• University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
Cass Business School Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Bath Featured Masters Courses
"coating"×
0 miles

Masters Degrees (Coating)

We have 12 Masters Degrees (Coating)

  • "coating" ×
  • clear all
Showing 1 to 12 of 12
Order by 
The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career. Read more

The complete Masters (MSc) course in Technical Textiles enables you to develop a high level of understanding of modern technical textiles, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

Graduates of this programme are expected to understand the whole process of converting fibrous materials into the end product and to be able to identify and analyse the appropriate material and production route for a specific end product. You will also have developed the expertise and skill to conduct quality evaluation of textile products.

The complete MSc programme is made up of taught course units and a research dissertation. The taught course units are delivered through a combination of lectures and practical laboratory work.

Special features

The Masters programme in Technical Textiles enables you to develop a high level of understanding of the advanced Technical Textiles sector, preparing you for a career in the textile or related industries as a manager or researcher, or for an academic career.

After successfully completing the programme, you will have gained a thorough grounding and understanding of the whole process of converting fibrous polymeric materials to the end product. This successful delivery to the Technical Textiles sector involves materials performance, Computer Aided Design (CAD), 2D/3D product design and specification, sustainability, effective supply chains and an understanding of diverse product sectors such as textile composites, protective wear, filtration, sportswear, medical textiles and the integration of electronics into textile structures.

Coursework and assessment

You will be assessed by a combination of exams and coursework. The coursework supports the development of your transferable skills such as literature review and report writing. You will complete your MSc programme with a dissertation project. Your dissertation is an opportunity to apply your learning on a five-month technical textiles project. It also enables you to further develop your knowledge and skill in your chosen field. Your choice of topic, in consultation with your personal tutor, will range in purpose from investigatory and problem-solving work, through studies of state-of-the-art technology and current practice, to experimental and analytical research.

Course unit details

 The taught units are:

  • Textile Materials and Performance Evaluation
  • Yarn Technology
  • Applied Manufacturing Processes
  • Advanced Manufacturing Techniques
  • Technical Textiles
  • Advanced Coloration and Performance Evaluation

Textile Materials and Performance Evaluation

This programme unit provides a wide range of topics in textile materials science, performance enhancement and testing that are fundamental for effective functioning in a technical capacity within any textiles or materials related organisation. 

  • Nature of man-made and natural fibres.
  • Characteristics of fabrics and fabric mechanical properties. Yarn and Nonwovens Technology
  • Principles and applications of KES-FB and FAST fabric evaluation systems. Comfort in garment microclimates.
  • Dimensional stability, surface modification techniques, oil/water repellency, waterproofing, coating, lamination, flame retardants and smart materials.
  • Microscopy and surface analysis.

Yarn and Nonwovens Technology

This programme unit introduces the technologies of producing yarns and nonwovens from staple fibres and continuous filaments and provides knowledge in the quality and quality control aspects of yarn production. 

  • Fibre preparation, ring and other modern spinning technologies, texturing, yarn quality control, fancy yarns, composite yarns and yarn preparation.
  • Nonwovens web forming technology including dry laying, air laying, wet laying, spun-bonding, melt-blowing. Nonwovens consolidation/bonding technologies; mechanical and chemical bonding; thermal bonding; applications of nonwoven products.

Applied Manufacturing Processes

This programme unit provides a working knowledge of the weaving, knitting and joining processes, types of machinery used, types of fabric structures and associated properties of the product fabrics.

  • Fundamentals of weaving. Shuttle and shuttleless looms; multi-phase weaving machines and other modern developments in weaving technology; warp preparation; technical weaving and braiding.
  • Classification and analysis of knitting techniques and knitting cycles; patterning and shaping; flat bed, circular, Tricot and Raschel knitting machines; modern knitting techniques; cycle of high-speed circular knitting machines; machine performance; yarn performance and properties in knitting; quality and the dimensions stability of the fabric.
  • Fabric joining techniques.

Fundamental Technology and Concepts for Industrial Manufacture

This programme unit provides a working knowledge of concepts of `production for profit', `economy of scale', the importance of the Supply Chain in Textile manufacturing, the importance of pre-competitive research, Design of Experiments(DoE), prototyping and technology transfer and the basics concepts of textile engineering & machine mechanics.

  • The fundamentals of engineering & machine mechanics in order to deal with the Technical Textiles end users in Aerospace, Automotive and other industries, sustainability and recycling issues in manufacturing and design.
  • The nature of the global traditional and technical textiles industry and concepts relating to successful manufacturing and supply chain. Nature of engineering & chemical industry as opposed to the textile industry. Certification requirements (e.g. Aerospace, Automotive, Healthcare, Sportswear), product development in real industrial context, Design of Experiments, quality & inspection, product lifecycles, Sustainable Design. The nature of the research and production environment, individual and team R&D activities.

Technical Textiles - Industrial Applications

This programme unit introduces industrial applications for technical textiles and covers the production and application of textile composites, architectural textiles, geotextiles, automotive textiles, and industrial filtration.

  • Composites: Basic concepts, classification, manufacturing techniques-from fibre to composite, textile composites, composite applications, reuse & recycling; geotextiles: basic classification, main functions of a geotextiles, applications; Architectural textiles, concepts of tensegrity structures.
  • Automotive Textiles: requirements on automotive textiles including tyre cords, air bags, seat belts and seat fabrics, carpets, trims.
  • Principles of filtration, industrial filtration in textile, chemical, food and metallurgical applications.

Technical Textiles - Personal Environment

This programme unit introduces the production and use of technical textiles in human related areas including medical, smart, protective, sportswear, space applications.

  • Medical textile materials and structures; application of compression bandage technology for medical care; integrating electronic sensors into medical textiles; knitted electro-textiles.
  • Protective Textiles: Bullet proof, stab proof vests. Impact protection: impact mechanism and cellular textile composites. Ballistics and body armour.
  • Technical clothing, sportswear, spacewear, sailing equipment.
  • Medical and Smart Textiles

Accrediting organisations

Accredited by the Institute of Minerals, Materials and Mining (IOM 3 ) as meeting the Further Learning requirements for registration as a Chartered Engineer.



Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Read more

This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Nanotechnology is rapidly establishing itself as a key technology, in industries ranging from microelectronics to healthcare, with a consequent demand for appropriately trained graduates.

About this degree

The programme introduces students to and provides training in the skills essential for almost all fields of nanotechnology research, including key laboratory skills and techniques in planning, building devices, analysis, and results comparison. The core lecture programme covers essential topics in physics, electrical and electronic engineering, and biology.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is offered. The diploma consists of six core modules (75 credits) and three optional modules (45 credits).

Core modules

  • Physical Science for Nanotechnology
  • Nanoscale Processing and Characterisation for Advanced Devices
  • Experimental Techniques for Nanotechnology
  • Nanotechnology and Society
  • Electrical Transport in Nanosystems
  • Photonics in Nanosystems

Optional modules

  • Quantum Computation and Communication
  • Order and Excitations in Condensed Matter
  • Molecular Biophysics
  • Molecular Physics
  • Entrepreneurship: Theory and Practice
  • Bioprocess Microfluidics
  • Physics and Optics of Nano-Structures
  • Materials and Nanomaterials
  • Innovation Practices
  • Physics of Advanced Materials

Dissertation/report

All students undertake an extensive research project on an experimental or theoretical topic which is assessed through an interim report, dissertation and oral examination.

Teaching and learning

The programme is delivered through a combination of lectures, laboratory classes, tutorials and seminars. Student performance is assessed through coursework, laboratory notebooks, case studies, written examination, a dissertation, and written and oral presentations.

Further information on modules and degree structure is available on the department website: Nanotechnology MSc

Careers

Recent graduates have gone on to work as engineers for companies including EDF Energy and Intel, as analysts and consultants for firms including Standard Bank PLC and DN Capital, or to undertake PhD study at the Universities of Oxford, Bath and Glasgow.

Recent career destinations for this degree

  • Business Analyst, Efficio
  • EngD in Molecular Modelling and Materials Science, UCL
  • PhD in Diamond Electronics, UCL
  • Researcher, SCS (Sensor Coating Systems) and studying PhD in Materials, Imperial College London
  • Junior Electronics Engineer, Samsung

Employability

This MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of nanotechnology, from the basis of the fabrication of nanostructures for advanced device applications, to fundamental quantum information and molecular biophysics, from nanotechnology in life science to nanotechnology in healthcare, and from experimental technology to theoretical modelling. Nanotechnology MSc graduates are expertly equipped either to pursue PhD study or become consultants or engineers in a wide range of nanotechnology fields.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

The London Centre for Nanotechnology (LCN) is a new UK-based multidisciplinary enterprise operating at the forefront of science and technology.

Forming a bridge between the physical and biomedical sciences, it brings together two of the world's leading institutions in nanotechnology, UCL (University College London) and Imperial College London.

The centre aims to provide leading-edge training in nanotechnology and students on this programme benefit from excellent new facilities, including a £14 million research building furnished with state-of-the art equipment, and a £1 million teaching facility in UCL Electronic & Electrical Engineering.

Accreditation

Accredited by the Institution of Engineering and Technology (IET) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Electronic & Electrical Engineering

97% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials. Read more
Materials Engineering includes the development, specification and engineering applications of new and existing materials. Your research will focus on understanding the physical and chemical descriptions that underlie materials performance, and develop property and performance models of materials.

As a postgraduate researcher in Materials Engineering you will be based in the School of Chemical Engineering and Advanced Materials. Our research areas include kinetics and formation mechanisms of new materials, and predictive modelling based upon mechanistic understanding. Work covers the production, property measurement and performance assessment of:
-Ceramics
-Polymers
-Metals
-Composites

We focus on developing new materials for advanced engineering applications, including microelectronics, optics and power transmission.

Current research projects include:
-Developing novel surface engineering processes and materials (such as fullerene-like coating materials)
-Energy-based methods for performance modelling
-Nanomaterials and nanocharacterisation techniques
-Novel materials for intensified processes

A major research strength is the measurement and modelling of the mechanical response of materials at high-spatial resolution, particularly in microelectronic and optical devices. A combination of unique equipment and interdisciplinary expertise supports this.

Another research focus is the materials requirements for the sustainable development and use of key resources, in particular water and energy. We have significant research into the generation of energy from novel sources, low carbon and renewable technologies and the clean-up of effluent and wastewater.

Our major areas of research are:
-Fuel cells and energy systems
-Gasification
-Cold plasma gasification
-Bio-fuel cells
-Bio-diesel production
-Gas and water treatment
-Nano-structured polymer composites for pollution control
-Sustainable and environmental electrochemical systems
-Photochemical processes and electrochemical synthesis

The School of Chemical Engineering and Advanced Materials runs a postgraduate training programme that is compulsory for all new students and involves selected taught modules. You also receive research training from the Science, Agriculture and Engineering Graduate School that covers professional/key skills, personal development and research techniques. You have the opportunity to supplement your income by undertaking laboratory demonstrating and tutorial classes.

Read less
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Read more
The School is equipped with a range of state-of-the-art equipment, which would help provide relevant practical experience for the students. Therefore the course aims to help students develop the necessary knowledge and practical skills to work in various areas within the pharmaceutical industry, including formulation, regulatory, and analytical services. Students will have a holistic view on the drug development process and be able to solve common pharmaceutical problems by critically evaluating and discussing the scientific literature.

The course is offered on a one year full-time basis, taught over three terms. It includes six taught modules in the first two terms in which all lecture material will be provided on our VLE to enable access.

INDUSTRY LINKS

GSK, Quay Pharma, Rosemont Pharmaceuticals Ltd. and MHRA etc.

LEARNING ENVIRONMENT AND ASSESSMENT

The MSc programme is delivered not only via the conventional means of face-to-face lectures, workshops, tutorials and seminars, but the use of online technologies such as videos and discussion forum would also help integrate students’ learning into their normal daily activities.

Practical classes, problem-based-learning exercises related to industrial challenges and reflective activities throughout the course would also help develop students’ ability to solve pharmaceutical problems practically and provide students an opportunity to apply their knowledge into practice, particularly in relation to the need for appropriate formulation design and development, and how these factors affect clinical outcomes in practice.

A variety of assessment methods will be used for this MSc course, including essays, oral presentations, posters, written examinations and laboratory reports.

OPPORTUNITIES

Students on the course have opportunities to visit our industrial collaborators who specialise in liquid and solid dosage forms, which aim to provide an insight to students about the pharmaceutical industry and the various roles available in industry. Guest lectures and workshops provided at UCLan from the pharmaceutical industry and regulatory bodies also supplement the various modules studied in the course.

Graduate careers include: formulation scientist, PhD research student, and quality control technician.

Graduates may apply for further PhD study at UCLan or other institutions following completion of the MSc Programme. Alternatively, graduates aim to find jobs in the pharmaceutical industry as a formulation scientist, regulatory affairs officer and other roles in industry.

Eligible students may also be able to conduct their MSc research project in collaboration with an industrial partner in semester 3 as part of their MSc studies. This could be in the UK or overseas, subject to availability and agreement with the industrial organisation.

FACILITIES

The specifically designed Pharmaceutical Sciences laboratories have excellent facilities to carry out teaching and research in pharmaceutical sciences. For example, a single-punch tablet press and powder encapsulation equipment help provide practical experience of small scale solid dosage form manufacturing. Other specialist equipment such as coating and spray drying instrument also help enhance students’ learning experience at the University. The characterisation of various dosage forms in accordance to the BP or USP methods can also be carried out using dissolution, disintegration, friability testers etc.

Various advanced drug delivery devices for pulmonary, oral and transdermal applications are also available for both teaching and research at the School. Students would also be able to use the superb analytical instrument available at the University for their practical classes and research project.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more

The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017.

What you will study

The aims of the MSc programme are to equip the students with the theoretical knowledge, concepts and skills necessary for original thought and problems analysis related to core chemical/petroleum/polymer engineering.

Modules

Core

Option

Learning and assessment

The teaching and learning strategy takes into consideration the learning outcomes, progression through the levels of study, the nature of the subject and the student intake, and the need for you to take greater responsibility for your own learning as you progress through the Programme.

Career prospects

The chemical and allied industry is expected to grow more rapidly than the average for the whole of manufacturing industry.

This, when coupled with the increasing appreciation of the value of chemical engineering in many areas such as the foodstuffs and pharmaceutical industry, metals extraction, medical science, and environmental protection, means your prospects as a graduate are bright.

Recent graduates have gained employment at organisations including: Unilever, Lorien Engineering Solutions, SUEZ UK, PLadis Global, IMI Precision Engineering, British Sugar, KPMG.

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Study support

We have a commitment to strong pastoral care for all of our students, which includes a Personal Tutor for all students, regular contact hours for tutor groups and our supportive student service teams who are always ready to help with any questions and provide the advice that you need.

In addition to standard study support through taught sessions, our Virtual Learning Environment allows students to access resources, participate in group work and submit work from anywhere in the world 24/7.

University central services are rich with support teams to assist students with every aspect of their journey through our degree programmes. From our Career and Employability Service, through our strong Students' Union, to our professional and efficient Student Finance team, there are always friendly faces ready to support you and provide you with the answers that you need.

Research

Internationally acclaimed research activities in the following areas:

  • Chemical and Petrochemical Engineering
  • Polymers
  • Energy
  • Water
  • Pharmaceutical engineering
  • Coating and advanced materials engineering


Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X