum GRE scores to be achieved for admission:
Verbal Reasoning: 155
Quantitative Reasoning: 155
Analytical Writing: 4.0

Only students with a Degree earned at an Italian University can apply without taking GRE test and they can also apply for admission at the 2nd semester.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Energy_Engineering_01.pdf
The programme provides a mix of design, operational and management skills, with particular emphasis on system and process engineering related to the production of basic energy carriers (electricity, heat and fuels) under tight environmental constraints. Students will learn how to evaluate and solve engineering issues (thermal, environmental, mechanical, chemical, electrical) raised by energy conversion systems, as well as analyze and assess operational and maintenance issues. Particular attention will be devoted to renewable energy sources, non-conventional energy technologies, emission control, electric systems with distributed power generation, etc. Teaching is organized around 3 core aspects: modeling and simulation tools; interdisciplinary vision; problem-solving approach. The programme is taught in English.

Subjects*

1st year – 1st semester
- Advanced Mathematical methods for energy engineering
- Advanced Thermodynamics and Heat Transfer
- Fundamentals of chemical processes for energy and the environment
1st year – 2nd semester
- Turbomachinery and internal combustion engines
- Energy and environmental technologies for building systems
- Electric conversion of renewable energy sources
- Materials and manufacturing process for energy

2nd year – 1st semester
- Energy systems and low-carbon technologies
- Air pollution and control engineering
- Operation and control of machines for power generation
2nd year – 2nd semester
- Bio-energy and waste-to-energy technologies
- Smart grids and regulation for renewable energy sources
- Major independent project work

* The list and titles of the courses to be followed is undergoing a revision aimed at enhancing the focus of the programme on the connection between Energy and the Environment. This will entail a reduction of the credits devoted to manufacturing, operation and control of machines and an increase of the credits devoted to optimization methods, renewable energy, industrial ecology. The final list of courses to be taken for the Academic Year 2016-17 will be available in January 2016.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/energy-engineering/energy-engineering-for-an-environmentally-sustainable-world-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. Read more

Mission and goals

The Laurea Magistrale (equivalent to a Master of Science) trains professionals with solid engineering foundations, a good scientific approach and a broad range of technical and applied contents. The level of cultural education is raised during the first year by broadening the knowledge of advanced analysis methods, which in the second year are applied in specialisation subjects and a thesis. The first year is offered in the Milano Bovisa and Lecco campuses with the same study plan (the first year is not available in the Piacenza campus, which offers only the second year). Students can choose different previously approved study plans (PSPA) in the second year. Some are offered in the Milano Bovisa campus (“Impianti e Produzione” [Production Plants and Production], “Meccatronica e Robotica” [Mechatronics and Robotics], “Metodi e Tecniche di Prototipazione Virtuale” [Methods and Techniques for Virtual Prototyping], “Motori e Turbomacchine” [Engines and Turbomachinery], “Progettazione” [Design], “Materiali e Tecnologie Innovative” [Materials and Innovative Technologies] and “Veicoli Terrestri” [Ground Vehicles]). Others are offered in the Lecco campus (“Mechanical Systems Design” and “Industrial Production”) and one in the Piacenza campus (“Macchine Utensili e Sistemi di Produzione” [Machine Tools and Production Systems]).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Career opportunities

Graduates with a Laurea Magistrale (equivalent to a Master of Science) in Mechanical Engineering are technicians who can independently develop the functional, construction and energy-related aspects of innovative products, processes and systems in industry and in the advanced tertiary sector. On passing the State Professional Examination, Mechanical Engineering Graduates with a Laurea Magistrale (equivalent to a Master of Science) can ask to be included in the Register of Engineers (section A).

Presentation

See http://www.polinternational.polimi.it/uploads/media/Mechanical_Engineering_04.pdf
The MSc Programme in Mechanical Engineering – Ingegneria Meccanica provides an academically challenging exposure to modern issues in advanced Mechanical Engineering.
The educational goal of the MSc Programme is to train highly qualified engineers, capable of playing different roles in the job market, by providing them with sound scientific, economic and technical competences, together with broad practical and professional skills needed for a successful career in a technologically advanced and rapidly evolving society.
The specialist in Mechanical Engineering, being involved in the design, production process and operation of products and systems, needs to develop a strong interdisciplinary background in machine design, with respect to functional requirements, dynamic and structural analysis, propulsion and engine systems, fluid mechanics, material properties and selection, manufacturing processes and production systems, operation and management of industrial plants, experimental techniques, mechatronics and industrial automation. The programme is taught in English. http://www.ccsmecc.polimi.it/en

Subjects

The 1st year is organised in the following compulsory modules: Control and Actuating Devices for Mechanical Systems, Applied Metallurgy, Energy Systems, Nonconventional Machining Processes, Machine Design, Mechanical System Dynamics, Mechanical Measurements, Configuration and Management of Production Systems.

In the 2nd year students will have the possibility to specialize the training, by choosing among the following tracks:
Milano Bovisa Campus: Production Systems, Mechatronics and robotics, Virtual prototyping, Internal Combustion Engines and Turbomachinery, Advanced Mechanical Design, Advanced Materials and Technology, Ground Vehicles.
Lecco Campus: Mechanical Systems Design, Industrial Production.
Piacenza Campus: Machine Tools and Manufacturing Systems.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/mechanical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice. Read more
Created in partnership with companies such as the Ford Motor Company and Jaguar Land Rover, the programme is also aimed at existing or prospective product development engineers and those working in manufacturing, particularly those working alongside product design personnel in the context of cross-functional teams and simultaneous working practice.

Students study three compulsory modules and a further three modules from a choice of five. In addition, full-time students undertake a university-based project and part-time students undertake an industry-based project.

An online study support system provides additional information and materials to facilitate student discussion.

The programme is accredited by the Institution of Mechanical Engineers (towards Chartered status).

This course is aimed at engineers working in the automotive industry who wish to extend and deepen their skills and understanding of the field, as well as recent graduates who intend to start a career in the industry.

Though primarily aimed at product development engineers, the course offers significant value to those working in the manufacturing side of the industry and those who work alongside colleagues from product design in the context of cross-functional teams. Individual modules of this MSc can be studied as short courses.

The programme is very much one of technical engineering content, sitting in a systems engineering framework.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/aero-auto/automotive-systems-engineering/

Course structure and teaching

Students study three compulsory modules, three optional taught modules and carry out an individual project. In total the course comprises 180 modular credits, made up from 6 taught modules valued at 20 credits each, plus the project which is valued at 60 credits.

The course is mostly delivered as a series of block taught modules. An online study support system provides additional information and materials to facilitate learning and discussion. Full time students undertake a University based project and part time students undertake an industry based project.

Assessment: Examination, coursework assignments and project dissertation.

Course features

- Incorporates a systems thinking framework, referring to product lifecycle, target setting, requirements capture and cascade, plus elements of business-related drivers for engineering practice.

- Provides clear links between design and manufacture, for example presenting examples where manufacturing capabilities have a large impact on design and system robustness.

- Develops advanced and specialist themes via the optional modules.

- Expertise provided from industry-based specialists.

- Individual modules can be studied as short courses.

- The MSc course was originally developed in partnership with Ford Motor Company, and we continue to work closely with the automotive industry in designing, developing and delivering our courses.

Compulsory modules

- Manufacturing Systems and Integrated Design
- Vehicle and Powertrain Functional Performance
- Vehicle Systems Analysis
- Project

Optional modules (select three)

- Body Engineering
- Powertrain Calibration Optimisation
- Sustainable Vehicle Powertrains
- Vehicle Dynamics and Control (for full time programme only)
- Vehicle Electrical Systems Integration

Careers and further Study

Graduates work primarily in product design and development groups and are sought after by a wide range of automotive companies. Students that wish to pursue other careers are well-equipped to work in a wide range of sectors within the vehicle industry.

Scholarships

Loughborough University offers five merit based competitive scholarships to the value of 10% of the programme tuition fee for international students applying for the MSc in Automotive Systems Engineering. All students applying for the course will be considered for the scholarship.

Why choose aeronautical and automotive engineering at Loughborough?

The Department of Aeronautical and Automotive Engineering is a specialist centre within one of the UK’s largest engineering universities.

The Department has 37 academic staff and nearly 150 postgraduate students on taught and research programmes. In the Government’s External Subject Review, the Department was awarded an excellent score (23/24) for the quality of its teaching.In the most recent Research Excellence Framework our subject areas featured in the top ten nationally.

- Facilities
The Department has extensive laboratories and facilities including: wind tunnels; anechoic chamber; indoor UAV testing; structures testing facilities; gas-turbine engines; eight purpose-built engine test cells; Hawk aircraft; 6-axis simulator (road and aircraft); chassis dynamometer and numerous instrumented test vehicles.
The Department hosts the Rolls-Royce University Technology Centre (UTC) in Combustion Aerodynamics and the Caterpillar Innovation and Research Centre (IRC) in engine systems.

- Research
The Department has four major research groups working across the technologies of automotive and aeronautical engineering. Each group works on a variety of research topics, ranging from the development of new low emissions combustion systems for gas turbine engines, through to fundamental investigations into the operation of hydrogen powered fuel cells.

- Career prospects
Over 87% of our graduates were in employment and/or further study six months after graduating. The Department has particularly close links with BAE Systems, Bentley, British Airways, Ford Motor Company, Group Lotus, Jaguar Land Rover, JCB, MIRA, Perkins Caterpillar, Rolls-Royce and many tier one automotive suppliers

Find out how to apply here http://www.lboro.ac.uk/departments/aae/postgraduate/apply/

Read less
The MSc Mechanical Engineering programme provides practical skills and an understanding of fundamental theory to prepare students for the rapidly changing global market. Read more
The MSc Mechanical Engineering programme provides practical skills and an understanding of fundamental theory to prepare students for the rapidly changing global market.

Who is it for?

The programme is aimed at both new graduates and engineering professionals who wish to develop advanced skills in thermofluid, structural analysis, heat conversion and recovery, design and technology that are taught by leading experts in the field; all modules are updated by the latest advancements in technology.

This course is designed to meet the challenges of the rapidly changing global market; with the focus on well-designed systems and processes that are key to successful commercial enterprises.

Objectives

This course provides a broad-based knowledge of the latest technological developments in mechanical engineering. This includes thermos-fluids, structural mechanics, renewable energy, gas turbine, IC engines and advanced heat transfer.

Students not only gain an in-depth understanding on fundamental theory, but also acquire practical skills and can appreciate impending developments in the Mechanical fields of technology.

The Dissertation provides a stimulating and challenging opportunity to apply knowledge and develop a deep understanding in a specialised aspect of your choice. Dissertations can be institution or industry based and company sponsored students have the opportunity to develop their career. Successful industrial projects often lead to the recruitment of students by the collaborating company.

Teaching and learning

The programme comprises lectures, assessed assignments and technical visits.

Teaching by academics and industry professionals whose work is internationally recognised. Seminar series and talks are conducted by visiting speakers.

Assessment

Assessment is based on marks obtained throughout the year for courseworks, class tests, and end-of-year examinations. Modules, based on coursework only, are assessed through substantial individually designed courseworks, assignments and small projects. IT skill is assessed through submitted work on CATIA design reports and computational courseworks.

Modules

There are eight taught modules equating to 120 credits, plus a dissertation of 60 credits. The taught part of the MSc is structured into modules of 15 credits each.

The mode of delivery will follow a weekly teaching structure delivered at City, distributed through the year at the rate of four days per week. This course develops the broad skills and knowledge base required by mechanical engineers and provides a platform for career development.

Completion of modules and examinations will lead to the award of a Postgraduate Diploma. The completion of modules, examinations and dissertation will lead to the award of a Masters degree. Specialisations include computer-aided design, energy systems and management, combustions, IC engines, screw compressors and expanders, experimental techniques, mechatronics and dynamics of structures.

Core modules - 6 Core Modules, 15 credits each (90 credits):
-MEM102 Combustion Fundamentals and Applications (15 credits)
-MEM106 Advanced Structural Mechanics (15 credits)
-MEM107 Advanced Heat Transfer (15 credits)
-MEM108 IC engines and Vehicle Propulsion (15 credits)
-AEM301 Advanced Computational Fluid Dynamics (15 credits)
-AEM305 Gas Turbine Engineering (15 credits)
-Plus the individual project (EPM698) (60 credits)

Elective modules - Elective modules, choice of two, 15 credits each (30 credits):
-EPM707 Finite Element Methods (15 credits)
-EPM767 Mathematical Modelling in CAD (15 credits)
-EPM770 Renewable Energy (15 credits)
-EPM501 Power Electronics (15 credits)

Career prospects

Recent employment destinations of graduates include:
-Ford
-Rolls Royce
-Lotus
-BP
-Howden
-Shell
-Heliex
-Sortex
-Transport for London
-Jaguar
-Toyota
-Delphi
-Holroyd

Read less
This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. Read more

Overview

This programme (See http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/ ) aims to develop the knowledge and skills of a Bachelor’s-level graduate Mechanical Engineering to Masters level through advanced teaching, design work and research. As such it is also an opportunity for candidates from a different Engineering background to develop key Mechanical Engineering knowledge and skills required for their professional development. A key objective of the programme is to be an accredited route to becoming Chartered Engineer.

This programme makes use of masters-level courses in the Energy Sciences and Manufacture & Design complemented with specialist courses from relevant MSc courses offered by the institute. We have seen a growing need for an advanced mechanical engineering programme at the request of applicants, and our industry partners. This programme has been specifically developed to meet this need and to encourage students of this field into further learning.

The Scottish Funding Council has made available 20 scholarships covering fees only to students with Scottish backgrounds. 6 of these places are reserved for applicants to this programme in the first instance. The remaining places are spread over all our Energy based MSc programmes. There is no separate application process for this. If you are eligible, you will be considered automatically. You will be notified through the summer if you have been selected.

Programme content

Semester One - Mandatory
- B81PI Professional and Industrial Studies
This course is specifically designed to meet the master’s level outcome requirements in the areas of professional development and practice for chartered engineering status. This multi-disciplinary course uses industrial speakers and speakers from those in the university involved in bridging the gap between academia and industrial application.

- B51GS Specialist Engineering Technologies 1
The first of the specialist engineering technologies courses is based on computational fluid dynamics and assessed by a group project

Optional (Choose two)
- B51DE Engineering Design
In this course students interact with companies in a real life small R&D project supplied by the industrial partners. Working in teams, the students have to manage the design of a prototype, product or system and interact with the industrial contact putting into practice problem-solving skills from other engineering topics studied elsewhere in the programme.

- B51EK Fluids 1
Fluid mechanics applied to aerodynamics, including ideal flows, boundary layers, and aerofoils and their use for analysis and design purposes.

- B51EM Advanced Mechanics of Materials 1
Advanced classical mechanics including 3D stress and strain with particular application to thin walled vessels. Fatigue analysis and design for fatigue limit.

- B51EO Dynamics 1
To provide students with a thorough understanding of vibration theory and an appreciation of its application in an engineering environment

- B51EQ Thermodynamics 1
Thermodynamic cycles including heat engines and reverse heat engines and means of evaluating best performance.

- G11GA Flame Appraisal
Introduction to the stages required for evaluating an oilfield for production. This covers geological considerations and fluid flow from oil bearing rock.

Semester Two – Mandatory

- B81EZ Critical Analysis and Research Preparation
This course provides research training and addresses literature review skills, project planning, data analysis and presentation with a focus to critically discuss literature, and use data to support an argument.

- B51HB Failure Accident Analysis
To acquaint students with the potential causes of material, structure or component failure; framework under which a failure or forensic engineering investigation should be carried out and give them the opportunity to work case studies through from information-gathering to preparation of reports and an awareness of fire and explosion engineering.

- B51GT Specialist Engineering Technologies 2
To present advanced theory and practice in important or emerging areas of technology including non-linear final element materials to include contact mechanics, design of components subjected to high stress applications.

Optional (Choose one)
- B51EL Fluids 2
To provide a methodology for analysing one-dimensional compressible flow systems.

- B51EN Advanced Mechanics of Materials 2
To provide students with an opportunity to: carry out advanced analyses of mechanics of materials problems; analyse mechanics of materials where time is a significant additional variable; use final element analysis for cases involving viscoelasticity and complex geometry
engage with the findings of recent research in a mechanics of materials topic

- B51EP Dynamics 2
To provide students with a thorough understanding of control theory and an appreciation of the subject of environmental acoustics and passive noise control

- B51ER Thermodynamics 2
Investigation of heat transfer mechanisms with a view to the design of effective heat exchangers for given operating conditions. The study of radiation heat transfer and combustion equilibrium.

- B51DF Engineering Manufacture
To provide the student with a detailed understanding of the importance and integration of advanced manufacturing technology and manufacturing systems within the context of product engineering. On completion, the students should have acquired a detailed understanding of the product development process from initial conception through to product support as well as appreciate the impact of each stage of the process on the business and organisationally with respect to information dependence and manufacturing processes employed.

- G11GD Flame Development
A continuation of Flame Appraisal, this course looks at the well-head arrangement for oil extraction. This is an introduction to drilling engineering and the techniques required for oil extraction.

Semester 3 – Mandatory

- B51MD Masters Dissertation
An individual project led by a research active member of staff on a current research theme with the aim of leading to the production of a journal article.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-advanced-mechanical-engineering/

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Advanced Mechanical Engineering. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Read less
Mechanical Engineering is the application of physical science to practical problem solving. Read more
Mechanical Engineering is the application of physical science to practical problem solving. As a Mechanical Engineer you could be working on anything from a simple component such as a switch, to more complex machines such an internal combustion engine or an entire system such as an automobile or a factory production line. The MSc degree in Advanced Mechanical Engineering is a 1 calendar year programme forming part of a suite of programmes offered in Mechanical Engineering at Queen Mary University of London. The MSc programmes are aimed at students who already an have an in depth knowledge of an area of Science and Engineering, and who wish to specialise further in the area of Mechanical Engineering. The programme has a choice of modules enabling you to select a Solid Mechanics, Robotics and Automation or Thermofluids and Combustion pathway thereby allowing you to follow your interests.

The Mechanical Engineering degree programmes at QMUL are delivered by a large number of specialist academic staff, who, in addition to their teaching, are involved in internationally recognised research in a wide range of topics, including:

- Energy generation and conversion, including alternative and sustainable sources
- Heat transfer and fluid mechanics
- Computational engineering, both solids and fluids
- Control engineering
- Robotics
- Materials science, including structural and functional materials

The content of the programme includes a compulsory Research Methods and Experimental Techniques module in the first semester. Besides this module, you will take modules that will align with your background, your choice of specialisation area and your project topic.

A 60 credit research project will be undertaken supervised by staff working in a wide range of research areas and students will have access to our state of the art facilities. Several high performance computing clusters owned by the university support a full spectrum of computational research. Our well equipped laboratories include a wide range of IC engines, heat transfer facilities, wind tunnels, an anechoic chamber, a UK CueSim Flight Simulator and France-Price Induction Jet engine test bench, and materials synthesis and characterisation labs. Nanotechnology research is further supported by the facilities and expertise provided by Nanoforce, a company directly associated with the School.

Read less
Mechanical Engineering is the application of physical science to practical problem solving. Read more
Mechanical Engineering is the application of physical science to practical problem solving. As a Mechanical Engineer you could be working on anything from a simple component such as a switch, to more complex machines such an internal combustion engine or an entire system such as an automobile or a factory production line.

The MSc degree in Mechanical Engineering is a 1 calendar year conversion programme that is part of a suite of programmes offered in Mechanical Engineering at Queen Mary University of London. This programme is aimed at students who already have a science background (e.g. biology, mathematics, chemistry, physics), and who wish to convert to a career in Mechanical Engineering.

The Mechanical Engineering degree programmes at QMUL are delivered by a large number of specialist academic staff, who, in addition to their teaching, are involved in internationally recognised research in a wide range of topics, including:

Energy generation and conversion, including alternative and sustainable sources
Heat transfer and fluid mechanics
Computational engineering, both solids and fluids
Control engineering
Robotics
Materials science, including structural and functional materials
The programme structure is modular in format. During Semester A, students will take the compulsory module Engineering Methods, which exposes them to essential engineering techniques and philosophy. Depending on their background, they will further take 3 conversion modules from Vector Calculus, Energy Conversion Analysis, Computer Aided Engineering and Materials Selection. In Semester B students have the choice to specialise in one of the main areas of Solid Mechanics, Robotics and Automation, and Thermofluids and Combustion.

A 60 credit research project is to be undertaken using our research activities and our state of the art facilities. Several high performance computing clusters owned by the university support a full spectrum of computational research. Our well equipped laboratories include a wide range of IC engines, heat transfer facilities, wind tunnels, an anechoic chamber, a UK CueSim Flight Simulator and France-Price Induction Jet engine test bench, and materials synthesis and characterisation labs. Nanotechnology research is further supported by the facilities and expertise provided by Nanoforce, a company directly associated with the School.

* All new courses are required to undergo a two-stage internal review and approval process before being advertised to students. Courses that are marked "subject to approval" have successfully completed the first stage of this process. Applications are welcome but we will not make formal offers for this course until it has passed this second (and final) stage.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X