• University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
University of Worcester Featured Masters Courses
University of Bradford Featured Masters Courses
Queen Mary University of London Featured Masters Courses
FindA University Ltd Featured Masters Courses
"colloids"×
0 miles

Masters Degrees (Colloids)

  • "colloids" ×
  • clear all
Showing 1 to 9 of 9
Order by 
The MSc Formulation Science is innovative, multidisciplinary, distinctive and unique in the UK in offering a depth of knowledge in the science of formulating new products, whether these are new pharmaceuticals or consumer care products, paints, foods or fast moving consumer goods. Read more
The MSc Formulation Science is innovative, multidisciplinary, distinctive and unique in the UK in offering a depth of knowledge in the science of formulating new products, whether these are new pharmaceuticals or consumer care products, paints, foods or fast moving consumer goods.

The programme will allow you to understand the principles of making finished products from a blend of different individual ingredients. Drawing on current examples from the pharmaceutical industry, and using the industrial experience of academic staff, you will also apply these principles to industrially relevant problems in other areas of formulation science, such as consumer products and cosmetics.

This programme involves a series of lectures supplemented by practical lab-based investigations and seminars. Case studies will provide you with the chance to enhance your creativity and problem solving whilst working as part of a team in a way that simulates an industrial setting. A research project in a well-equipped department led by staff with a diversity of research experience will give you the opportunity to carry out novel research and enhance your ability to manage projects and foster independence. Across the degree, you will have the opportunity to communicate your science clearly in a range of forms to a range of audiences and make use of emerging information and communication technologies.

Upon completion of the degree you will have developed a research skills portfolio that will serve as a solid foundation for your continuing professional development in formulation sciences.

Our former graduates have gone on to develop successful careers in a wide range of industrial sectors, from the pharmaceutical sciences to aggrochemical and consumer goods. They have gone on to work for major multinational companies as well as thrive at specialist enterprises. Former graduates have also progressed to study successfully for PhDs.

The aims of the programme are:

- To enhance the critical, analytical and practical skills relevant to a modern, multidisciplinary formulation industry

- To provide an understanding of how the interaction between different components in a formulation affect the quality of a finished product

- To develop team work and problem solving with an emphasis on an industrial context

- To provide direct, hands-on practical research experience of currently relevant problems.

Visit the website http://www2.gre.ac.uk/study/courses/pg/sci/fs

Science - General

We offer a range of sciences programmes from biotechnology to formulation science. Whatever you choose to study you will be taught by experienced staff in state-of-the-art laboratories and gain the skills you need to succeed in your chosen field. Employability is central to all our programmes and you will benefit from our strong links with employers, industry work placements and professional accreditations.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Formulation of Consumer Goods, Cosmetics and Coatings (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Project (MSc Formulation Science) (60 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Formulation of Consumer Goods, Cosmetics and Coatings (30 credits)
Project (MSc Formulation Science) (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Taught courses are assessed by a wide array of techniques from the traditional (such as examinations, coursework assessments and laboratory work) to the innovative: students are expected to produce a portfolio of research skills upon completion of their degree. Case studies reports, oral presentations, group assignments with accompanying discussions will also be used to assess creativity, collaboration and communication skills. There is a laboratory-based project which will be assessed on practical ability and a final written thesis.

Career options

On successful completion of this programme students will be able to work in formulation industries such as pharmaceuticals, consumer healthcare, cosmetics, paints and fine chemicals or go on to higher study such as for a PhD.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing. Read more
The MSc Pharmaceutical Sciences programme was developed in response to the need for enhanced skills by employees within pharmaceutical research, development or manufacturing.

The programme will generate graduates with in-depth theoretical knowledge and extensive laboratory skills, allowing students to be involved in many disciplines of pharmaceutical sciences from drug discovery and medicinal chemistry through to product development and manufacture and including pharmaceutical analysis, quality control and quality assurance.

Delivery on this programme involves a series of lectures, seminars, workshops and lab-based exercises. Many of the lectures on this programme are delivered by leading industrial experts. Problem-based learning and case studies will provide students with experience of team-working that simulates an industrial setting. Students will develop team-working, critical thinking and analytical problem solving abilities which are important in the modern pharmaceutical industry.

The main part of the programme is a research project that runs over the whole academic year and gives students the opportunity to work with modern research equipment to carry out novel research. Project work will help students enhance practical skills, analytical thinking, time management, communication skills and independence.

The aims of the programme are:

- To acquire a sound core knowledge base together with knowledge of a specialist area of pharmaceutical sciences to support current and future developments of pharmaceutical and related sciences

- To enhance students' critical, analytical, practical and communication skills relevant to the modern, multidisciplinary pharmaceutical industry

- To develop research skills in terms of: planning, conducting, evaluating and reporting the results of investigations

- To gain the knowledge and skills necessary to solve a range of pharmaceutical drug development and processing problems

- To enable students to use and develop advanced theories and develop novel concepts to explain pharmaceutical development and processing data.

Visit the website http://www2.gre.ac.uk/study/courses/pg/pharmsci/mps

Science - Pharmaceutical

The aim of our programmes is to produce graduates with a sound knowledge of chemistry, biology and design of dosage forms, a combination that was lacking in the pharmaceutical industry. Graduates are expected to gain excellent foundational knowledge that will open up many varied employment opportunities.

We have recruited excellent staff pulling in experience from the pharmaceutical industry, analysts working in the area of pharmaceutical analysis and world-class experts in the design and action of drug dosage forms.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Drug Discovery and Medicinal Chemistry (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
MSc Pharmaceutical Sciences Research Project (60 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

English Language Support (for Postgraduate students in the School of Science)
Analytical Methods and QA/QC Principles (30 credits)
Modern Pharmaceutical Technologies and Process Engineering (30 credits)

- Year 2:
Students are required to study the following compulsory courses.

Colloids and Structured Materials in Formulations (30 credits)
Drug Discovery and Medicinal Chemistry (30 credits)
MSc Pharmaceutical Sciences Research Project (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through examinations, coursework and a dissertation.

Career options

Graduates from this programme can pursue careers in the NHS, the pharmaceutical industry or industries manufacturing other health care products.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643707

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area. Read more

Theoretical Physics

Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area.

This programme serves as a gateway to understanding the fascinating world of physics, ranging from the unimaginably small scales of elementary particles to the vast dimensions of our universe.

The central goal of the Theoretical Physics programme is to obtain a detailed understanding of the collective behaviour of many particle systems from a fully microscopic point of view. In most physical systems, microscopic details determine the properties observed. Our condensed matter theorists and statistical physicists develop and apply methods for explaining and predicting these connections.

Examples include density functional theory, renormalisation-group theory and the scaling theory of critical phenomena. Dynamical properties are studied using such methods as kinetic theory and the theory of stochastic processes. These theories can be quantum mechanical, including theories of the quantum Hall effect, superconductivity, Bose-Einstein condensation, quantum magnetism and quantum computing. More classical are relationships between chaos and transport, nucleation phenomena, polymer dynamics and phase structure and dynamics of colloids.

Read less
Our Polymer Science and Engineering research programmes have a long and esteemed history and today span a diverse range of themes and topics that have relevance to industrial needs worldwide. Read more
Our Polymer Science and Engineering research programmes have a long and esteemed history and today span a diverse range of themes and topics that have relevance to industrial needs worldwide.

Focus for polymer research

Our polymer research is closely integrated and encompasses the research of several members of academic staff, both individually and in collaboration. The research is built around fundamental studies of structure-property relationships for polymer materials of current and future importance.

Active areas of polymer research include:
-Biopolymers
-Coatings and Films
-Composites
-Deformation Micromechanics
-Fibres
-Multiphase Polymers
-Polymer Colloids
-Polymerisation
-Polymer Processing
-Responsive Polymers

Industry impact

Many of our polymer research projects are carried out in collaboration with industry and have important implications for the polymer materials sector.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
Our Polymer Science and Engineering research programmes have a long and esteemed history and today span a diverse range of themes and topics that have relevance to industrial needs worldwide. Read more
Our Polymer Science and Engineering research programmes have a long and esteemed history and today span a diverse range of themes and topics that have relevance to industrial needs worldwide.

Focus for polymer research

Our polymer research is closely integrated and encompasses the research of several members of academic staff, both individually and in collaboration. The research is built around fundamental studies of structure-property relationships for polymer materials of current and future importance.

Active areas of polymer research include:
-Biopolymers
-Coatings and Films
-Composites
-Deformation Micromechanics
-Fibres
-Multiphase Polymers
-Polymer Colloids
-Polymerisation
-Polymer Processing
-Responsive Polymers

Industry impact

Many of our polymer research projects are carried out in collaboration with industry and have important implications for the polymer materials sector.

Read less
Do you have a keen interest in global issues like sustainability, renewable energy, and personalised healthcare? Supported by leading experts from academia and industry, this invaluable course explores the real-world application of polymers in state-of-the-art research laboratories. Read more
Do you have a keen interest in global issues like sustainability, renewable energy, and personalised healthcare? Supported by leading experts from academia and industry, this invaluable course explores the real-world application of polymers in state-of-the-art research laboratories.

You’ll be trained in the fundamentals of synthesis, characterisation and colloids plus the bulk properties of polymers. You’ll use the latest equipment for spectrometry and chromatography to conduct independent analysis within the world-leading Magnetic Resonance Centre, and you’ll gain a number of transferable skills throughout your degree too.

By the end of the course you’ll be excellently positioned to work in a number of related industries or take up further research in a PhD.

Read less
Are you interested in industrial applications and the physical properties of polymer materials? Our course offers expertise from several departments and is taught in our state-of-the-art Materials and Analytical Sciences Building. Read more
Are you interested in industrial applications and the physical properties of polymer materials? Our course offers expertise from several departments and is taught in our state-of-the-art Materials and Analytical Sciences Building.

You’ll be trained in the fundamentals of polymer synthesis and characterization, with a particular focus on colloids and nanocomposites which find huge application in many global industries. This course is supported by industrial and academic experts, and you’ll be able to use our worldleading infrastructure in material characterisation and properties to gain hands-on training too.

Our unique business-focused modules take your training a step further too, exploring entrepreneurship and understanding the business models associated with large and small companies. By the end of your course, you’ll be excellently positioned to progress within industrial or academic research.

Read less
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Read more
The School of Chemistry is one of the largest in the UK and an internationally recognised centre of teaching and research. Currently there are over 250 postgraduate and postdoctoral researchers, from many different countries, working with more than 60 academic staff on a wide range of research themes. Extensive collaborations with science-based industries and leading international academic centres ensure that research in Bristol remains at the frontier of science.

The School of Chemistry is housed in spacious, modern laboratories, which are well equipped with state-of-the-art facilities. There is a comprehensive graduate programme to ensure you have the opportunity to build a wide range of skills, both in chemistry and other transferable skills.

The School of Chemistry hosts or participates in a number of Centres for Doctoral Training (CDTs) and Doctoral Training Partnerships (DTPs). Training opportunities in these national flagship centres are available in the following disciplines:
-Chemical synthesis
-Functional nanomaterials
-Catalysis
-Theory and modelling in chemical sciences
-Science and technology of diamond
-Synthetic biology
-Advanced composites
-Earth and environmental sciences
-Quantum engineering
-Future autonomous and robotic systems
-Bioscience
-Condensed matter physics

Research groups

The School of Chemistry maintains a traditional managerial structure with three sections, namely Inorganic and Materials, Organic and Biological, and Physical and Theoretical. However, the school’s research profile is defined according to nine themes, each with a critical mass of researchers. Further information on the school's research profile can be found at Explore Bristol Research (http://research-information.bristol.ac.uk/).

-Atmospheric and Global Change Chemistry
-Biological and Archaeological Chemistry
-Catalysis
-Computational and Theoretical Chemistry
-Materials for Energy
-Soft Matter, Colloids and Materials
-Spectroscopy and Dynamics
-Supramolecular and Mechanistic Chemistry
-Synthesis

Researchers in the School of Chemistry are engaged in a number of collaborative centres and research institutes, with broader engagement from researchers across the Faculty of Science, the University and beyond.

Careers

Many of our PhD graduates are successful in securing postdoctoral positions at universities in the UK and abroad. A PhD in chemistry is valued in many employment sectors worldwide, including pharmaceutical sciences, polymers, coatings, agrochemicals, instrumentation manufacturers and management consultancy. Your skills will be in high demand from the chemical and allied industries, as well as the public sector.

Read less
Research students in Forensic Science have the opportunity to work alongside a multidisciplinary team in the School of Life Sciences, and can benefit from strong links with industry practitioners. Read more
Research students in Forensic Science have the opportunity to work alongside a multidisciplinary team in the School of Life Sciences, and can benefit from strong links with industry practitioners.

You have the opportunity to engage in the work of the Forensic Analysis Research Group, to develop innovative methods and techniques to assist in solving crime and casework-related issues. The team are currently engaged in high-profile studies including collaborative projects with the Centre for Applied Science and Technology at the UK Home Office.

You have access to a range of training programmes to support you in your independent investigations and an experienced supervisory team are on hand to offer advice and direction. Ongoing research projects in the School include Chemical Analysis of Legal Highs and GHB, DNA Analysis in Forensic and Archaeological Contexts, and Microcrystalline Testing for Drugs.

Research Areas, Projects & Topics

Main research areas:
-Drug analysis
-Ignitable liquid and fuel analysis
-Explosives analysis
-DNA fingerprinting
-Fingerprinting science
-Dye and pigment analysis
-Forensic anthropology
-Spectroscopic techniques (including Raman) and separation science
-Surface analysis
-Mechanical properties of biological materials.

Recent research projects include:
-Chemical analysis of fingerprints
-Analysis of legal highs and GHB
-Analysis of fuel markers and detection of fuel adulteration
-Development of sensors for forensic applications
-Microcrystalline testing for drugs
-Analysis of smoke for fire investigation
-Enhancement of DNA at crime scenes
-Development of colloids and Surface Enhanced Raman Spectroscopy (SERS)
-DNA analysis in forensic and archaeological contexts
-Molecular typing of skin micro-organisms in forensic identification
-Forensic analysis of the mechanical properties of biological materials.

How You Study

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisors to assess progress and guide research methodologies, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic to a group of academics. You are also expected to demonstrate how your research findings have contributed to knowledge or developed existing theory or understanding.

Career and Personal Development

These postgraduate research programmes allow you the opportunity to expand your knowledge and expertise in the specialist field of forensic science. They provide the chance to develop an in-depth foundation for further research or progression to careers in forensic science-related industries.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X