• University of York Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of St Andrews Featured Masters Courses
Southampton Solent University Featured Masters Courses
Imperial College London Featured Masters Courses
University of London International Programmes Featured Masters Courses
"clinical" AND "cell"×
0 miles

Masters Degrees (Clinical Cell)

  • "clinical" AND "cell" ×
  • clear all
Showing 1 to 15 of 178
Order by 
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. Read more
This Master's degree in Cell and Gene Therapy provides an in-depth education in this cutting-edge and rapidly developing field. It is delivered by scientists and clinicians researching, developing and testing new treatments for genetically inherited and acquired diseases using gene delivery technology, stem cell manipulation and DNA repair techniques.

Degree information

The degree covers all aspects of the subject, including basic biomedical science, molecular basis of disease, current and developing technologies and clinical applications. Students also receive vocational training in research methodology and statistics, how to perform a research project and complete a practical laboratory-based project.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time nine months or flexible up to five years) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks, part-time nine months, or up to two years flexible) is offered.

Core modules
-Molecular Aspects of Cell and Gene Therapy
-Clinical Applications of Cell and Gene Therapy
-Research Methodology and Statistics
-Stem Cell and Tissue Repair

Research Methodology and Statistics is not a core module for the PG Certificate. Students of the PG Certificate can choose an optional module.

Optional modules
-Foundations of Biomedical Sciences
-Applied Genomics
-HIV Frontiers from Research to Clinics
-Molecular and Genetic Basis of Paediatric Disease
-Understanding Research and Critical Appraisal: Biomedicine
-Laboratory Methods in Biomedical Science
-Research Methodology and Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation.

Teaching and learning
Teaching includes lectures, seminars, problem classes and tutorials. Assessment varies depending on the module, but includes written coursework, multiple-choice questions, written examinations, a practical analysis examination and the dissertation.

Careers

The majority of our graduates have gone on to secure PhD places. Please see our programme website to read testimonials from past students which include their destinations following graduation.

Employability
This novel programme aims to equip students for careers in research, education, medicine and business in academic, clinical and industrial settings. Examples of potential careers could include academic research and/or lecturing in a university or other higher education setting, conducting clinical trials as part of a team of clinicians, scientists and allied health professionals, monitoring and analysing the results of clinical trials as part of a clinical trials unit, developing new therapies or intellectual property in the pharmaceutical industry or other business ventures.

Why study this degree at UCL?

The Institute of Child Health (ICH), and its clinical partner Great Ormond Street Hospital (GOSH), is the largest centre in Europe devoted to clinical, basic research and post-graduate education in children's health, including haematopoietic stem cell transplantation (HSCT) and gene therapy.

The UCL School of Life & Medical Sciences (SLMS) has the largest concentration of clinicians and researchers active in cell and gene therapy research in Europe. This is reflected by the many groups conducting high-quality research and clinical trials in the field including researchers at the Institute of Child Health, the Division of Infection and Immunity, the Institute of Ophthalmology, the Institute for Women's Health, the Institute of Genetics and the Cancer Institute.

Keywords: Stem Cells, Therapy, Genomics, Regenerative Medicine, Gene Editing

Read less
The MMedSci Oncology at Keele has been specifically designed to enable an introduction to a research programme whilst offering sustained clinical interaction throughout the course. Read more

Overview

The MMedSci Oncology at Keele has been specifically designed to enable an introduction to a research programme whilst offering sustained clinical interaction throughout the course. Keele University has a strong track record of clinically translational research, enabled by the close interaction of clinical interventionists with world leading academic researchers. This course benefits entirely from this bench-to-bedside ethos and will support like-minded students across this multidisciplinary environment. The course should serve as a platform to develop a medical research career.

As would be expected from such a clinically involved course, much of the teaching takes place at Keele University’s hospital campus located in the Royal Stoke University Hospital, University Hospital of North Midlands (UHNM) Trust. Keele University’s flagship research Institute for Science and Technology in Medicine (ISTM) is integrated with the hospital with the strategically aligned Guy Hilton Research Centre being located directly adjacent to the hospital. Being opened in 2006, this research centre offers patient treatment alongside state-of-the-art equipment and translational research. The centre has enabled research active clinical members to drive cutting-edge research and streamline the pipeline to patient benefit. The Oncology Department located in UHNM provides chemotherapy, radiotherapy, brachytherapy, clinical trials, and lymphoedema and haematology/oncology outpatients to a population of approximately 845,000. It is one of the top ten performing Trusts in the UK for delivering Intensity Modulated Radiotherapy (IMRT). This course offers the opportunity to interact closely with both clinical and research environments, with theoretical, practical and research-centric approaches underpinning the delivery of taught modules, clinical attachments and research projects.

Advances in the management of oncological patients are much needed in our rapidly aging community. New methods are continually being introduced allowing clinicians to better understand and react to patient care in an effort to maximise patient benefit and minimise in-patient time and treatment side effects. The MMedSci Oncology course offers the opportunity to harness the capabilities of cutting edge research to drive new concepts in a clinically transformative capacity.

The course has been awarded 50 CPD credits by the Royal College of Radiologists.

See the website https://www.keele.ac.uk/pgtcourses/medicalscienceoncology/

Course Aims

MMedSci Oncology draws together the fundamental principles of current oncological patient management, clinical practice, stem cell and pathology techniques for clinical assessment of tissue and biological samples, with a focus on research-driven work closely related to ‘real world’ clinical practice. Further, transferable skills are delivered through intensive Clinical Audit, Health Informatics, and Leadership & Management modules. The course is open to third year medical students and above, qualified doctors and qualified health professionals with an interest in Oncology.

Course Content

The course is structured to sit within the framework of Keele University’s MMedSci route, with module timescales allowing, if necessary, to be taken full-time within the one year of entry. The structure has been specifically designed to maximise both clinical engagement, support from taught components and research experience. The course is split between non-optional core modules that students must take to progress on the MMedSci Oncology route, with at least 4 of the elective modules as listed below.

Non Optional Core Modules (60 credits + 60 credit dissertation)

- Independent Practice-based Study (30 credits)
- Management of the Oncological Patient (15 credits)
- Experimental Research Methods (15 credits)
- Dissertation (60 credits)

Choice of Four Optional Modules (60 credits)
(subject to availability)

- Clinical Audit (15 credits)
- Health Informatics (15 credits)
- Contemporary Issues in Healthcare Ethics and Law (15 credits)
- Statistics and Epidemiology (15 credits)
- Introduction to Medical Imaging (15 credits)
- Cell and Tissue Engineering (15 credits)
- Stem Cells: Types, Characteristics and Applications (15 credits)
- Molecular Techniques: Applications in Tissue Engineering (15 credits)

Teaching & Assessment

All content is delivered from leaders in representative fields, either from academic staff in the University, or from active clinical staff in the National Health Service. Course content will develop students’ fundamental knowledge of the diagnosis and management of oncological patients. An appreciation regarding patient informed consent and establishment/ delivery of clinical trials is also covered alongside Research Methods, accumulating to a 6 month research project. Students will attend clinical seminars, multidisciplinary and mortality meetings within the UHNM Oncology Department to sustain engagement of the clinical delivery of topics taught throughout the course.

Students will be immersed in the clinical environment focussed on oncological management, with an emphasis on research procedures and translation of cutting-edge research into the clinic.

Assessment will be carried out by attending clinics, lectures and meetings, presentation of a patient case report, and a written assignment linked to the research project.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
This intense course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies. Read more
This intense course focuses on the molecular and genetic factors of human diseases. Understanding those factors is crucial to the development of therapies.

After you've completed the non-clinical elements of the MSc in Molecular Medicine, you’ll spend 20 weeks with a clinical team, working on a particular health or disease area.

You could work primarily with either a clinical research team or a clinical practice team – depending on your preferred choice and the availability of attachments.

The course will give you a critical understanding of how molecular medicine is being applied to real problems in a particular clinical area. It is assessed mainly through written coursework and dissertations.

Core modules

From Genome to Gene Function
Human Gene Bioinformatics
Human Disease Genetics
Modulating Immunity
Literature Review
Laboratory Techniques
Clinical Attachment Presentation Module

Examples of optional modules

A wide choice of pathways (related to the field of your clinical attachment) which includes:

Virulence Mechanisms of Viruses and Fungi (Microbes and Infection)
Molecular and Cellular Basis of Diseases (Experimental Medicine)
Vascular Cell Biology (Cardiovasular)
The Molecular Basis of Tumorigenesis and Metastasis (Cancer)
Modelling Protein Interactions (Genetic Mechanisms)

Special options for the clinical attachment are:

Clinical Attachment
Clinical Research Project

Teaching

Lectures
Tutorials
Seminars
Clinical Attachment

Assessment

Essays
Portfolio work
One Statistic Exam
Dissertation

Read less
The Anatomy & Cell Biology Program offers a modern collaborative training experience catering to the needs of the individual student pursuing an MSc or PhD degree. Read more
The Anatomy & Cell Biology Program offers a modern collaborative training experience catering to the needs of the individual student pursuing an MSc or PhD degree. Our dedicated, award-winning mentors and state-of-the-art facilities provide a rich training environment in which students can immerse themselves in one or more academic disciplines, including cell biology, neurobiology, anatomical sciences, and/ or education scholarship.

The Biological Research field is a research-intensive, thesis-based program designed to prepare students for a career as a research scientist in academia or industry. Our Clinical Anatomy field offers a unique training experience consisting of course work, research, and hands-on teaching experience; and is intended to prepare the next generation of medical educators and scholars.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=5

Fields of Research

• Cell Biology
• Clinical Anatomy
• Neurobiology

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
The certificate is designed to allow choice and foster personal development. Plenty of opportunity will be given to students to develop their skills in anatomy and dissections using human cadaveric specimens. Read more

Overview

The certificate is designed to allow choice and foster personal development. Plenty of opportunity will be given to students to develop their skills in anatomy and dissections using human cadaveric specimens.

The Postgraduate Certificate in Applied Clinical Anatomy (60 M Level credits) consists of three modules, the two core modules are compulsory; Applied Clinical Anatomy 1 worth 15 M Level credits, and Applied Clinical Anatomy 2 worth 30 M Level credits. To facilitate ongoing personal development and make up the required 60 Masters Level credits, the student can choose a further optional module related to the aims of the certificate. Students may transfer their credits to an MSc (Health Sciences) or an MSc (Neuromusculoskeletal Healthcare). There are many Masters Level modules available to choose from within the University.

See the website https://www.keele.ac.uk/pgtcourses/appliedclinicalanatomypgcert/

Course Aims

To promote the acquisition of applied anatomical knowledge and skills and the application of anatomical science.

Course Content

The certificate consists of three modules (two core compulsory plus one option).

- Applied Clinical Anatomy 1 (core) worth 15 M Level credits. This module will cover histology, embryology, identification of prosections, gross anatomy of various systems, radiology, preserving, and embalming. The gross anatomy will be linked to functional and clinical relevance

- Applied Clinical Anatomy 2 (core) worth 30 M Level credits. Through student-led tutorials, theoretical and practical studies including dissections, the student will cover in-depth, the theoretical and practical aspects of knowledge relating to the student’s chosen anatomical focus

- One option module to the value of 15 credits at Masters Level

There are many Masters Level modules available within the Faculty and the wider University. The Academic Year starts in September, and is divided into two semesters; one core module will be available in each semester. This allows the student the freedom to select an optional module within either semester.

Teaching & Assessment

The programme of study will be delivered through block teaching sessions and self-directed study (See individual modular specification for details of hours etc). Teaching format will be lecturers, seminars, discussions, problem-solving sessions, tutorials, and dissections to address theoretical and practical aspects of applied clinical anatomical knowledge. The student is expected to complete at least double the amount of self directed study.

A variety of modes of assessment are offered. For the Applied Clinical Anatomy 1 module – the student can choose their own mode of assessment from the selection given, for example, assignment, presentation or an interactive practical examination. For the Applied Clinical Anatomy 2, the student will present a portfolio of evidence of their experiential learning during the process of exploring in-depth the theoretical and practical aspects of clinical anatomical knowledge relating to the students chosen field of knowledge. This will include a 4000-word assignment, 4 laboratory reports including such activities as dissections, clinical meetings etc, a 2500 word reflective piece demonstrating experiential learning and finally the evidence of experiential learning.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Lead academic 2016. Dr Thomas Jenkins. Read more

About the course

Lead academic 2016: Dr Thomas Jenkins

This course, offering practical clinical exposure, enables you to apply the fundamentals of neuroanatomy and physiology to better understand the clinical features of patients with neurological disease and learn how insights from the laboratory are translated into benefits for patients.

In small group teaching sessions and clinics, you’ll have the opportunity to apply theoretical knowledge to patients with neurological disease. In the final term you may take a research option (Route A) or a Clinical Neurology Experiential Learning Module (Route B).

Students opting for Route A will choose from a range of clinical research projects based at SITraN or within the Royal Hallamshire Hospital. Students opting for Route B will attend additional specialist clinics with patient-centred teaching from experts in the field who will emphasise recent advances in clinical practice.

Our study environment

You’ll be based in teaching hospitals that serve a population of over half a million people and refer a further two million. We also have close links with the University’s other health-related departments.

Our research funding comes from many sources including the NIHR, MRC, BBSRC, EPSRC, the Department of Health, EU, and prominent charities such as the Wellcome Trust, ARC, YCR, Cancer Research UK and BHF. Our partners and sponsors include Novartis, GlaxoSmithKline, Pfizer, Astra Zeneca and Eli Lilly.

You’ll also benefit from our collaboration with the Department of Biomedical Sciences.

How we teach

Classes are kept small (15–20 students) to make sure you get the best possible experience in laboratories and in clinical settings.

Our resources

We have a state-of-the-art biorepository and a £30m stem cell laboratory. The Sheffield Institute of Translational Neuroscience (SITraN) opened in November 2010. We also have microarray, genetics, histology, flow cytometry and high-throughput screening technology, and the latest equipment for bone and oncology research.

At our Clinical Research Facility, you’ll be able to conduct studies with adult patients and volunteers. The Sheffield Children’s Hospital houses a complementary facility for paediatric experimental medical research.

Hepatitis B policy

If your course involves a significant risk of exposure to human blood or other body fluids and tissue, you’ll need to complete a course of Hepatitis B immunisation before starting. We conform to national guidelines that are in place to protect patients, health care workers and students.

Core modules

During the autumn and spring terms, you’ll take four taught modules worth 30 credits each: Applied Neuroanatomy and Clinical Neuroscience; Cerebrovascular Disease and Disorders of Consciousness; Neuroinflammation (CNS) and diseases of the PNS; Neurodegeneration.

Complementing the taught modules is a comprehensive programme of clinical demonstrations, integrated learning activities, themed clinics and neuro-anatomy dissection (autumn term) where students will be able to apply the taught theory and further substantiate their understanding of the topic area being studied.

Examples of optional modules

Either a research project (Route A) or a Clinical Neurology Experiential Learning Module (CNELM) (Route B) worth 60 credits is completed in the summer term.

Teaching and assessment

The taught component of the MSc is delivered through lectures, seminars, tutorials, practical demonstrations and student-led group work. Each of the 30-credit modules is assessed using a formal examination (15 credits) and ongoing assessments during the module (15 credits), including essays and oral presentations.

The research project (Route A) is assessed from the written dissertation and research presentation examination. The CNELM (Route B) is assessed by means of a portfolio (30 credits) and a 6,000-word dissertation (30 credits) on an aspect of the sub-speciality chosen for the module. The portfolio will contain a reflective log, anonymised details of cases seen, and work-based assessments.

Read less
Located within a European Centre of Excellence for Tissue engineering, and based on Keele University’s local hospital campus, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. Read more

Overview

Located within a European Centre of Excellence for Tissue engineering, and based on Keele University’s local hospital campus, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. The multidisciplinary environment enables close interaction with leading academics and clinicians involved in cutting-edge, and clinically transformative research.

Course Director: Dr Paul Roach ()

Studying Cell and Tissue Engineering at Keele

Our MSc Cell and Tissue Engineering programme has tracked alongside the strongly emergent global Regenerative Medicine industry and will prepare you for an exciting future within a range of medical engineering areas, be that in academic or industrial research, medical materials, devices, or therapeutics sectors, or in the clinical arena. The modular structure to the course enables flexibility and personalisation to suit your career aspirations, build upon strengths and interests and develop new understanding in key topics. The selection of modules on offer is professionally accredited by the Institute for Physics and Engineering in Medicine.

Graduate destinations for our students could include: undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; providing technical consultancy for marketing and sales departments within industry; working within biomedical, biomaterials, therapeutic and regenerative medicine industries or working for a governmental regulatory agency for healthcare services and products.

See the website https://www.keele.ac.uk/pgtcourses/cellandtissueengineering/

‌The course provides support from the basics of human anatomy and physiology, through to development of novel nanotechnologies for healthcare. Due to the teaching and research involvement of clinical academic staff within the department, there are exciting opportunities to be exposed to current clinical challenges and state-of-the-art developments. Clinical visits and specialist seminars are offered and students will be able to select dissertation projects that span fundamental research to clinical translation of technologies – a truly ‘bench to bedside’ approach.

Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers. Full-time study will see the course completed in 12 months; part-time study will allow you to complete it over two years.

About the department

Now delivered through the Keele Medical School and the Research Institute for Science and Technology in Medicine, the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Biomedical Engineering, and an EPSRC-MRC funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Content

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Cell and Tissue Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:
- provide postgraduate-level education leading to professional careers in Cell and Tissue Engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of Biomaterials, and Cell and Tissue Engineering;

- expose students to the clinically translational environment within an active medical research environment with hands-on practical ability and supporting knowledge of up-to-date technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine, nanotechnology and novel devices for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. Read more
This course develops the careers of doctors whose interest is the practice of medicine in tropical and low- and middle-income countries. The course offers a wide choice of modules and provides training in clinical tropical medicine at the Hospital for Tropical Diseases.

The Diploma in Tropical Medicine & Hygiene (DTM&H):
All students going on the MSc will take the Diploma in Tropical Medicine & Hygiene. Students with a prior DTM&H, or holding 60 Masters level credits from the East African Diploma in Tropical Medicine & Hygiene may apply for exemption from Term 1 via accreditation of prior learning.

Careers

Graduates from this course have taken a wide variety of career paths including further research in epidemiology, parasite immunology; field research programmes or international organisations concerned with health care delivery in conflict settings or humanitarian crises; or returned to academic or medical positions in low- and middle-income countries.

Awards

The Frederick Murgatroyd Award is awarded each year for the best student of the year. Donated by Mrs Murgatroyd in memory of her husband, who held the Wellcome Chair of Clinical Tropical Medicine in 1950 and 1951.

- Full programme specification (pdf) (http://www.lshtm.ac.uk/edu/qualityassurance/tmih_progspec.pdf)

Visit the website http://www.lshtm.ac.uk/study/masters/mstmih.html

Objectives

By the end of this course students should be able to:

- understand and describe the causation, pathogenesis, clinical features, diagnosis, management, and control of the major parasitic, bacterial, and viral diseases of developing countries

- demonstrate knowledge and skills in diagnostic parasitology and other simple laboratory methods

- understand and apply basic epidemiological principles, including selecting appropriate study designs

- apply and interpret basic statistical tests for the analysis of quantitative data

- critically evaluate published literature in order to make appropriate clinical decisions

- communicate relevant medical knowledge to patients, health care professionals, colleagues and other groups

- understand the basic sciences underlying clinical and public health practice

Structure

Term 1:
All students follow the course for the DTM&H. Term 1 consists entirely of the DTM&H lectures, seminars, laboratory practical and clinical sessions, and is examined through the DTM&H examination and resulting in the award of the Diploma and 60 Master's level credits at the end of Term 1.

Terms 2 and 3:
Students take a total of five study modules, one from each timetable slot (Slot 1, Slot 2 etc.). Recognising that students have diverse backgrounds and experience, the course director considers requests to take any module within the School's portfolio, provided that this is appropriate for the student.

*Recommended modules

- Slot 1:
Clinical Infectious Diseases 1: Bacterial & Viral Diseases & Community Health in Developing Countries*
Clinical Virology*
Epidemiology & Control of Malaria*
Advanced Immunology 1
Childhood Eye Disease and Ocular Infection
Designing Disease Control Programmes in Developing Countries
Drugs, Alcohol and Tobacco
Economic Evaluation
Generalised Liner Models
Health Care Evaluation
Health Promotion Approaches and Methods
Maternal & Child Nutrition
Molecular Biology & Recombinant DNA Techniques
Research Design & Analysis
Sociological Approaches to Health
Study Design: Writing a Proposal

- Slot 2:
Clinical Infectious Diseases 2: Parasitic Diseases & Clinical Medicine*
Conflict and Health*
Design & Analysis of Epidemiological Studies*
Advanced Diagnostic Parasitology
Advanced Immunology 2
Clinical Bacteriology 1
Family Planning Programmes
Health Systems; History & Health
Molecular Virology; Non Communicable Eye Disease
Population, Poverty and Environment
Qualitative Methodologies
Statistical Methods in Epidemiology

- Slot 3:
Clinical Infectious Diseases 3: Bacterial & Viral Diseases & Community Health in Developing Countries*
Control of Sexually Transmitted Infections*
Advanced Training in Molecular Biology
Applied Communicable Disease Control
Clinical Immunology
Current Issues in Safe Motherhood & Perinatal Health
Epidemiology of Non-Communicable Diseases
Implementing Eye Care: Skills and Resources
Medical Anthropology and Public Health
Modelling & the Dynamics of Infectious Diseases
Nutrition in Emergencies
Organisational Management
Social Epidemiology
Spatial Epidemiology in Public Health
Tropical Environmental Health
Vector Sampling, Identification & Incrimination

- Slot 4:
Clinical Infectious Diseases 4: Parasitic Diseases & Clinical Medicine*
Epidemiology & Control of Communicable Diseases*
Ethics, Public Health & Human Rights*
Global Disability and Health*
Immunology of Parasitic Infection: Principles*
Analytical Models for Decision Making
Clinical Bacteriology 2
Design & Evaluation of Mental Health Programmes
Environmental Epidemiology
Evaluation of Public Health Interventions
Genetic Epidemiology
Globalisation & Health
Molecular Biology Research Progress & Applications
Nutrition Related Chronic Diseases
Population Dynamics & Projections
Reviewing the Literature
Sexual Health
Survival Analysis and Bayesian Statistics
Vector Biology & Vector Parasite Interactions

- Slot 5:
AIDS*
Antimicrobial Chemotherapy*
Mycology*
Advanced Statistical Methods in Epidemiology
Analysing Survey & Population Data
Applying Public Health Principles in Developing Countries
Environmental Health Policy
Integrated Vector Management
Integrating Module: Health Promotion
Molecular Cell Biology & Infection
Nutrition Programme Planning
Pathogen Genomics
Principles and Practice of Public Health

Further details for the course modules - http://www.lshtm.ac.uk/study/currentstudents/studentinformation/msc_module_handbook/section2_coursedescriptions/ttmi.html

Project Report:
During the summer months (July - August), students complete a research project in a subject of their choice, for submission by early September. Projects may involve writing up and analysing work carried out before coming to the School, a literature review, or a research study proposal. Some students gather data overseas or in the UK for analysis within the project. Such projects require early planning.

Students undertaking projects overseas will require additional funding of up to £1,500 to cover costs involved. The majority of students who undertake projects abroad receive financial support for flights from the School's trust funds set up for this purpose.

Find out how to apply here - http://www.lshtm.ac.uk/study/masters/mstmih.html#sixth

Read less
This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. Read more

About the course

This unique specialist course gives you practical experience in human embryonic stem cell techniques, helping you develop the professional skills employers want. You’ll also spend time in seminars considering the ethical and legal issues associated with the field.

Where your masters can take you

Graduates with skills in stem cell and regenerative medicine are in demand. Your degree will prepare you for a career in research in academia or industry, or in a clinical-related field. Our graduates are working all over the world – from the UK to China, India and the USA – and over half go on to doctoral study.

Learn from the experts

The 2014 Research Excellence Framework (REF) rates us No 1 in the UK for research in this field. Our international reputation attracts highly motivated staff and students. Sheffield is a vibrant place to take a masters based on pioneering research.

Regular seminars from distinguished international experts help you to connect your studies to the latest developments. We’re also part of collaborative research groups for developmental biology, cell biology, physiology, pharmacology, neuroscience, models of human disease, stem cell science and regenerative medicine.

Our three research centres focus on translating laboratory research to the clinical environment: Bateson Centre, the Centre for Stem Cell Biology, and the Centre for Membrane Interactions and Dynamics.

Leaders in our field

We have a long track record of groundbreaking discoveries. These include breakthroughs in human stem cells for hearing repair, and the generation of animal models for Parkinson’s disease, schizophrenia, muscular dystrophies and their use for therapeutic studies.

Labs and equipment

We have purpose-built facilities for drosophila, zebrafish, chick and mouse genetics and for molecular physiology. Other facilities provide all the tools you’ll need to examine and analyse a range of cellular structures. We have an electron and a light microscopy centre, a PCR robotics facility, a flow cytometry unit and an RNAi screening facility.

Teaching and assessment

There are lectures, practical classes, tutorials and seminars. In small group teaching classes you’ll discuss, debate and present on scientific and ethical topics. Laboratory placements within the department provide you with one-to-one attention, training and support to do your individual research project. Assessment is by formal examinations, coursework assignments, debates, poster presentations and a dissertation.

Our teaching covers ethics, practical scientific skills and an overview of the current literature. You’ll also develop useful career skills such as presentation, communication and time management.

Core modules

Literature Review; Practical Research Project; Analysis of Current Science; Ethics and Public Understanding.

Examples of optional modules

Stem Cell Techniques; Practical Cell Biology; Practical Developmental Genetics; Bionanomaterials; Modelling Human Diseases; Stem Cell Biology.

Read less
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. Read more
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. The course aims to further enhance your knowledge of clinical biochemistry, to engage you with contemporary issues and debates within the discipline, and to develop your critical and analytical skills.

The taught programme contains specific modules in Clinical Biochemistry, such as endocrinology and metabolism and diagnostic clinical biochemistry, which you can apply to diagnostic biomedicine, as well as offering you a choice of modules related to molecular diagnostics or haematology.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CLINICAL ENDOCRINOLOGY AND METABOLISM
-DIAGNOSTIC CLINICAL BIOCHEMISTRY
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-CELLULAR HAEMATOLOGY
-COMMUNICATING SCIENCE
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-IMMUNOPATHOLOGY
-PRINCIPLES OF MOLECULAR MEDICINE

Associated careers

The course has been designed to provide professionals with a broad range of transferable skills in clinical biomedical sciences, with particular reference to possessing the ability to critically discuss and evaluate concepts, analytical techniques, current research and advanced scholarship in Clinical Biochemistry.

Successful completion of the course will enhance the career prospects of graduates for entering Ph.D programmes; you may find employment in hospital laboratories, academia, research institutes, as well as in the pharmaceutical and related industries.

Professional recognition

The course is accredited by the Institute of Biomedical science (IBMS).

Read less
This vocational training programme has been developed to appeal to recent biology, biomedical, biochemistry and medical graduates who aspire to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. Read more

Introduction and Course Objectives

This vocational training programme has been developed to appeal to recent biology, biomedical, biochemistry and medical graduates who aspire to develop a career in the field of clinical embryology and assisted reproductive technology (ART) and/or the associated reproductive sciences. The programme has been developed by the Division of Reproduction and Early Development within the Leeds Institute of Genetics, Health and Therapeutics in association with the clinicians and embryologists working at the Leeds Centre of Reproductive Medicine in the Leeds NHS Trust. The programme leaders have over 20 years of experience of training clinical embryologists, reproductive medicine practitioners and reproductive scientists.

This is a laboratory-based science degree not a clinically- based infertility treatment course. The programme will provide students with a detailed knowledge of the theory and practices that underpin human clinical embryology and ART. The curriculum covers: the cell and molecular biology of human reproduction, fertility, andrology and embryology; the management and efficient running of an ART laboratory; the practices, genetic and epigenetic concepts of micromanipulation and techniques such as intracytoplasmic sperm injection (ICSI) and pre-implantation genetic diagnosis (PGD); advances in cryobiology and its application to gamete and embryo freezing and fertility preservation. It will also provide graduates with valuable insights into the theory underpinning clinical treatments and the ethical and legal controversies surrounding assisted reproduction in humans. The programme will equip graduates to pursue a career in human assisted reproduction (e.g. clinical embryology, infertility treatment) and/or research in the reproductive sciences.

The programme places a strong emphasis on all aspects of practical training for clinical embryology and assisted reproduction technology. Masters students will be tutored in research methods. They will receive hands-on training from specialist practitioners in andrology, gamete handling, IVF, ICSI, embryo culture, gamete and embryo freezing, vitrification, biopsy. Students will interact with established, clinical embryologists and reproductive medicine specialists.

Course Content:

The course will comprise the following compulsory modules:

• Fundamentals of Clinical Embryology;
• IVF and Embryo Culture;
• Micromanipulation;
• Cryobiology and Cryopreservation;
• Ethics and Law for Embryologists;
• Research in Reproduction, Embryology and Assisted Reproduction Technology

Course Delivery

This programme is delivered using a blended learning approach which combines lectures, seminars, tutorials, interactive group discussions, presentations and problem based learning sessions /case studies with self directed learning. The theoretical training is complimented by the conduct of original research and by laboratory-based practical sessions. The course content is further enhanced by an extensive array of online resources and by the provision of printed versions of all module workbooks. Course assessments will include essays, presentations, projects, practical log books, a research dissertation and examinations.

Read less
This cutting-edge programme offers an exciting opportunity to study modern neuroscience with a focus on clinical implications. You will gain a strong foundation in understanding the mechanisms and treatments of neurological and neuropsychiatric diseases. Read more

Summary

This cutting-edge programme offers an exciting opportunity to study modern neuroscience with a focus on clinical implications. You will gain a strong foundation in understanding the mechanisms and treatments of neurological and neuropsychiatric diseases.

This course is designed for students from a range of backgrounds, who are interested in pursuing a career in neuroscience. You will develop a detailed understanding of modern theory and concepts relating to brain research and neuroscience and the application of these principles in the treatment of brain disorders. This course places emphasis on the clinical relevance of recent developments in neuroscience.

The development of your research methods skills is an integral part of the course. You will further your understanding of applied neuroscience with a research project which will develop your data handling and analysis skills, use of applied theory and statistics.

You will join the Health Sciences Research Centre whose academics are currently investigating a range of topical issues such as the addictive nature of new psychoactive substances, effects of stress on the brain regulatory systems and the mechanisms of brain cell death and repair using neural stem cells. You will be welcome to attend research seminars and discussions on topical developments in neuroscience and health sciences, led by experts.

MSc Clinical Neuroscience is recognised by the Federation of Neuroscience Societies (FENS) and included in the Network of European Neuroscience Schools (NENS), which is the highest accolade in European neuroscience teaching.

Content

In this postgraduate programme, you will develop an integrated overview of contemporary neuroscience as a rapidly developing discipline with multiple links with molecular biology, genetics, pharmacology and medical sciences.

You will be introduced to a diverse range of topics and will have the chance to focus on areas that interest you. Examples of topics that you might cover include: clinical relevance of recent developments in neuroscience, brain imaging techniques and their applications in neurology and psychiatry, neurobiological mechanisms of human brain disorders, effects of nutrition and addiction on brain function, and research methods.

You will discuss ethical issues in clinical neuroscience and develop your ability to critically evaluate current developments in clinical brain research, which are relevant to healthcare.

This course can accommodate students from a range of backgrounds including new graduates from life sciences or psychology as well as health professionals who hold non-traditional qualifications. The programme options of PG Diploma or PG Certificate can be useful to health professionals who wish to refresh update theory knowledge without the commitment of conducting a research project (MSc). It is also suitable for applicants from the NHS, for example neuro-nurses or therapists.

Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
This innovative degree offers a fascinating opportunity to study modern and topical research areas in Cell Biomedicine. You will gain the essential skills required to prepare for your career in either biomedical research, a clinical setting or within the health industry. Read more

Summary

This innovative degree offers a fascinating opportunity to study modern and topical research areas in Cell Biomedicine. You will gain the essential skills required to prepare for your career in either biomedical research, a clinical setting or within the health industry.

This postgraduate degree will provide you with advanced research training in medical aspects of cell biology and pathology and you will conduct your own lab based research project. With a focus on research methods, you will take you research methods to the next level in producing your own research design, understanding ethics in research projects and best practice in handling statistical data-sets. The programme includes a variety of subject-specific lectures, seminars, tutorials and practical work that will give keep you up-to-date with the current advances in the field. You will learn the theoretical and technological aspects of cellular biomedicine and their practical applications within industry.

You will be taught by enthusiastic, research active experts in the field who conduct research in a diverse range of topics that you can choose to study such as cellular and molecular mechanisms of cancer, microbial resistance to antibiotics, immune mechanisms of disease, stem cell research and molecular modelling in cell biology.

You will conduct your research project in our state-of-the-art laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.

You will automatically be a part of our Health Sciences Research Centre, a community of leading experts who are currently investigating a range of topical issues. You will participate in engaging discussions within research seminars on the latest developments within neuroscience and the health sciences.

Content

In this postgraduate programme, you will be trained in medical aspects of cell biology and pathology with a focus on the lab based research project. The programme has a strong focus on research methods and will provide you with necessary skills in research design, ethics and statistical methods.

You will learn the most recent advances in cellular biomedicine by being part of engaging subject-specific lectures, seminars, tutorials and conducting your own research. You will study the theoretical and technological and their practical applications in cellular biomedicine.

Read less
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Read more
With constant developments across all disciplines, biomedical science is a fast-paced, ever-evolving field. Looking for a programme that will help you deepen your theoretical knowledge, hone your clinical skills and broaden your professional experience? We give you a suite of award pathways that allow you to explore different research areas, develop your specialisms and focus your study into a practical clinical research project.

Key features

-Tap into the expertise of academic lecturers and tutors actively researching and developing new techniques in modern biomedical science. Our programme has a strong international reputation in translational research, with significant financial investment in laboratory infrastructure.
-Hone your skills and critical thinking, and grow your clinical experience.
-Work with high specification, regularly updated facilities serving post-genomics and proteomics, cell biology and imaging.
-Enrich your learning with teaching, expertise and insight from our NHS partners, plus members of Plymouth University School of Biomedical and Healthcare Sciences.
-Deepen your understanding with modules that explore modern practice, emerging techniques and the impact of new technologies on research methods.
-Benefit from a programme that’s reinforced by the research, facilities and expertise of the Centre for Biomedical Research and the Systems Biology Centre. Attend research events and work with leading scientists in a wide range of fields, including immunology, haematology and genomics.
-Focus your specific interests under the guidance of your personal project advisor and develop an individual final project within the Centre for Biomedical Research and the Systems Biology Centre.
-Gain the skills needed to study at masters level with specialist modules on research techniques and project development.

Choose from our modules to follow a path of study resulting in one of following MSc awards:
-Biomedical Science (Cellular Pathology)
-Biomedical Science (Clinical Biochemistry)
-Biomedical Science (Haematology and Transfusion)
-Biomedical Science (Immunology)
-Biomedical Science (Medical Genetics)
-Biomedical Science (Medical Microbiology)
-Begin your career with the confidence that the MSc Biomedical Science suite of awards are accredited by the Institute of Biomedical Science.
-Take the course as a full-time intercalated degree programme for those wishing to interrupt their studies as a medical or dental student.

For more information about the part-time version of this course, view this web-page: https://www.plymouth.ac.uk/courses/postgraduate/msc-biomedical-science-2

Course details

You’ll take five modules: three core modules, one diagnostic research applications module, plus one discipline-specific module to determine your final award. You'll design and execute a research project, supported by your project advisor. Other core modules include molecular biology (genomics, transcriptomics and proteomics) and project design and development, where you’ll also critically review scientific literature. Options for the diagnostic research applications include bioinformatics, contemporary applications of cell biology, and contemporary science of infection and immunity. Focussing in on the discipline that interests you the most for your final award, you can choose from a range of modules including: clinical immunology, clinical microbiology, haematology and transfusion, medical genomics and personalised medicine, molecular and cellular pathology and clinical biochemistry.

Core modules
-BIOM5005 Project Design and Development
-BIOM5001 Molecular Biology: Genomics, Transcriptomics and Proteomics
-BIOM5006 Research Project

Optional modules
-BIOM5008 Clinical Microbiology
-BIOM5002 Contemporary Applications of Cell Biology
-BIOM5003 Contemporary Science of Infection and Immunity
-BIOM5014 Bioinformatics
-BIOM5007 Cellular Basis of Clinical Immunology
-BIOM5009 Haematology and Transfusion
-BIOM5010 Medical Genomics and Personalised Medicine
-BIOM5011 Molecular and Cellular Pathology
-BIOM5012 Clinical Biochemistry

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X