• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Durham University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
Imperial College London Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Cass Business School Featured Masters Courses
Swansea University Featured Masters Courses
"coding"×
0 miles

Masters Degrees (Coding)

We have 105 Masters Degrees (Coding)

  • "coding" ×
  • clear all
Showing 1 to 15 of 105
Order by 
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
City's MA in Interactive Journalism is an exciting contemporary course, responding to the rapidly changing environment of digital journalism, with a focus on social media, audience development, data journalism and multimedia storytelling. Read more
City's MA in Interactive Journalism is an exciting contemporary course, responding to the rapidly changing environment of digital journalism, with a focus on social media, audience development, data journalism and multimedia storytelling.

Who is it for?

This course is suitable for students from any degree background with an interest in current affairs. Students will have a keen interest in the media, specifically in digital journalism. Some experience of social media and/or data work can be useful for those wishing to specialise in these fields.

Objectives

This course has a particular emphasis on digital media, and prepares you to enter and/or further develop a career in online journalism in particular. The curriculum reflects the continuing development of digital journalism through more interactive content and formats that engage users as active participants.

Innovative modules focus on social media and audience development, data journalism and coding for journalists. Multimedia work is geared to online publication. Alongside this, you will also learn the essential journalistic skills of writing, reporting, newsgathering, interviewing and feature writing, plus law and ethics -- core elements of City’s renowned MA Journalism courses.

Academic facilities

You will gain practical skills in our digital newsrooms, with access to cameras, audio recorders and other equipment, with dedicated technical support. In 2014 we completed a £12m development project for our journalism facilities. These facilities were developed in consultation with experts from the BBC and ITN, and include two digital newsrooms - impressive modern facilities that enable you to learn the skills required to produce newspapers, magazines and websites.
-A television studio: enabling simultaneous multi-media broadcast and a major expansion in the number of news and current affairs programmes produced.
-Four radio studios: enabling an increase in output and the potential to explore a permanent radio station.
-Two radio broadcast newsrooms: high-tech facilities that enable you to learn how to produce a radio programme.
-Two digital newsrooms: impressive modern facilities that enable you to learn the skills required to produce newspapers, magazines and websites.
-Two TV editing and production newsrooms: state-of-the-art facilities that enable you to learn about TV production.

Placements

Students on all Journalism MA courses may opt to undertake work placements, which many find an essential step in developing their career in journalism. They can give you the chance to put your learning into practice and, more importantly, make contacts in the industry.

You are encouraged to seek work experience while you study on this course, and your personal tutor can advise on suitable organisations to approach.

Work placements are not formally assessed as part of the MA programme.

Teaching and learning

Some modules are taught in lecture theatres, such as Ethics, Rules and Standards and UK Media Law, but some involve small-group workshops that allow you to develop your journalistic skills and knowledge with the support of our expert academics.

Our students have the option of taking part in a Teeline shorthand course alongside their studies. This costs £100 (refundable if you reach 100 words per minute) and runs across two terms.

Assessment

All MA Journalism courses at City are practical, hands-on courses designed for aspiring journalists. As a result, much of your coursework will be journalistic assignments that you produce to deadline, as you would in a real news organisation. Assessment is often through a portfolio of journalistic assignments of this kind.

Modules

This course will prepare you for work in the rapidly changing environment of online journalism, with a focus on the key areas of social media, audience development, data journalism and coding.

You will develop these digital specialisations alongside essential journalistic skills of writing, reporting, newsgathering, interviewing and features - core elements of City's renowned Journalism MA programme. Multimedia work is geared to online publication.

Core modules
-Ethics, Rules and Standards (30 credits)
-Journalism Portfolio (30 credits)
-Final Project (30 credits)
-Social, Community and Multimedia Management (30 credits)
-Introduction to Data Reporting (15 credits)
-Advanced Data and Coding (15 credits)
-UK Media Law (15 credits)
-Political Headlines (15 credits)

Career prospects

Students benefit from a central London location, unrivalled industry contacts and a thorough grounding in the best practices of professional journalism.

Recent graduates have gone on to work in both specialist digital roles (such as social media, audience development and data journalism) and as reporters and sub-editors.

Employers include:
-BuzzFeed
-Metro
-BBC
-Financial Times
-The Times
-The Guardian
-The Daily Telegraph
-Daily Mirror
-City AM
-The Independent
-Bloomberg News
-The Daily Mail
-Property Week
-Media Briefing
-MSN
-Aeon Magazine
-Manchester Evening News
-Exaro News

Read less
The MSc in Computational and Data Journalism is a cutting-edge programme based at the UK’s leading Journalism School (Guardian’s University Guide 2016). Read more
The MSc in Computational and Data Journalism is a cutting-edge programme based at the UK’s leading Journalism School (Guardian’s University Guide 2016). It is jointly delivered by the School of Journalism, Media and Cultural Studies and the School of Computer Science and Informatics.

This programme provides the perfect vantage point from which to succeed in digital journalist and allows you to develops skills in both data journalism and newsroom development. No previous knowledge of computing is necessary and the programme is open to graduates from any discipline.

This MSc is ideal for recent graduates looking for specialist skills in digital journalism and coding that are proven to be in demand by leading organisations. We also work with working journalists looking to develop their skills in this growing area of the industry.

As a hands-on programme, it focuses on the development of knowledge and skills through research-informed practical learning in journalism, data science, computer coding and digital development.

During this one-year, full-time Master's degree, you will benefit from a combination of lectures, seminars and workshops to develop your skills in an open, discussion-driven environment.

You will develop a solid foundation in journalism and computing, before specialising in your areas of interest and finally completing a practical and research-based dissertation project using the unique skills that you have acquired.

This programme is the perfect foundation for a career at the forefront of digital journalism. It has been designed to respond to a shortage in skills reported by employers and built to develop professional writing and editorial skills. In addition, it delivers specialist training to understanding data, coding and web application development.

Distinctive features

• This innovative programme is the first of its kind in the UK and is supported by leading industry bodies such as the Financial Times, the BBC and the Office for National Statistics

• Specialist modules include science reporting, sport, business journalism, crisis reporting, visual communication and information design

• The course has a strong focus on practical application of the skills acquired

Structure

This is a year-long, full-time course. It is taught through a mix of formal lectures, demonstrations, and practical exercises as well as individual and team projects but always with a focus on applying the skills in the real world.

The course is structured in three phases – foundation, application and specialisation, dissertation - to support you in the development of skills and knowledge in the key aspects of the course.

You will initially gain a solid foundation in journalism and computing before specialising in your areas of interest and finally, completing a practical and research-based dissertation project using the unique skills that you have acquired.

Core modules:

Information Processing in Python
Web Application Development
Reporters and the Reported
Digital Investigation
Data Journalism
Data Journalism
Dissertation Project

Optional modules:

Computer Science Topic 1: Web and Social Computing
Human Centric Computing
Visual Communication and Information Design
Reporting Business, Finance & Economics
Global Crisis Reporting
Reporting Health and Science
Managing Print Media in a Digital World
Motoring Journalism
Business and Financial Journalism
Lifestyle & Consumer Journalism
Political Reporting
Sports Journalism
Data Journalism
Yr Agenda Cymreig

Teaching

You will be taught through a variety of formal lectures, practical exercises, and individual or group projects which replicate an industry environment.

You will benefit from a dedicated programme of seminars to complement your skills and understanding across the two different disciplines and to bring together the issues arising from the existing teaching modules.

You will also attend a cross-computing/journalism set of workshops and seminars, which support early application and development of the skills developed through each of the subject areas.

Assessment

You will be assessed through a wide range of formative and summative assessments throughout the course. These range from practical class room activities to academic essays and examinations.

Career prospects

The skills taught by this MSc are in demand with employers. Students from the course have gone on to work as data journalists with national news organisations. Students on this programme have also included working journalists looking to specialise in this important area of growth within the media.

Read less
Mathematics is at the heart of advances in science, engineering and technology, as well as being an indispensable problem-solving and decision-making tool in many other areas of life. Read more
Mathematics is at the heart of advances in science, engineering and technology, as well as being an indispensable problem-solving and decision-making tool in many other areas of life. This MSc course enables you to delve deeply into particular aspects of pure and applied mathematics, through a wide choice of modules in fascinating areas such as fractal geometry, coding theory and analytic theory. You’ll complete your MSc with a piece of independent study, exploring the history of modern geometry, advances in approximation theory, variational methods applied to eigenvalue problems, or algebraic graph theory and culminating in a dissertation on the topic of your choice.

Key features of the course

•Ideal for mathematically inclined scientists and engineers as well as mathematicians
•Extends your knowledge and refines your abilities to process information accurately, and critically analyse and communicate complex ideas
•Develops an enhanced skill set that will put you at an advantage in careers as diverse as mathematics, education, computer science, economics, engineering and finance.
•The most popular MSc in mathematics in the UK.
This qualification is eligible for a Postgraduate Loan available from Student Finance England. For more information, see Fees and funding

Course details

You can take a number of different routes towards your qualification - see the full module list for all options.

Modules

The modules in this qualification are categorised as entry, intermediate and dissertation. Check our website for start dates as some modules are not available for study every year.

Entry:

• Calculus of variations and advanced calculus (M820)
• Analytic number theory I (M823)

Intermediate:

• Nonlinear ordinary differential equations (M821)
• Applied complex variables (M828) - next available in October 2017 and following alternate years
• Analytic number theory II (M829) - next available in October 2018 and following alternate years
• Approximation theory (M832) - next available in October 2018 and following alternate years
• Advanced mathematical methods (M833) - next available in October 2017 and following alternate years
• Fractal geometry (M835) - next available in October 2017 and following alternate years
• Coding theory (M836) - next available in October 2018 and following alternate years
• Dissertation: Dissertation in mathematics (M840)

Module study order:

•You must normally pass at least one entry level module before studying an intermediate module.
•You must pass Analytic number theory I (M823) before studying Analytic number theory II (M829).
•You must normally pass four modules before studying the Dissertation in mathematics (M840).
•Some topics for the dissertation have prerequisite modules

Otherwise within each category modules may be studied in any order, and you may register for a module while studying a pre-requisite for that module (i.e. before you know whether you have passed the pre-requisite module or not).

To gain this qualification, you need 180 credits as follows:

150 credits from this list:

Optional modules

• Advanced mathematical methods (M833)
• Analytic number theory I (M823)
• Analytic number theory II (M829)
• Applied complex variables (M828)
• Approximation theory (M832)
• Calculus of variations and advanced calculus (M820)
• Coding theory (M836)
• Fractal geometry (M835)
• Nonlinear ordinary differential equations (M821)

Plus

Compulsory module

Dissertation in mathematics (M840)

The modules quoted in this description are currently available for study. However, as we review the curriculum on a regular basis, the exact selection may change over time.

Credit transfer

For this qualification, we do not allow you to count credit for study you have already done elsewhere.

Read less
In what way does society influence the way that we use language? And conversely, how far does the way we use language influence society? Can language use impact the class system? Sexism? Mental health?. Read more
In what way does society influence the way that we use language? And conversely, how far does the way we use language influence society? Can language use impact the class system? Sexism? Mental health?

On our MA Sociolinguistics, you address questions like these through exploration of the stylistic, cognitive and functional aspects of language variation and change. We familiarise you with the foundations of contemporary sociolinguistics, including:
-Language variation and change
-Ethnography of speaking
-Multilingualism
-Discourse

We additionally offer modules in some of the most prominent sub-disciplines in linguistics such as variation theory, socio-pragmatics, conversation analysis, language contact, language and gender, and language rights.

You also gain first-hand experience of interview, questionnaire and observation data and learn quantitative and qualitative methodologies for coding and analysing sociolinguistic interview and questionnaire data.

We are one of the largest and most prestigious language and linguistics departments in the world, a place where talented students become part of an academic community in which the majority of research is rated ‘world-leading’ or ‘internationally excellent’ (REF 2014), placing us firmly within the top 10 departments in the UK and ranked among the top 150 departments on the planet according to the QS World [University] Rankings [2016] for linguistics.

If you want a global outlook, are interested in human communication, and want to study for a degree with real-world practical value in a world-class department, welcome to Essex.

Our expert staff

Our staff maintain excellent student-staff ratios with capped language-specific seminars.

In sociolinguistics, Peter Patrick, Rebecca Clift, Enam Al Wer and Vineeta Chand all work on different aspects of how language varies, and investigate which factors cause such variation. Peter is also involved in language rights, and offers expert opinions in asylum cases where language is used to determine origin.

Specialist facilities

-An exciting programme of research seminars and other events
-Our Languages for All programme offers you the opportunity to study an additional language alongside your course at no extra cost
-Our ‘Visual World’ Experimental Lab records response times and eye movements when individuals are presented with pictures and videos
-Our Eye-Tracking Lab monitors eye movement of individuals performing tasks
-Our Psycholinguistics Lab measures how long it takes individuals to react to words, texts and sounds
-Our Linguistics Lab has specialist equipment to analyse sound
-Our Albert Sloman Library houses a strong collection of books, journals, electronic resources and major archives

Your future

Our course can lead to careers in areas such as academic research, publishing, journalism, administration, public service and teaching. You develop key employability skills including research design, data analysis, thinking analytically, report writing and public speaking.

We work with the University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Within our Department of Language and Linguistics, we also offer supervision for PhD and MPhil. We offer supervision in areas including language acquisition, language learning and language teaching, culture and communication, psycholinguistics, language disorders, sociolinguistics, and theoretical and descriptive linguistics.

Our graduates are successful in a wide variety of career paths. They leave Essex with a unique set of skills and experience that are in demand by employers.

Example structure

-Variationist Sociolinguistic Theory
-Sociolinguistic Methods 1: Data Collection
-Sociolinguistic Methods: Data Coding and Analysis
-MA Dissertation
-Assignment Writing and Dissertation Preparation
-Sociocultural Linguistics
-Advanced Phonology (optional)
-First Language Acquisition (optional)
-Phonological Development (optional)
-Second Language Acquisition and Linguistics Theory (optional)
-American Languages (optional)
-Varieties of English (optional)
-Sentence Processing (optional)
-Language Rights (optional)
-Semantics (optional)
-Language Learning (optional)
-English Syntax 1 (optional)
-Individual Differences in L2 Learning (optional)
-Syntactic Theory I (optional)
-Experimental Design and Analysis (optional)
-Research Methods I (optional)
-English Syntax 2 (optional)
-Syntactic Theory II (optional)
-The Role of Age in Bilingual Development (optional)
-Variation in English II (optional)
-Research Methods II (optional)
-Graduate Research Assignment (optional)
-Language Attrition (optional)
-Language in Context: From Pragmatics to Conversation Analysis (optional)
-Intercultural Communication: communicating across languages and cultures (optional)

Read less
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. Read more
This highly focused MSc explores some of the mathematics behind modern secure information and communications systems, specialising in mathematics relevant for public key cryptography, coding theory and information theory. During the course critical awareness of problems in information transmission, data compression and cryptography is raised, and the mathematical techniques which are commonly used to solve these problems are explored.

The Mathematics Department at Royal Holloway is well known for its expertise in information security and cryptography and our academic staff include several leading researchers in these areas. Students on the programme have the opportunity to carry out their dissertation projects in cutting-edge research areas and to be supervised by experts.

The transferable skills gained during the MSc will open up a range of career options as well as provide a solid foundation for advanced research at PhD level.

See the website https://www.royalholloway.ac.uk/mathematics/coursefinder/mscmathematicsofcryptographyandcommunications(msc).aspx

Why choose this course?

- You will be provided with a solid mathematical foundation and a knowledge and understanding of the subjects of cryptography and communications preparing you for research or professional employment in this area.

- The mathematical foundations needed for applications in communication theory and cryptography are covered including Algebra, Combinatorics Complexity Theory/Algorithms and Number Theory.

- You will have the opportunity to carry out your dissertation project in a cutting-edge research area; our dissertation supervisors are experts in their fields who publish regularly in internationally competitive journals and there are several joint projects with industrial partners and Royal Holloway staff.

- After completing the course former students have a good foundation for the next step of their career both inside and outside academia.

Department research and industry highlights

The members of the Mathematics Department cover a range of research areas. There are particularly strong groups in information security, number theory, quantum theory, group theory and combinatorics. The Information Security Group has particularly strong links to industry.

Course content and structure

You will study eight courses as well as complete a main project under the supervision of a member of staff.

Core courses:
Advanced Cipher Systems
Mathematical and security properties of both symmetric key cipher systems and public key cryptography are discussed as well as methods for obtaining confidentiality and authentication.

Channels
In this unit, you will investigate the problems of data compression and information transmission in both noiseless and noisy environments.

Theory of Error-Correcting Codes
The aim of this unit is to provide you with an introduction to the theory of error-correcting codes employing the methods of elementary enumeration, linear algebra and finite fields.

Public Key Cryptography
This course introduces some of the mathematical ideas essential for an understanding of public key cryptography, such as discrete logarithms, lattices and elliptic curves. Several important public key cryptosystems are studied, such as RSA, Rabin, ElGamal Encryption, Schnorr signatures; and modern notions of security and attack models for public key cryptosystems are discussed.

Main project
The main project (dissertation) accounts for 25% of the assessment of the course and you will conduct this under the supervision of a member of academic staff.

Additional courses:
Applications of Field Theory
You will be introduced to some of the basic theory of field extensions, with special emphasis on applications in the context of finite fields.

Quantum Information Theory
‘Anybody who is not shocked by quantum theory has not understood it' (Niels Bohr). The aim of this unit is to provide you with a sufficient understanding of quantum theory in the spirit of the above quote. Many applications of the novel field of quantum information theory can be studied using undergraduate mathematics.

Network Algorithms
In this unit you will be introduced to the formal idea of an algorithm, when it is a good algorithm and techniques for constructing algorithms and checking that they work; explore connectivity and colourings of graphs, from an algorithmic perspective; and study how algebraic methods such as path algebras and cycle spaces may be used to solve network problems.

Advanced Financial Mathematics
In this unit you will investigate the validity of various linear and non-linear time series occurring in finance and extend the use of stochastic calculus to interest rate movements and credit rating;

Combinatorics
The aim of this unit is to introduce some standard techniques and concepts of combinatorics, including: methods of counting including the principle of inclusion and exclusion; generating functions; probabilistic methods; and permutations, Ramsey theory.

Computational Number Theory
You will be provided with an introduction to many major methods currently used for testing/proving primality and for the factorisation of composite integers. The course will develop the mathematical theory that underlies these methods, as well as describing the methods themselves.

Complexity Theory
Several classes of computational complexity are introduced. You will discuss how to recognise when different problems have different computational hardness, and be able to deduce cryptographic properties of related algorithms and protocols.

On completion of the course graduates will have:
- a suitable mathematical foundation for undertaking research or professional employment in cryptography and/or communications

- the appropriate background in information theory and coding theory enabling them to understand and be able to apply the theory of communication through noisy channels

- the appropriate background in algebra and number theory to develop an understanding of modern public key cryptosystems

- a critical awareness of problems in information transmission and data compression, and the mathematical techniques which are commonly used to solve these problems

- a critical awareness of problems in cryptography and the mathematical techniques which are commonly used to provide solutions to these problems

- a range of transferable skills including familiarity with a computer algebra package, experience with independent research and managing the writing of a dissertation.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation. The examinations in May/June count for 75% of the final average and the dissertation, which has to be submitted in September, counts for the remaining 25%.

Employability & career opportunities

Our students have gone on to successful careers in a variety of industries, such as information security, IT consultancy, banking and finance, higher education and telecommunication. In recent years our graduates have entered into roles including Principal Information Security Consultant at Abbey National PLC; Senior Manager at Enterprise Risk Services, Deloitte & Touche; Global IT Security Director at Reuters; and Information Security manager at London Underground.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Modern information systems continue to transform and progress the ease with which information can be accessed across the globe and to underpin the digital society and economy. Read more
Modern information systems continue to transform and progress the ease with which information can be accessed across the globe and to underpin the digital society and economy.

They depend fundamentally on digital systems of communication, and this programme provides thorough coverage of the speciality to meet the high and increasing demand for digital communications engineers who can manage and develop the technologies of today’s data-driven lifestyle.

This programme is aimed at recent engineering, physics and computer science graduates and/or those with a number of years industry experience in the communications industry, who wish to acquire in-depth knowledge of this key specialism in order to progress their careers.

Core study areas include fundamentals of digital signal processing and information theory and coding, and a research project.

Optional study areas include communication networks, personal radio communications, communication channels, digital signal processing for software defined radio, multimedia over networks, mobile network technologies and intelligent signal processing.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/digital-communication-systems/

Programme modules

Compulsory Modules:
Semester 1
- Fundamentals of Digital Signal Processing
- Information Theory and Coding

Semester 2
- Research project
- Advanced individual project

Optional Modules:
Semester 1
- Communication Networks
- Personal Radio Communications
- Communication Channels

Semester 2
- Digital Signal Processing for Software Defined Radio
- Communication Network Security and e-Commerce
- Mobile Network Technologies
- Intelligent Signal Processing

How you will learn

The course is designed to give both deep understanding of the core technologies which underpin the industry and which are driving the latest advances in performance and capability. It allows you to develop your personal interests via a range of specialised optional modules. The individual research project is often undertaken as part of the School’s internationally respected research portfolio.

- Assessment
Examinations are held in January and May, with coursework and group work throughout the programme. The individual research project is assessed by written report and viva voce in September.

Facilities

Students on the programme have access to laboratories, industry standard software and hardware including equipment provided by Texas Instruments. There is a range of anechoic chambers including the largest microwave chamber at any UK university.

Careers and further study

Job opportunities include both senior technical and managerial activities in the fields of communications engineering including high speed digital design, communication systems engineering, software/firmware engineering, algorithm development and signal processing engineering.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/digital-communication-systems/

Read less
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances. Read more
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances.

We work closely with industry and understand the skills and knowledge required to operate successfully in this field. Our specialised curriculum comprehensively covers the principles and techniques involved. It will equip you with the toolset needed to design and develop next generation mobile communication and wireless systems. As fresh technologies emerge in this ever-expanding field, you will have the essential formal theory and confidence in your practical skills to support your long-term career development.

Core study areas include fundamentals of digital signal processing, personal radio communications, information theory and coding, communication channels and a research project.

Optional study areas include a research project, digital signal processing for software defined radio, mobile network technologies, intelligent signal processing, advanced individual project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Programme modules

All modules on the programme are compulsory. Together they form an intensive and comprehensive curriculum of the principles and techniques required to design and develop next generation mobile communication systems, enabling successful students to contribute effectively in a commercial environment.

Semester 1:
- Fundamentals of Digital Signal Processing
- Personal Radio Communications
- Information Theory and Coding
- Communication Channels

Semester 2:
- Research Project
- Digital Signal Processing for Software Defined Radio
- Mobile Network Technologies
- Intelligent Signal Processing
- Advanced Individual Project

Facilities

Importantly, the course is supported by the Centre for Mobile Communications Research and by way of advanced projects encourages access to staff and post-doctoral researchers who are part of our University’s thriving academic community. State-of-the-art testing and measurement systems related to communications engineering support this concentration of expertise.

Careers and further study

Gaining this masters degree shows potential employers that you have achieved the highly developed and complex levels of knowledge, which enable you to develop in-depth and creative responses to hardware and software technical challenges in this field.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Read less
Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols. Read more

About the course

Study the key design aspects of a modern wireless communication system, in particular cellular mobile radio systems. There is a current shortage of communications engineers with a comprehensive appreciation of wireless system design from RF through baseband to packet protocols.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices
LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Advanced Signal Processing; Advanced Communication Principles; Antennas, Propagation and Satellite Systems; Mobile Networks and Physical Layer Protocols; Broadband Wireless Techniques; Wireless Packet Data Networks and Protocols; Major Research Project.

Examples of optional modules

Data Coding Techniques for Communication and Storage; Optical Communication Devices and Systems; Computer Vision; Electronic Communication Technologies; Data Coding Techniques for Communication and Storage.

Teaching and assessment

Research-led teaching and an individual research project. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
This is a creative, project-based course focusing on the practical and theoretical study of product design and its relationship to interaction. Read more
This is a creative, project-based course focusing on the practical and theoretical study of product design and its relationship to interaction. As an advanced product designer, this course supports your continued development and will refine your practice in interaction and user-centred product design.

The course explores academic theories as well as industry practice within interactive media, digital arts, entertainment and product design; and is a combination of two separate fields: product design and interactive media.

In Interactive Product Futures you will focus on user-centred design processes and research and analyse “user interaction” as your primary focus. The emphasis is on technology-mediated communication between humans and objects or spaces, allowing you to apply design and apply technological solutions to people’s infinite needs. You will also examine how technology gives personality to objects, and thereby how to ensure technology and design are more empathetic to people and their behaviours.

In the early units of the course you will be given short project briefs in which to design, implement, test and evaluate solutions in the form of an interactive product. Each project brief may take the form of an online or offline product; for example: an online quiz, an e-commerce type application, a toy. This is also an opportunity to produce a series of creative works within the specialisation of rapid prototyping (3D printing), animation, game design, web design, installation art, projection mapping, creative coding, computation design and entertainment media. The aim is to provide you with the opportunity to develop a software solution to a given problem, or aspect of a larger problem.

You will be encouraged to experiment with new ways of working with objects/scenarios and their integration with technology both creatively and collaboratively, and to apply emerging and existing technological solutions through personal fabrication, research and the experimental application of technology.

The course promotes cross disciplinary thinking as an approach to product design, so that the relationship between interactivity, artefacts, environments and the systems and organisations in which they operate can be re-examined.

By studying the course you will develop your creative design skills to innovate and influence product and interaction design practice and realise the commercial potential of your design proposals.

- Collaborative project
'The Digital Gym' project, which allowed students to research how emerging technologies are applied and user behaviour enhanced to provide a distinct, immersive gym experience on the Greenwich Peninsula.

Study units

- Technology Issues
- Business and Innovation
- Research Process
- Concept and Prototyping
- Major project

Through the Business and Innovation unit you will have the opportunity to explore the generation of innovative new business models that will help to shape your emerging project concept.

The Technology Issues unit encourages you to engage and explore emerging new technologies as well as skills in scripting and coding, first within a group, then as a cross-disciplinary, and finally in an individual project.

Through the Research Process unit, you will explore academic theoretical frameworks and research methodologies and their application within industry practice.

In both the Technology Issues and Concept and Prototyping units, youwill explore the dialogue between product and user, the function, usability and forms, flow and creativity and user experiences.

The course will culminate in your final Major Project.

Programme Aims

All postgraduate courses at Ravensbourne provide students with the opportunity to develop advanced skills in the conceptualisation and practical realisation of innovative creative projects in their discipline area and provide them with the entrepreneurial skills to realise their commercial potential. These courses share the following common aims:

- to develop advanced creative practitioners with the potential to originate, innovate or influence practice in their discipline area;

- to equip students with a comprehensive understanding of the core principles and technology underpinning their creative project and the theoretical frameworks within which to locate it;

- to underpin students’ creative practice with the entrepreneurial skills and business awareness necessary to turn concepts into commercially viable realities;

- to develop students’ skills in independent learning, self-reflection and research skills necessary to sustain advanced creative practice and scholarship;

- to offer a stimulating environment for postgraduate students which is both supportive and flexible in relation to their learning needs and a creative space in which to incubate their ideas.

Read less
The Communication Systems master's programme offers a broad curriculum in communications systems focusing on the fundamental principles of systems engineering and the design of digital and wireless communications systems. Read more
The Communication Systems master's programme offers a broad curriculum in communications systems focusing on the fundamental principles of systems engineering and the design of digital and wireless communications systems.

The programme offers a range of courses with a solid theoretical core in communication systems engineering. Topics covered include: communication theory, coding, modulation, signal processing, and design and optimisation of communication systems and networks.

The first year comprises a set of mandatory courses in communication systems engineering, for example: digital communications, wireless systems, information networks, and image and audio coding. The second year consists of elective courses from the general area of electrical and computer engineering, mathematics and physics, and ends with a degree project. In addition, the second year includes a mandatory project course that teaches the students project management skills and gives them the opportunity to apply their knowledge in practice in a team environment.

The programme is given in close association with industry and students will have access both to an extensive network of industry contacts and to opportunities to complete their degree project work in cooperation with Swedish high-tech companies.

The programme prepares students for a continued career as engineers working in the telecommunications industry or as PhD students. It is coordinated by the Communication Systems division at Linköping University and students have access to a world-class research infrastructure. Current projects at the division focus on the design and optimisation of wireless communications networks and signal processing for communications.

Welcome to the Institute of Technology at Linköping University!

Read less
This course provides you with comprehensive training in the essential elements of information engineering and communications. Module options are topical and relevant, encompassing the design of application-specific integrated circuits, micro-electromechanical systems and optical engineering. Read more
This course provides you with comprehensive training in the essential elements of information engineering and communications. Module options are topical and relevant, encompassing the design of application-specific integrated circuits, micro-electromechanical systems and optical engineering.

You’ll also have the opportunity to tap into the world of Computer Science and explore ‘big data’, covering themes such as digital multimedia storage and communications technologies, data analytics and data mining in terms of algorithms, and goals in real-world problems. You’ll also pick up transferable skills for any future study or career, such as project planning and management, ethics, health and safety, report writing, library skills and career management.

Our recent graduates now occupy positions in industries ranging from core network provision through to logistics and software support, in addition to opportunities in data communication equipment and services.

Course description

The MSc degree (totalling 180 credits) comprises eight taught modules (15 credits each), five core modules and three optional modules (see below), along with a research project worth 60 credits (see below).

Core modules

-Advanced Wireless Systems and Networks
-Information Theory and Coding
-Antenna, Propagation and Wireless Communications Theory
-Optical Communication Systems
-Signal & Image Processing

Optional modules

ASICs, MEMS and Smart Devices
Optical Engineering
Data Mining (from Computer Science)
Foundations of Data Analytics (from Computer Science)
Multimedia Processing, Communications and Storage (from Computer Science)

Individual research project

The individual research project is an in-depth experimental, theoretical or computational investigation of a topic chosen by you in conjunction with your academic supervisor. Typical project titles include:
-Network coding for underwater communications.
-Nanoscale communication networks.
-Forward Error Correction for Spectrally Sliced Transmission.
-Routing Algorithm Design for Mobile Ad Hoc Networks.
-Logical Stochastic Resonance.
-Design of Radio Devices using Metamaterials.
-Nonlinear Effects in Optical Fibre Transmission.

Read less
A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain. Read more
A flexible and interdisciplinary programme, which challenges you to use your specific knowledge to unravel the workings of the human brain.

Our brain contains many ingenious networks of millions of interconnected neurons. Together, they have a storage capacity and flexibility that far exceed modern supercomputers, or any artificial intelligent system. The Master’s specialisation in Neuroscience aims at unravelling the neuro-biological and neuro-computational mechanisms of this fascinating, complex system. We study the full spectrum from molecule to man, and from experiment to advanced theory and models.

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Choose your own angle

Neuroscience at the Science Faculty ranges from biology to physics and mathematics, and will thus appeal to students from different Master’s programmes. The programme can be readily adapted to your individual academic background – whether that is in the field of Biology, Mathematics, Physics or Computing Science. Apart from fundamental knowledge of the brain, the Neuroscience specialisation also provides you with a general background in the principles of complex systems, and of intelligent behaviour of living and artificial systems.

Why study Neuroscience at Radboud University?

- Radboud University is the only university in the Netherlands that covers the complete research field of Neuroscience, from cognition to behaviour, and from sub-cellular processes, to single cell analysis and big data.
- The specialisation is closely connected to the world-renowned Donders Institute for Brain, Cognition and Behaviour (DI). You will get the chance to work with DI researchers during your internship, and build up a high profile network for your future career.
- The courses have a strong focus on research: they will cover the latest developments in brain research and technology, and train you the essential academic skills.
- You will work with students and researchers from different backgrounds in the natural sciences and become acquainted with a wide variety of research methods and scientific approaches.

Change perspective

The brain, as part of the human body, may at a first glance seem the exclusive domain of Biology. However, as the communication between neurons involves neurotransmitters and electrical ionic currents, understanding these mechanisms calls for knowledge of Chemistry and Physics. Moreover, studying mechanisms of coding and encoding of neural signals, requires advanced concepts from Mathematics and Informatics. By working together, our students learn to view complex issues from all these different sides.

Career prospects

Master’s specialisation in Neuroscience
The Master’s specialisation in Neuroscience gives you the chance to work at the Donders Institute for Brain, Cognition and Behaviour, and build up your own network of international renowned scientists who are working on the human brain: an excellent preparation for a future career in science. Neuroscience will also provide you with general skills that are required for any other job you aspire:
- the ability to structure complex problems
- excellent social skills for working in a multidisciplinary team
- extensive experience in presentations
- academic writing skills

Our approach to this field

At Radboud University, all branches of Neuroscience are accounted for, and strongly intertwined through the Donders Institute for Brain, Cognition and Behaviour (DI). This unique combination of expertises is a real advantage for Neuroscience students: it gives you absolute freedom to develop your knowledge in your field of interest and a high profile network for your future career.

- Science faculty
In this specialisation at the Science faculty, you will use your background in the natural sciences to unravel neurobiological processes. When completed, you will receive a Master’s degree in Medical Biology, Molecular Life Sciences, Physics & Astronomy or Science. For highly talented students it is possible to obtain a second Master’s degree at the selective Research Master’s in Cognitive Neuroscience of the DI, which has a more cognitive approach. This extra Master’s degree takes one additional year (60 EC) to complete.

- Themes
The Master’s specialisation in Neuroscience focuses on three of the four research themes of the Donders Institute for Brain, Cognition and Behaviour:

- Perception, Action and Control
Focus: Studying sensorimotor mechanisms, their cognitive and social components, their clinical implications, and their relevance for robotics.

Research: Researchers use theoretical analysis, psychophysical and behavioural studies, neurophysiological techniques, neuroimaging, clinical and pharmacological interventions, developmental and genetic approaches.

- Plasticity and Memory
Focus: The development and decay of the healthy and the maladaptive brain.

Research: Researchers in this field study the mechanistic underpinnings and behavioural consequences of long-term changes in neural structure and function. Genetic, molecular and cellular methods, animal models, as well as human neuroimaging and cognitive neuropsychology are used.

- Brain Networks and Neuronal Communication
Focus: Complex neural networks, ranging from the very smallest – communication between individual neurons – to the largest: communication between different brain areas and the outside world.

Research: The research groups combine the development of new techniques for measurements of connectivity and activation, with the experimental application of these techniques in studies of cognition in humans, non-human primates and rodents. Computational modelling is an important component.

- Custom approach
The specialisation programme depends on the Master’s programme that you will follow. In this way, it will perfectly fit to your current knowledge and practical skills. However, as all neuroscience research topics are interdisciplinary, you will become acquainted with other disciplines as well. This will help you to develop a common ground that is necessary to communicate in a multi-faceted (research) team.

See the website http://www.ru.nl/masters/medicalbiology/neuro

Read less
This course is designed to equip graduates with the specialist skills in modern wireless communication systems such as 3G, Wi-Fi, mobile WiMAX and LTE, space-time coding, software defined radio, and reconfigurable analogue and digital RF systems. Read more
This course is designed to equip graduates with the specialist skills in modern wireless communication systems such as 3G, Wi-Fi, mobile WiMAX and LTE, space-time coding, software defined radio, and reconfigurable analogue and digital RF systems. It also provides knowledge in the use of wireless and DSP techniques in many application areas including Internet of Things, medical, geophysical, aerospace, automotive and environmental systems.

The degree provides a placement in either industry or research. Our dedicated Knowledge Business Centre maintains links to over 500 partner companies to ensure that students can apply their knowledge and skills in a real-world industry. Graduates from this course are actively sought after by employers in mobile and wireless industries.

Modules
• A Research or Industrially Focused Dissertation
• Advanced Communications
• Advanced Filters and Systems
• Digital Communications
• Digital Signal Processing
• Professional and Research Methodology
• Research or Industrial Placement
• Speech and Image Coding
• Wireless Broadband

Read less
This programme is aimed at building your knowledge and developing expertise in a range of digital creative media topics, so as to be able to help understand, design and develop creative media applications which are growing in popularity including smart phone applications. Read more

INSTITUTE FOR DIGITAL TECHNOLOGIES

This programme is aimed at building your knowledge and developing expertise in a range of digital creative media topics, so as to be able to help understand, design and develop creative media applications which are growing in popularity including smart phone applications.
User interaction techniques with human perception and quality of users’ experience assessment methods are also included in the programme. Specific modules dedicated to gaming technologies, 3D media processing and users’ perception evaluation, creative media context and practices are taught by the leading experts in the area. You will also benefit from experience in 3D creative media and studio environments first-hand, all of which will provide a unique opportunity to engage with advanced research motivated problems in the exciting topics related to digital creative media.

Programme Aims

a) Develop students’ knowledge and expertise in multimedia signal capturing, rendering, coding, processing, and adaptation through practical application analysing and evaluating problems and responding to challenges in real time.
b) Develop students’ critical thinking to assess the development, evaluation and implementation of high-end home and low-end mobile media applications in response to addressing real world problems/opportunities.
c) Develop students’ critical thinking to assess media applications through user interaction techniques, human perception and quality of experience assessment methods.
d) Use action-based learning to provide individuals and teams with employment skills essential to the digital/tech industry.

Programme Structure

To complete the MSc Digital Creative Media students must complete 8 x 15 credit modules. Students must also choose and complete 4 of the 6 optional modules. Students will pick a second subject from the list of nominated second subject modules offered by the other Institutes in the first semester. All students must complete a Dissertation worth 60 credits.

Assessment

Modules are assessed primarily by exams and also include a combination of group exercises, presentations and time-constrained coursework and assignments with varying levels of weighting depending on the nature of each module.

Career Prospects

Graduating from this programme will provide students with job opportunities in media technologies and creative industries (e.g., studios, film and music makers), broadcasters as well as communication industries and service providers. Graduates will also have the knowledge required to enter a wide research field related to creative media including their design and applications.
Graduates will also have the opportunity to enhance their knowledge and career prospects further by undertaking an MRes or PhD programme.

Compulsory Modules

-Collaborative Project
-Media and Creative Industries: Context and Practices
-Second Subject Module
-Dissertation
-Media Design and Production

Optional Modules

Choose four modules only:
-Media Processing and Coding
-Advanced 3D User Environments
-Internet of Things and Applications
-Introduction to Programming and MatLab
-Media Cloud Applications and Services
-Creative Industries in a Global Perspective
-Gaming Technologies and Systems

Second Subject Modules

Choose one module only:
-Design Thinking
-Media and Creative Industries: Critical Perspectives
-Principles of Entrepreneurship and Innovation Management
-Business Model Development
-Introduction to Diplomacy
-Sports Media and Marketing

Find more information on modules here http://www.lborolondon.ac.uk/study/institutes-programmes/msc-digital-creative-media/

For more information on fees, please see our fees and finance page: http://www.lborolondon.ac.uk/study/fees-finance/

Scholarships

We are investing over half a million pounds (£0.5m) in our scholarship and bursary scheme to support your studies at Loughborough University London in 2017. This package of support celebrates and rewards excellence, innovation and community. Our ambition is to inspire students of the highest calibre and from all backgrounds and nationalities to study with us and benefit from the wider Loughborough University experience and network. Our range of scholarships, bursaries and support packages are available to UK, EU and international students.View the sections below to discover which scholarship options are right for you.

What's on offer for 2017?
Inspiring Success Programme
-For unemployed and underemployed* graduates living in the East London Growth Boroughs of Hackney, Newham, Tower Hamlets or Waltham Forest
-Award value: 100% off your tuition fees
-We are joining forces with The London Legacy Development Company to offer a two day programme of specialist support for graduates, including workshops, skills seminars and networking opportunities to increase students' employability and support those looking to enter into postgraduate education.
-Eligibility: At the end of the programme, eight students will be selected for a 100% scholarship to study a masters course of their choice at our London campus in September 2017.

Dean's Award for Enterprise
-For students looking for the skills and support to launch a new business
-Award value: 90% off fees to launch your business idea
-Eligibility: The award will be given at the discretion of the Dean and the Senior Leadership Team, based on a one-page submission of your business idea.

East London Community Scholarship
-For any students who obtained their GCSE’s or A-levels (or equivalent qualifications) from The Growth Boroughs – Barking and Dagenham, Greenwich, Hackney, Newham, Tower Hamlets and Waltham Forest
-Award value: 50% off your tuition fees
-Eligibility: Competitive scholarship based on one-page submission showing your contribution to our community.

Alumni Bursary
-For all Loughborough University alumni
-Award value: 20% off your tuition fees
-Eligibility: International and UK/EU alumni holding a current offer for LoughboroughExcellence Scholarship
-For international and UK/EU high achieving students
-Eligibility: Any student holding a high 2:1 or first class undergraduate degree or equivalent from a recognised high quality institution will be considered.

Find information on Scholarships here http://www.lborolondon.ac.uk/study/scholarships-and-bursaries/

Read less

Show 10 15 30 per page



Cookie Policy    X