The increasing impact of genetics in healthcare and the development of newer sophisticated technologies requires close collaboration between research scientists, clinical laboratory scientists and clinicians to deliver a high quality service to patients. The Clinical Genetics MSc has a specific focus on delivery of the clinical service to patients including risk analysis and application of modern genetic and genomic technologies in medical genetics research and in diagnostics and population screening.
Genetic Disease and Clinical Practice
This course is designed in collaboration with the West of Scotland Regional Genetics Service to give students a working knowledge of the principles and practice of Clinical Genetics and Genomics which will allow them to evaluate, choose and interpret appropriate genetic investigations for individuals and families with genetic disease. The link from genotype to phenotype, will be explored, with consideration of how this knowledge might contribute to new therapeutic approaches.
Distress or Disorder: Reactions to a medical diagnosis
This course outlines the process of psychosocial adjustment to a diagnosis or test result allowing participants to establish if and when a distress reaction develops into an adjustment disorder. The implications of diagnosis are explored and evidence considered allowing informed decisions about appropriate referrals to other agencies.
Patient Empowerment: Supporting decisions relating to new diagnoses
This course reflects on evidence and experience to explore the psychological and social impact of a diagnosis, or illness, and provides strategies to support resilience and coping in patients. Factors related to lived experience, personal beliefs and values, culture, adjustment processes, decision-making, misconceptions, secrecy and guilt are considered to equip participants in the promotion of patient-centred care.
Effective listening and communication skills
With a focus on experiential learning and student led study, this course outlines the role of counselling skills to facilitate adjustment and to allow an individual to come to terms with change in a safe way to minimise impact. The focus will be on the theory supporting counselling, developing key listening and communication skills and on establishing reflective practice.
Case Investigations in Medical Genetics and Genomics
Students will work in groups to investigate complex clinical case scenarios: decide appropriate testing, analyse results from genetic tests, reach diagnoses where appropriate and, with reference to the literature, generate a concise and critical group report.
Clinical Genomics
This course will provide an overview of the clinical applications of genomic approaches to human disorders, particularly in relation to clinical genetics, discussion the methods and capabilities of the new technologies. Tuition and hands-on experience in data analysis will be provided, including the interpretation of next generation sequencing reports.
Disease Screening in Populations
This course will cover the rationale for, and requirements of, population screening programmes to detect individuals at high risk of particular conditions, who can then be offered diagnostic investigations. Students will work in groups to investigate and report on, a screening programme of their choice from any country.
Dissertation
The course will provide students with the opportunity to carry out an independent investigative project in the field of Medical Genetics and Genomics.
Teaching and Learning Methods
A variety of methods are used, including problem-based learning, case-based learning, lectures and tutorials. These are supplemented by a wide range of course-specific electronic resources for additional learning and self-assessment. As a result, you will develop a wide range of skills relevant to careers in clinical genetics. These skills include team-working and data interpretation. You will use the primary scientific literature as an information resource, although textbooks such as our own Essential Medical Genetics will also be useful. You will have the options of: attending genetic counselling clinics and gaining hands-on experience and guidance in using software and online resources for genetic diagnosis and for the evaluation of pathogenicity of DNA sequence variants.
This programme would be beneficial for anyone with a previous MBChB or similar degree, and would facilitate a career as a Clinical Geneticist.
Genetic counsellors work in a multidisciplinary team with clinical geneticists, nurses, social workers, dietitians, communicating complex genetic information to individuals and families to facilitate decision making. Genetic counsellors are employed in clinical genetics units and work in many areas including: cancer genetics, predictive testing, paediatric genetics, prenatal genetics, adult genetics. Genetic counsellors increasingly are involved in qualitative and quantitative clinical genetic research.
The Master of Genetic Counselling constitutes the professional qualification for entry into employment as an associate genetic counsellor, and for Board Eligible certification, awarded through the Board of Censors in Genetic Counselling (Human Genetics Society of Australasia).
The 2 year Master of Genetic Counselling is designed to build and increase skills and breadth in clinical practice and research, utilising the expertise of tutors who are clinicians, genetic counsellors, scientists, people with a disability and community members. The Masters is taught within the Victorian Clinical Genetics Services at the Royal Childrens Hospital Parkville Victoria. Students are encouraged to attend educational activities within Genetic Health including seminars, clinic meetings and journal club.
The Graduate Diploma is an exit point after 1 year of study in the Masters.
Internationally, genetic counselling is taught within a 2 year clinical Masters. The Masters program aims to increase research and employment opportunities for graduates through developing reciprocity with other countries. With well established links to overseas training programs there are international opportunities for students, through an active exchange program for clinical placements and research collaborations. Past graduates are employed throughout the world -including in Singapore, Malaysia, New Zealand. It is expected that graduates of the Melbourne Masters will be eligible to register to practise as genetic counsellors in the UK and Canada, further increasing employment opportunities.
The Master of Genetic Counselling will fulfil the requirements for certification and employment as a genetic counsellor in Australia and reciprocity with training overseas. The program teaches counselling skills, research skills and clinical genetics knowledge in small interactive student groups. Problem Based Learning is one mode of teaching in the genetics tutorials. This mode of teaching facilitates independent learning which equips the student to continue to develop professionally throughout their career. Students will complete a minor thesis with supervision, and have extensive counselling skills practice in varied clinical genetics and community settings. Assessment tasks mirror the skills needed in genetic counselling practice and for professional certification by the HGSA(Part 2)
Teaching staff are primarily practicing genetic counsellors, scientists and clinicians within the clinical genetics service.
Research and Evaluation Skills:
Critical Reflection and Cognition Skills:
Communication Skills:
Ethical Skills:
Genetics Knowledge:
This MSc gives students excellent postgraduate training, and leads to exciting careers in research, industry, the NHS and other clinical institutions. Many of our graduates have also gone on to study bioscience at PhD level.
You’ll develop an in-depth knowledge of medical and molecular genetics, and receive clinical genetics training to prepare you for a research project in a modern research facility. You’ll have the chance to collaborate with top genetics research laboratories and clinical partners.
This MSc was developed in partnership with the Sheffield Diagnostic Genetics Service (SDGS), which is a world-renowned clinical genetics facility. This relationship is unique to this course and gives you the opportunity to be taught by the SDGS Director and the Lead Scientist for Constitutional Genetics.
Our graduates work in health care, pharmaceuticals, food safety and production, brewing and agrochemicals. Many of our masters students go on to do a PhD then pursue a career in research; others have gained entry to the prestigious NHS Scientist Training Programme (STP).
The 2014 Research Excellence Framework (REF) ranks Sheffield No 1 for biomedical research and in the UK top five for biological sciences generally. We have regular seminars from distinguished experts, and our motivated staff undertake collaborative research ranging from biotechnology to medicine.
Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern and well-equipped labs, leading on to a research project in which you design and conduct your own research.
You will learn cutting-edge science from research leaders, and gain practice in reading the scientific literature and writing reports.
Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.
Choose three from:
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.
The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.
Students undertake modules to the value of 180 credits.
The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).
A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.
A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.
Core modules
Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.
Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.
Further information on modules and degree structure available on the UCL Genetics Institute website.
Further information on modules and degree structure is available on the department website: Genetics of Human Disease MSc
Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.
Recent career destinations for this degree
Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.
Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.
UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.
Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.
The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.
The following REF score was awarded to the department: Division of Biosciences
82% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)
Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.
This MSc aims to provide medical and science students with a comprehensive knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically human genetics, human embryonic development and fetal medicine. There is a strong focus on the development of key skills and careers advice in the programme.
Students will develop a knowledge and understanding of the field of prenatal genetics and fetal medicine, specifically in the areas of basic genetics and technology, genetic mechanisms, medical genetics, organogenesis and fetal development, gametogenesis and IVF, prenatal diagnosis and screening, fetal and perinatal medicine, and preimplantation genetic diagnosis and developing technology. They gain transferable skills including information technology, analysis of scientific papers, essay writing, seminar presentation, research techniques, peer review and laboratory skills.
Students undertake modules to the value of 180 credits.
The programme consists of eight core modules (120 credits) and a research project (60 credits).
A Postgraduate Diploma consisting of eight core modules (120 credits, full-time nine months, flexible study two to five years) is offered.
Mandatory modules
Optional modules
There are no optional modules for this programme.
Dissertation/report
All MSc students undertake a clinical, laboratory, audit or library-based research project, which culminates in a dissertation of 10,000 words.
Teaching and learning
The programme is delivered through a combination of lectures, seminars, tutorials, practical demonstrations in laboratories, observation days in fetal medicine and IVF units, and student presentations. There are a number of peer-led learning activities. Assessment is through essays, patient case reports, critical reviews of papers, online problem booklet, examinations and the dissertation.
Further information on modules and degree structure is available on the department website: Prenatal Genetics and Fetal Medicine MSc
For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.
On completion of the programme, all students will have gained knowledge of both the clinical and laboratory aspects of prenatal genetics and fetal medicine. This will enable the science-orientated students to go on to pursue research degrees, further training for careers in prenatal diagnosis or embryology, or other careers in the field or in general science. Medically-orientated students will be able to develop their careers in the field of fetal medicine.
Recent career destinations for this degree
Employability
Throughout the MSc programme students learn key skills through peer-led activities, such as evaluating and presenting orally on patient cases and media coverage of scientific papers. Students learn how to write essays and patient case reports and how to critically evaluate papers. They also have the opportunity to take part in debates and ethical discussions and to learn basic laboratory techniques. We offer a comprehensive careers programme involving our alumni, covering job applications, CV writing, general careers in science and specific advice on careers in embryology, clinical genetics, medicine and research degrees.
Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.
The UCL Institute for Women’s Health delivers excellence in research, clinical practice, education and training in order to make a real and sustainable difference to women's and babies' health worldwide.
The institute's UCL/UCL Hospitals NHS Foundation Trust collaboration provides an academic environment in which students can pursue graduate studies taught by world-class researchers and clinicians.
Our diversity of expertise in maternal and fetal medicine, neonatology, reproductive health and women's cancer ensures a vibrant environment in which students develop subject-specific and generic transferable skills, supporting a broad range of future employment opportunities.
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. The course aims to further enhance your knowledge of clinical biochemistry, to engage you with contemporary issues and debates within the discipline, and to develop your critical and analytical skills.
The taught programme contains specific modules in Clinical Biochemistry, such as endocrinology and metabolism and diagnostic clinical biochemistry, which you can apply to diagnostic biomedicine, as well as offering you a choice of modules related to molecular diagnostics or haematology.
The course is accredited by the Institute of Biomedical science (IBMS).
The following modules are indicative of what you will study on this course.
Core modules
Option modules
The course has been designed to provide professionals with a broad range of transferable skills in Biomedical Sciences with clinical biochemistry, with particular reference to possessing the ability to critically discuss and evaluate concepts, analytical techniques, current research and advanced scholarship in Clinical Biochemistry.
Successful completion of the course will enhance the career prospects of graduates for entering Ph.D programmes; you may find employment in hospital laboratories, academia, research institutes, as well as in the pharmaceutical, diagnostic and related industries.
This online programme will give you a comprehensive understanding of the processes, investigation procedures and treatment options for common diseases you encounter in general medical practice.
The programme is mostly for early postgraduate doctors. It complements the learning you need to achieve membership of the Royal College of Physicians and it may also be suitable for doctors in other specialties, or nurse consultants and other paramedical specialists with extensive clinical experience.
We cover basic physiology, pathophysiology, therapy and clinical management, as well as clinical skills, generic skills (including writing and research methods) law, ethics and prescribing ability.
Problem-based learning through clinical case scenarios will be used to enhance knowledge and clinical decision-making. We use a variety of e-learning resources and platforms, including a virtual classroom with online tutorials and lectures, online interactive resources and virtual patients.
Our online learning technology is fully interactive, award-winning and enables you to communicate with our highly qualified teaching staff from the comfort of your own home or workplace. Students not only have access to Edinburgh’s excellent resources, but also become part of a supportive online community, bringing together students and tutors from around the world.
This programme is made up of compulsory and optional courses.
Compulsory courses
Optional courses
Further programme information
This programme is designed to help medical professionals gain the next step in their medical career, with a highly regarded qualification and first-rate expertise.