• University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Glasgow Featured Masters Courses
King’s College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Coventry University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Leeds Featured Masters Courses
"climatology"×
0 miles

Masters Degrees (Climatology)

  • "climatology" ×
  • clear all
Showing 1 to 15 of 18
Order by 
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment. Read more
Weather and climate are integral parts of the Earth system. The monitoring of meteorological variables, together with the knowledge and modelling of underlying processes, are key to understanding our interaction with the natural environment.

This programme provides comprehensive training in understanding, modelling and prediction of atmospheric processes; as well as the collection, management, supply and application of atmospheric data for the needs of a variety of public and private sectors. The course also demonstrates how these create opportunities or pose problems for the successful operation of natural and human systems. Our aim is that upon graduation you will be able to compete for careers in Meteorology and Climatology.

This well-established programme was developed in response to industry and research institution requirements for applied meteorologists and climatologists. This demand continues, partially due to the growing attention of the society to climate change, its mitigation and adaptation to it.

Skills gained

The programme aims to:

- Provide training in theoretical and applied aspects of atmospheric physics and dynamics, quantitative modelling techniques, -weather forecasting, climate prediction and observation of atmospheric processes
- Equip you with the skills of quantitative and statistical analysis with regards to atmospheric data processing and management
- Enable you to apply theoretical concepts and analytical techniques to the resolution of environmental and socio-economic problems that have an atmospheric origin
- Develop your independent research ability
- Convert participants with non-environmental backgrounds to applied meteorologists and climatologists
- Develop your communication skills using traditional and IT-based media

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The Master of Physical Land Resources has two specializations. Soil Science (organized by the Universiteit Gent) and Land Resources Engineering (organized by the Vrije Universiteit Brussel). Read more
The Master of Physical Land Resources has two specializations: Soil Science (organized by the Universiteit Gent) and Land Resources Engineering (organized by the Vrije Universiteit Brussel). During your training you acquire a profound knowledge of pedology, soil physics and chemistry, soil mineralogy, soil prospection and classification, statistics and computer science, climatology and meteorology. Depending on the chosen modules you can specialize in the fields of: land evaluation, soil fertility, soil-water management, etc.

This master offers

 Knowledge and skills which enable you to start and build a successfull career as scientist specialised in either Soil Science or Land Resources Engineering in a professional way.
 The ability to formulate hypotheses and design experiments to test them, report results and findings to both your peers and to a general public.
 You to learn to think analytically, synthetically, creatively and in a problem solving way
 The ability to work both autonomously and in a team.
 The ability to apply knowledge as required for the overall development policy of your country
 The skills to function in fundamental as well as in applied research at universities, research institutions and (other) government or private institutions and companies.

International Course Programme

This programme is one of the International Course Programmes supported by the Flemish Interuniversity Council - University Development Cooperation (VLIR-UOS). A limited number of scholarships is available for students coming from specific developing countries.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course.

The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a dissertation. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources.
The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are organised at the "Vrije Universiteit Brussel". Students in Land Resources Engineering have to reside in Brussels during the second year.

The academic year starts the last week of September. Students are expected to arrive in Gent ten days before the start of the programme. There are two examination periods, in January and in June respectively. For students who fail, there is a re-examination session in August-September.

Curriculum

For the specialization Land Resources Engineering the curriculum is available on http://www.vub.ac.be/en/study/physical-land-resources/programme

For the specialization Soil Science the curriculum is available on http://www.plr.ugent.be/main.htm#course

Student profile

You want to know what (a) soil is?
You want to know which factors and properties determine the soil suitability to be used for both agricultural and non-agricultural purposes and how this is established?
You want to know how the soil can be improved to suit specific applications?
You want to know how to address problems of degradation and desertification?
You want to know how to manage the land and how to protect it?
You want to know what the impact of the soil factor is in the dynamics of natural ecosystems and how this knowledge can be applied in the area of nature conservation?
You want to know what the soil teaches us about current environmental issues?
You want to know how soil and water management can be improved in the frame of sustainable agriculture?
You want to know how we can manage our scarce water supplies?

Read less
Human beings now live in what an increasing number of environmental scientists call the Anthropocene – a stage in the Earth’s geological and climate development that is dominated by the activities of humankind. Read more
Human beings now live in what an increasing number of environmental scientists call the Anthropocene – a stage in the Earth’s geological and climate development that is dominated by the activities of humankind. Whether in the realm of conservation, biodiversity, evolution or climatology, no effective study of environmental issues can proceed without an understanding of human behaviour on both the large and the small scale.

COURSES
Semester 1
Understanding People and Environment

Semester 2
Compulsory courses
Reading Environment Ethnography
Field Trips for People and Environment

Optional Courses
Roads, Mobility, Movement, Migration
Anthropological Theory for MSc
The Museum Idea
More Than Human
Supervised Reading
Curating and Exhibition
Work Placement for MSc in People and Environment
Research Design and Practice in Anthropology
Culture and Society in Latin America

Semester 3
Dissertation in People and Environment

Read less
The University of Venice offers a MSc (Master of Science/Laurea Magistrale) degree in "Environmental Sciences" which includes three available study plans; among them, the Global Environmental Change is taught entirely in English (http://www.unive.it/nqcontent.cfm?a_id170980). Read more

Overview

The University of Venice offers a MSc (Master of Science/Laurea Magistrale) degree in "Environmental Sciences" which includes three available study plans; among them, the Global Environmental Change is taught entirely in English (http://www.unive.it/nqcontent.cfm?a_id=170980)

Joint degree

The Msc programme in Enviromental Sciences offers the possibility of getting a Joint Master's Degree in Sustainable Development (http://www.unive.it/nqcontent.cfm?a_id=75952).
The programme offers an interdisciplinary approach, combining the specialisation in teaching and research of 6 partner universities: Graz (Austria), Ca' Foscari Venice, Leipzig (Germany), Utrecht (the Netherlands), Basel (Switzerland), and Hiroshima (Japan).
Admission to the programme is open to students holding the equivalent of an undergraduate/first cycle degree programme (Italian Laurea triennale), who will be selected on the basis of their research skills, basic knowledge of natural and/or social sciences, and a general insight in the subject of sustainable development and intervention strategies.

The study plans

The programme unfolds into three semesters of full-time lectures and lab experience. The last semester is dedicated to the development of individual projects and of the thesis, supervised by a department member. Each study plan is organized around a set of core courses, two elected activities and a final examination, in which the candidates will defend the thesis.

Students can choose among three study plans:

Global Environmental Change [English-taught Programme], which provides a thorough understanding of Earth System dynamics, taking a holistic and systemic approach, which also include the social and economic systems. Several disciplines are covered, including: climatology, past and recent climate history, tools for predicting changes in climate, analysis and forecasting of the impacts of climate change on the environment, society and human welfare, adaptation and mitigation strategies, integrated assessment of global change drivers.

Environmental Control and Reclamation [IT] which provides advanced knowledge and skills related to the analysis of the processes that contribute to the de-contamination and environmental qualification; technologies currently in use for the treatment of solid, liquid and gaseous fuels and their energy conversion; methodologies for environmental monitoring; productive activities and sustainable rehabilitation of the environment.

Assessment and Management of Environmental Systems [IT], which provides in-depth knowledge intended application and development of methodologies for the management of environmental data; the assessment and management of natural resources; the resource assessment of natural ecosystems; rehabilitation and environmental restoration of ecosystems modified by man; planning and land management, landscape and marine and coastal ecosystems; the assessment and management of environmental sustainability.

Applying to the programme

In order to enter the programme, applicants need to have an equivalent of a three-year Italian undergraduate degree (laurea) such as a BSc degree in Environmental Sciences or related subjects (Biology, Chemistry, Engineering, ecc.) with good background on fundamental topics in Biology, Chemistry, Geology, Mathematics, Physics, Data Sciences.

When and how to apply

The classes start in September. Please note that it is best to apply as early as possible. Applications are made directly to Ca' Foscari University of Venice. For full details visit How to apply, or contact the Administration office () or the Head of the teaching committee ().

Graduate careers & Occupational Profiles

Students graduating from the MSc in Environmental Sciences may use their new skills to enhance their employment prospects in work related to their first degree. In particular this MSc will suit skilled motivated science graduates wishing to develop a scientific career in ecosystem research as well as those aiming to contribute to evidence-based environmental policy. Graduates interested in foundational, experimental, and applied research, can join Ca' Foscari PhD Programmes in Environmental Sciences or in Science and Management of Climate Change.
Possible career opportunities include:
- Geologist
- Biologist and similar professions
- Planning, landscape architecture and territory conservation
- Agriculture and forestry
- Botanist
- Ecologist
- Zoologist

Read less
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH). Read more
Together with its partners TU Dresden and University of Lisbon, UNESCO-IHE conducts the Joint Erasmus Mundus Programme in Groundwater and Global Change - Impacts and Adaptation (GroundwatCH).

Groundwater and Global Change - Impacts and Adaptation seeks to offer a distinctive curriculum built on the cornerstones of hydro(geo)logy, climatology, impacts and adaptation, within a framework of human pressures, global change and feedbacks, around the following academic focal areas:

General Hydrogeology
Groundwater Data Collection
Interpretation and Modelling
Climate Processes and Modelling
Integrated River Basin and Water Resource Management
Groundwater and Environmental Impacts
Groundwater, Society and Policies
Groundwater, Climate and Global Change Impacts and Adaptation

With this curriculum GroundwatCH aims to address the current gaps in higher education with regard to the understanding of the interactions between groundwater, surface water, climate and global change, and how we need to consider and can benefit from these interactions when dealing with adaptation.

Read less
Our key research areas are. air pollution and atmospheric chemistry; applied meteorology and climatology; environmental nanoscience and persistent organic pollutants. Read more
Our key research areas are: air pollution and atmospheric chemistry; applied meteorology and climatology; environmental nanoscience and persistent organic pollutants.

Our research attracts extensive funding from many sources. The collaborative nature of much of our work, together with the mix of pure, strategic and applied research, provides a dynamic and internationally recognised research environment.

The Division of Environmental Health and Risk Management (DEHRM) is based in the well-equipped, purpose-built facilities of the University's Public Health Building. Our research attracts extensive funding from many sources, including the:

- Department of Transport
- Department for Environment, Food and Rural Affairs
- Environment Agency
- Department of Health
- Food Standards Agency
- National Environment Research Council (NERC)
- Engineering and Physical Sciences Research Council (EPSRC)
- Biotechnology and Biological Sciences Research Council (BBSRC)
- Leverhulme Trust
- European programmes

The collaborative nature of much of this work, together with the mix of pure, strategic and applied research, often involving interdisciplinary teams spanning physical, biological, chemical, medical and social sciences, provides a dynamic and internationally recognised research environment.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. Read more

Overview

Given the wider development of Citizen GIS and an increased public awareness and knowledge of the power and value of spatial data, vastly increased amounts of such data from different sources are now available to researchers. However, in order to turn these data into useful information, they must be efficiently managed, processed and analysed before being displayed in a comprehensible format. Geographical Information Systems and the associated field of Remote Sensing greatly aid us in such tasks. The course is equally split between both parts - GIS and Remote Sensing - with four core module introducing the theory and practice of both subject at an introductory and advanced level. Geographical Information Systems or GIS as they are better known, are widely used in a wide variety of subject fields across the physical and social sciences and even in the humanities, with applicability in everything from archaeology and astronomy to geomorphology and globalisation to soil science and social planning. Remote Sensing – the analysis and interpretation of aerial and satellite imagery – has transformed the manner in which we view the Earth. The synoptic view of the Earth that it has given us has greatly improved our understanding of atmospheric and oceanic processes, sustained environmental management and the interaction of humans with the natural world. It is now a standard research tool in many fields such as geology, geography, pollution control, agriculture and climatology. Additional optional modules in Programming, Spatial Databases and Remote Sensing of the Subsurface are also available to students who want to develop the technical side more fully, though the course has a strong applied flavour throughout. In addition, all students complete a work placement in the Summer months which allows them to gain valuable practical experience to test and develop the skills learnt across the course.

Aims of the Course:
- To provide highly qualified, motivated graduates who have been trained in Geographical Information Systems, Remote Sensing and Digital Image Processing and who can apply the information technology skills they obtain.

- To produce marketable graduates who will make significant contributions to GIS and RS application areas including; industry, government, academia, the community and voluntary sector and other public and private bodies.

- To provide an understanding of Geographical Information Systems and Remote Sensing, the technology involved and its applications for specific investigations.

Course Structure

The course consists of 6 modules, 5 of which are compulsory. Two of these cover the theoretical concepts underpinning GIS and Remote Sensing. Two other modules involve gaining the theoretical and technical skills necessary to become proficient in the management and analysis of spatial data. A fifth module involves an assessed work placement during the summer months. Modules include work placement, theoretical remote sensing, digital image processing and advanced remote sensing, introductory GIS systems and science and GIS in practice with optional programming, spatial databases and geophysics modules.

Career Options

The MSc in GIS and Remote Sensing is first and foremost a course to skill students for work in a wide range of employment areas. These include a wide range of government and semi-state agencies, local authorities and the voluntary sector, especially in areas associated with the environment and planning. In addition, graduates have worked in a wide range of private sector organisations and businesses, where the ability to work with and critically managed big spatial data is increasingly valued. Successful students have also proceeded to PhD level research and gained employment in academia.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHN58
The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections. Read more

About the course

This new and exciting programme is aimed at training graduates from a range of scientific disciplines who wish to pursue a research career in cold-regions science, notably within the disciplines of glaciology, glacial geomorphology, polar climatology / oceanography, environmental science, polar biogeochemical processes, or their intersections.

The programme’s underlying theme is contemporary, as its key interest is to explore the expressions, mechanisms and impacts of rapid ongoing changes in our planet’s cold regions.

Your career

You’ll develop the skills to work in private or public sector research, or join the civil service. Recent graduates have started careers in consulting or with organisations like CAFOD, the Environment Agency and the British Library. Many of our graduates stay on to do research. We have a high success rate in securing funding for those who wish to study for a PhD with us after finishing a masters.

Study with the best

This is a vibrant postgraduate community, with strong international links. Our research partners are global, from UK universities to institutions in southern Africa, Denmark, Iceland, Australia and the USA. Our teaching is invigorated by work from several interdisciplinary research groups, like the Sheffield Centre for International Drylands Research, the Urban and Regional Policy Research Institute and the Sheffield Institute for International Development.

How we teach

Our staff are active researchers at the cutting-edge of their fields. That research informs our masters courses. As well as the usual lectures and seminars, there are practicals, lab classes, field trips and research projects.

Facilities and equipment

A new £1m Sediment-Solute Systems lab enables geochemical analysis of aqueous and solid phases, especially in the context of biogeochemistry. We have equipment for chromatography, UV spectrometry and flow injection/auto analysis.

Our sample preparation facilities enable digestion, pre-concentration by evaporation under vacuum, and tangential flow filtration. There are alpha and gamma counters, a laser particle sizer and a luminescence dating lab. Field equipment includes automatic water samplers, weather stations, data loggers and environmental process characterisation sensors.

We have high-quality petrological microscopes for examining geological samples. We have labs for spectrometry and for palaeontological preparation, and you’ll also have access to specialist facilities in other departments at the University.

Laptops, camcorders, tape recorders and transcribers are available for your fieldwork. Our postgraduate computer labs have networked workstations for GIS research and climate modelling, ARC/INFO, ERDAS software and specialist software for remote sensing. GIS facilities are also provided by the £5m Informatics Collaboratory for the Social Sciences.

Our new postgraduate media GIS suite has facilities for Skype, video conferencing, web design, video editing and creative media.

Fieldwork

Most of our courses involve fieldwork. The MPH, MSc and MA International Development take students on a 10-day field trip where they put their research skills into practice. Recent classes visited the West Pokot region of Kenya, urban and rural areas of Nepal, the suburbs of Cairo and India.

Core modules

Research Design in Analysis of Environmental Systems; Current Issues in Polar and Alpine Science; Arctic/Alpine Field Course; Polar and Alpine Change Research Project.

Teaching and assessment

Modules are delivered through a mixture of lectures, seminars, workshops and independent study.

The Research Project is assessed by oral presentation of mid-project findings, submission of a project report in the summer and by a poster presentation of project findings.

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Land Resources Engineering offers training in non-agricultural use and application of soil, and includes geotechnical aspects (use of soil as a building material or for foundations, slope stability and stability of excavations), the role of soil- and groundwater for water management and supply, soil management in relation to environment and land use (erosion, sediment transport, coastal development and protection).

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Students who graduate from the Master’s programme in geography have strong theoretical and practical skills. The education in geography offers a broad understanding in current social and environmental issues. Read more
Students who graduate from the Master’s programme in geography have strong theoretical and practical skills. The education in geography offers a broad understanding in current social and environmental issues. Our students can work as experts in their field, both independently and as members of multi-professional teams.

The teaching within the programme is connected with the work of the geography research groups. It is often possible to write the final thesis as part of work in a research group or a research institute in a related field.

The Master’s programme in geography is divided into three sub-programmes (described in section 4). Our students have been very successful in the job market after completing our programme.

The strengths of students who have completed our Master’s programme when it comes to research and expertise are:
-Their ability to apply theoretical knowledge.
-A broad understanding of multi-layered regional issues.
-Strong interaction skills within multi-disciplinary groups of specialists.
-Their ability to communicate in writing, orally, and graphically about geographical phenomena and research findings.
-Their ability to utilise and interpret various kinds of research data.
-Their versatile knowledge of methodology in geography.
-Their ability to apply the newest methods in geoinformatics and cartography.
-Their embracing of responsible and ethical scientifc practices.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The first year of the advanced module of the Master’s programme contains the method courses of your chosen sub-programme, elective courses, and advanced literature. During this year you will start planning your Master’s thesis.

In the autumn of the second year, you will join a Master’s seminar and take exams on literature related to the MSc thesis. In the spring, you should be ready to present your finished MSc thesis (Pro gradu). In addition, you can take optional courses in both years that support your sub-programme. If you are studying to be a teacher, you will take courses in pedagogy during your second year.

Studying takes many forms. A large part of the instruction is contact teaching. Method and specialisation courses are usually implemented in groups of 10-20 students, where it is easy to discuss professional issues and gain deeper insights. Independent study is supported through workshops supervised by older students, and reading circles. The Master’s programme also includes extensive exams on literature in the field.

Selection of the Major

The Master’s programme in geography is divided into sub-programmes. The sub-programmes offer students the opportunity to specialise in different areas of geography. The Master’s programme contains both general and sub-programme-specific courses. The teaching within the Master’s programme in geography is seamlessly connected with the Master’s programme in urban studies and planning, which is jointly implemented with Aalto University.

The sub-programmes in the Master’s programme for geography are:
-Physical Geography
-Human Geography and Spatial Planning
-Geoinformatics

Physical Geography
Physical geography is an area of geography that studies natural systems and the regional interaction between nature and humans. The main parts of physical geography are geomorphology, climatology, hydrogeography, biogeography, and research into global change.

The Master’s courses in physical geography work towards deeper regional syntheses, explain the physical surroundings and their changes as a part of the function of regional systems, and analyse and model the relationships between different sectors. Focus areas in the Master’s programme in physical geography are the effect of global change on natural systems, watershed research, and the regional modelling of geomorphological processes and local climates. A considerable part of the Master’s programme in physical geography consists of work in small groups or in the field, where you will learn to implement theories in practice.

Having completed the Master’s programme in physical geography, you will be able to analyse and model regional systems of nature, as well as the interaction between nature and humans. In addition, the programme teaches you to analyse sustainable use of natural resources, and evaluate environmental impact. You will learn to implement theoretical knowledge and regional methods in planning a scientific thesis, implementing it in practice, and presenting your results orally and in writing. Further, the courses will train you to take specimens independently, analyse them, and interpret them. The teaching at the Master’s stage is closely connected with research on physical geography: theses are done in collaboration with a research group or research institute.

Human Geography and Spatial Planning
Human geography and spatial planning is a sub-programme, where regional structures and related planning is studied. Urban structures, regional social structures, statewide regional structures, the regional development in the European Union, and globalisation are studied. At the core of the sub-programme is the spatial transformation of society. The Master’s programme studies such phenomena as the divergence of regional and urban structures, urban culture, as well as the political-geographical dynamics of regions. In addition, sustainability, multiculturalism, segregation, housing, and migration are at the core of the sub-programme. Relevant themes for the sub-programme are also regional and urban planning, the political ecology of use of natural resources and land, and gobal development issues. These geographical phenomena and themes are studied through both theoretical and empirical questions, which can be analysed with different qualitative and quantitative methods.

The programme goes into how theories on cities and regional systems can be transformed into empirical research questions. After completing their Master’s theses, students can independently gather empirical data on the main dimensions of regional and urban structures and regional development, they can analyse these data with both qualitative and quantitative methods, and they can evaluate the planning practices connected with regional and social structures. After graduating from the Master’s programme, students will be able to communicate about phenomena and research findings in regional and urban structures, both orally and in writing.

Geoinformatics
Geoinformatics is an effective approach to the study and understanding of complex regional issues. Geoinformatics studies and develops computational methods for gaining, processing, analysing, and presenting positioning data. As a part of geography, geoinformatics is a research method on the one hand, to be used in the study of complex regional issues from urban environments to natural ones, from studying local environments to issues of sustainability in developing countries. On the other hand, the methods are the object of research. In urban environments, the methods of geoinformatics can be used to study accessibility and mobility, for example, or to plan a good park network. In the context of developing countries, the research into climate change, land use, or interaction between humans and environment with the help of quantitative, qualitative, and involving methods rises into the front. Students in geography reach a basic understanding of geoinformatics methods in the study of geographical issues, the sources and use of different sets of data (remote sensing, global and national databases, geographical Big Data), analysis methods, and effective visualisation of results.

At the Master’s level, as a student specialising in geoinformatics you will advance your skills both theoretically and technically, developing your methodological expertise from data acquisition to data refinement and visualisation with the help of geoinformatics methods. The instruction is directly connected with the work of research groups and theses are often written as a part of research work. After graduating, you will be able to utilise versatile approaches in geoinformatics in research into geographical questions. You will be able to follow the rapid development of the subject independently, and participate on your own.

Programme Structure

The Master’s programme in geography comprises 120 credits (ECTS) and you should graduate as a Master of Science in two academic years. The following courses are included in the degree:
-60 credits of shared advanced courses or according to sub-programme (including MSc thesis 30 credits).
-60 credits of other courses from your own or other programmes.
-60 credits of courses in pedagogy for teaching students.
-The other studies may include working-life or periods of international work or study.
-Working-life orientation and career planning.
-Personal study plan.

Career Prospects

The Master’s programme in geography provides you with excellent abilities to work in research or as specialists. Our graduates have found good employment in the public and private sectors, in Finland and abroad. Their postings include:
-Evaluation of environmental effects and environment consultation.
-Positioning and remote-sensing work.
-Regional and urban planning.
-Governmental community and regional administration.
-Governmental posts in ministries.
-Organisational posts.
-Development cooperation projects.
-Communication and publishing work.
-Teaching.

Internationalization

The Master’s programme in geography offers many opportunities for international work:
-Student exchange in one of the exchange locations of the faculty or university.
-Traineeship abroad.
-Participation in international projects and expeditions (e.g. to the Taita research station in Kenya).
-Participation in international research groups (writing your thesis).
-Participation in language courses at the University of Helsinki (a wide range of languages, including rare ones).

Research Focus

In physical geography:
-Research into global change, especially the environmental effects of climate change.
-Watershed research, the physical-chemical quality and ecological status of water systems.
-Natural systems, their function and change.
-Regional analytics and modelling in research into natural systems.
-Positioning and remote-sensing methods and their application when studying the status and changes in natural environments.
-‘Big data,’ analysis of regional and temporal data.
-The Arctic areas: status, change and vulnerability.

In human geography and spatial planning:
-Transformation and segregation in the social and physical urban environment.
-The changing rationalities and concepts of regional and urban planning.
-Regional policy and geopolitics.
-Urbanisation and changing relationships between state and cities.
-Internationalisation of cities and states.
-The spatial planning system of the European Union.
-Regional policy of data-intensive economics.
-The political ecology and management of natural resources and land use.
-Globalisation.

In geoinformatics:
-Spatial data analysis, new information sources.
-Development of remote-sensing methods for environmental study, especially hyper-spectral remote-sensing data and drone applications.
-Application of geoinformatics methods to environmental and urban research.

Read less
Geography has been taught at Memorial since 1946 and was raised to the status of full department in 1960. Graduate studies began in 1970 with the MA and MSc, and the PhD was added in 1992. Read more
Geography has been taught at Memorial since 1946 and was raised to the status of full department in 1960. Graduate studies began in 1970 with the MA and MSc, and the PhD was added in 1992. Our mission statement is to foster a spirit of inquiry about the geography of the world around us through our teaching and research, and to provide our students with the analytical tools needed to explore the questions that arise and the skills with which to communicate their findings.

Graduate research is conducted within the fields of climatology, cultural, historical, and economic geography, geographic information systems, geomorphology, Quaternary studies, regional development, remote sensing, and resource management. The physical and human environments of Newfoundland and Labrador present a wide range of research possibilities. The province’s easternmost coastal location in Canada provides a stimulating setting for the study of the climate and the imprint of Quaternary climate changes upon the physical landscape. The social and economic characteristics observed for Atlantic region provide a wealth of research opportunities on demographic and migration patterns, sustainable development of resources and rural development. In addition, Newfoundland and Labrador presents considerable scope for the study of coastal and marine environments.

The Department has laboratory facilities for research in geographic information sciences, geomorphology, and paleoenvironments. A large collection of maps and aerial photographs is housed in the University's Map Library. The Department of Geography's involvement with various municipal, provincial, national, and international government agencies, private and non-profit organizations benefit students who require specialized resources or data for the support of their research. In addition, the Department of Geography takes advantage of resources offered by the research institutes housed at Memorial University. These include, for example, the Institute of Social and Economic Research, the Centre for Newfoundland Studies, the Maritime History Archive, and the Labrador Institute.

The MA/MSc program involves courses and a thesis, and can be completed in two years of full-time study.

Read less
Geography has been taught at Memorial since 1946 and was raised to the status of full department in 1960. Graduate studies began in 1970 with the MA and MSc, and the PhD was added in 1992. Read more
Geography has been taught at Memorial since 1946 and was raised to the status of full department in 1960. Graduate studies began in 1970 with the MA and MSc, and the PhD was added in 1992. Our mission statement is to foster a spirit of inquiry about the geography of the world around us through our teaching and research, and to provide our students with the analytical tools needed to explore the questions that arise and the skills with which to communicate their findings.

Graduate research is conducted within the fields of climatology, cultural, historical, and economic geography, geographic information systems, geomorphology, Quaternary studies, regional development, remote sensing, and resource management. The physical and human environments of Newfoundland and Labrador present a wide range of research possibilities. The province’s easternmost coastal location in Canada provides a stimulating setting for the study of the climate and the imprint of Quaternary climate changes upon the physical landscape. The social and economic characteristics observed for Atlantic region provide a wealth of research opportunities on demographic and migration patterns, sustainable development of resources and rural development. In addition, Newfoundland and Labrador presents considerable scope for the study of coastal and marine environments.

The Department has laboratory facilities for research in geographic information sciences, geomorphology, and paleoenvironments. A large collection of maps and aerial photographs is housed in the University's Map Library. The Department of Geography's involvement with various municipal, provincial, national, and international government agencies, private and non-profit organizations benefit students who require specialized resources or data for the support of their research. In addition, the Department of Geography takes advantage of resources offered by the research institutes housed at Memorial University. These include, for example, the Institute of Social and Economic Research, the Centre for Newfoundland Studies, the Maritime History Archive, and the Labrador Institute.

MA – The MA program involves courses and a thesis, and can be completed in two years of full-time study.

MSc – The MSc program involves courses and a thesis, and can be completed in two years of full-time study.

Read less
The Department of Geography and Planning ​offers facilities for research leading to the degrees of Master of Arts (MA), Master of Science (MSc), Master of Science in Planning (MScPl), and Doctor of Philosophy (PhD) in either Geography or Planning. Read more
The Department of Geography and Planning ​offers facilities for research leading to the degrees of Master of Arts (MA), Master of Science (MSc), Master of Science in Planning (MScPl), and Doctor of Philosophy (PhD) in either Geography or Planning. The PhD program prepares students for academic careers in teaching and research. Some may also pursue an advanced career in the public or non-profit sectors, given the rising demand outside of academia for people with a PhD credential.

In Geography, faculty conduct research in the following areas: geomorphology, climatology, hydrology, biogeography, pedology, environmental assessment and sustainable natural resource management, international development, industrial innovation, urban and economic geography, cultural and historical geography, gender studies, social geography, regional analysis, the history and philosophy of geography, remote sensing, computer cartography, spatial statistics, topics in land/geographic information systems, and quantitative analysis. The territories of special concern are Canada, the United States, Latin America, the Caribbean, Northwestern and Central Europe, East Asia, South Asia, and the former Soviet Union.

In Planning, faculty work involves social, economic, cultural, and other vital considerations. In spatial scale, it ranges from the design of individual communities to policy planning at the national level to international development. Planning specializations include land use, transportation, urban design, social policy, public health, economic development, international development, and the environment.

Read less
The Department of Geography and Planning ​offers facilities for research leading to the degrees of Master of Arts (MA), Master of Science (MSc), Master of Science in Planning (MScPl), and Doctor of Philosophy (PhD) in either Geography or Planning. Read more
The Department of Geography and Planning ​offers facilities for research leading to the degrees of Master of Arts (MA), Master of Science (MSc), Master of Science in Planning (MScPl), and Doctor of Philosophy (PhD) in either Geography or Planning. The PhD program prepares students for academic careers in teaching and research. Some may also pursue an advanced career in the public or non-profit sectors, given the rising demand outside of academia for people with a PhD credential.

In Geography, faculty conduct research in the following areas: geomorphology, climatology, hydrology, biogeography, pedology, environmental assessment and sustainable natural resource management, international development, industrial innovation, urban and economic geography, cultural and historical geography, gender studies, social geography, regional analysis, the history and philosophy of geography, remote sensing, computer cartography, spatial statistics, topics in land/geographic information systems, and quantitative analysis. The territories of special concern are Canada, the United States, Latin America, the Caribbean, Northwestern and Central Europe, East Asia, South Asia, and the former Soviet Union.

In Planning, faculty work involves social, economic, cultural, and other vital considerations. In spatial scale, it ranges from the design of individual communities to policy planning at the national level to international development. Planning specializations include land use, transportation, urban design, social policy, public health, economic development, international development, and the environment.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X