• Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Birmingham Featured Masters Courses
Cardiff University Featured Masters Courses
"clean" AND "technologies…×
0 miles

Masters Degrees (Clean Technologies)

  • "clean" AND "technologies" ×
  • clear all
Showing 1 to 15 of 46
Order by 
Accredited by the Chartered Institution of Wastes Management, the programme prepares you for a career in the growing environmental and clean technologies sector, where there is increasing global demand for skilled graduates. Read more
Accredited by the Chartered Institution of Wastes Management, the programme prepares you for a career in the growing environmental and clean technologies sector, where there is increasing global demand for skilled graduates.

About the programme

The global market in environmental goods and services is currently worth about £3 trillion. Global investment attracted by ‘green technologies’ for electrical power generation recently exceeded that for coal and natural gas. This area is being actively promoted in the UK and Scottish context for economic development.

The programme develops core skills in environmental management, coupled with an understanding of technologies that enhance the
sustainable use of natural resources and minimise the environmental impact of economic activities, exploiting value from industrial process by-products and waste materials.

Our research-active academics are experienced in projects monitoring and assessing environmental impacts, developing innovative treatment technologies and working with industry and business. We have also been involved in support for and development of environmental policy and regulation in the UK, the EU and internationally.

Your learning

The Postgraduate Diploma comprises six taught modules. All MSc candidates undertake a research project/dissertation in Trimester 3.
Subjects include:
• Environmental Systems
• Sustainable Environmental Management
• Concepts and Tools in Environmental Technology
• Pollution Control
• Waste Management Techniques
• Process Principles for Clean Technologies

MSc

You will also undertake a Waste Masters dissertation.

Our Careers Adviser says

Graduates build careers across all industrial sectors and within both public and private sectors dealing with environment, pollution
control, waste management, regulation and enforcement in the emerging technologies to improve environmental performance. This includes process based operations as well as management, audit and impact assessment.

Professional recognition

Once enrolled, students can apply to the Chartered Institution of Wastes Management (CIWM) to become a Student Member. When the programme is completed students can apply to CIWM to become a Graduate Member and use the designatory letters Grad MCIWM.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

February entry may be possible – applicants should consult with the Admissions Officer.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Read more
As we improve existing technologies and transition to more sustainable energy systems, clean energy technologies will become increasingly vital to the world's energy mix. Industry and government are critically dependent on hiring talented technical leaders who can develop innovative and practical solutions. There is a growing need across multiple industries for technical experts in clean energy engineering. Our planet needs viable energy solutions to minimize environmental impacts, promote geopolitical stability and enable economic diversification. The Master of Engineering Leadership (MEL) Clean Energy Engineering is an intensive one-year degree program for engineers and environmental science graduates who want to make their sustainable vision a reality and advance their careers in the in-demand field of clean energy.

The project-based curriculum covers all stages of the industry value chain and exposes you to alternative energy systems including hydro, wind, solar, tidal, geothermal and other emerging technologies. You will work in world-class facilities, including the Clean Energy Research Centre. This interdisciplinary research centre brings together engineers and industry partners who collaborate to develop practical solutions that can reduce the environmental impact of energy use and seek sustainable solutions.

While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Clean Energy Engineering degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Clean Energy Engineering program unique and highly relevant in today's business environment. The MEL in Clean Energy Engineering degree is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills required by top employers. As a graduate of this program, you will have the skills to take your career in clean energy to the next level; tackling complex engineering challenges in this in-demand field while confidently leading collaborative teams.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:
-Leadership fundamentals
-Giving and receiving feedback
-Learning how to deliver a successful pitch
-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Funding Sources

The Faculty of Applied Science offers a limited number of $5,000 merit-based awards to MEL students. All applicants who submitted their application before July 1 are automatically considered for this award. You do not need to submit a separate application. The merit-based awards are given to selected applicants and only the successful recipients will be notified before the program starts in January. Aside from the merit-based award, there no other scholarships, grants or funding offered by UBC for MEL students.

Career Options

Our graduates will be in high demand locally, nationally and internationally, with government and industry employers constantly seeking experts in the field who can develop new processes and systems. Typical job roles of CEEN students are Renewable Energy Consultant, Renewable Energy Engineer, Energy Analyst, Energy & Building Consultant, Energy Efficiency Engineer, Energy Management Engineer, Energy Manager, Project Engineer and Project Manager.

Read less
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. Read more
The world faces major challenges in meeting the current and future demand for sustainable and secure energy supply and use. The one-year MPhil programme in Energy Technologies is designed for graduates who want to help tackle these problems by developing practical engineering solutions, and who want to learn more about the fundamental science and the technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

Energy is a huge topic, of very significant current scientific, technological, environmental, political and financial interest. The complexity and rapid change associated with energy technologies necessitates engineers with a very good grasp of the fundamentals, with exposure and good understanding of all main energy sources and technologies, but also with specialization in a few areas. This is the prevailing philosophy behind this MPhil, fully consistent with the prevailing philosophy and structure of the University of Cambridge Engineering Department as a whole.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/egegmpmet

Course detail

The educational target of the MPhil in Energy Technologies is to communicate the breadth of energy technologies and the underpinning science. The objectives of the course are:

1. To teach the fundamental sciences behind technologies involved in energy utilization, electricity generation, energy efficiency, and alternative energy.

2. To develop graduates with an overall view of energy engineering, while offering specialization in a selected area through a research project.

3. To prepare students for potential future PhD research.

Learning Outcomes

Students will be expected to have developed fundamental knwoledge on primary and secondary energy sources, on energy transformation, and on energy utilisation technologies. They will also have developed proficiencies in project management, in research skills, in team work, and in advanced calculation methods concerning energy technologies.

Graduates from this MPhil will be excellent candidates for doctoral study (at Cambridge and elsewhere) and for employment in a wide variety of jobs (for example: in industrial Research and Development departments; in policy-making bodies; in the utilities industry; in the manufacturing sector; in energy equipment manufacturing).

Format

The course is centred around taught courses in core areas, covering basic revision and skills needed (such as Communication and Organisational Skills, Mathematical and Computational Skills, Review of Basic Energy Concepts, and Research Topics), various energy technologies (such as Clean Fossil Fuels, Solar, Biofuels, Wind etc), and energy efficiency and systems level approaches.

Elective courses may be chosen from a broad range, which includes topics such as Turbulence, Acoustics, Turbomachinery, Nuclear Power Engineering, Solar Panels, and Energy Efficiency in Buildings. Elective courses are delivered mainly by the Department of Engineering with input from the Department of Chemical Engineering and other departments in Cambridge.

Research projects are chosen from a list offered by members of staff and are linked to the principal areas of energy research in the respective departments.

Students can expect to receive reports at least termly on the Cambridge Graduate Supervision Reporting System. They will receive comments on items of coursework, and will have access to a University supervisor for their dissertation. All students will also have personal access to the Course Director and the other staff delivering the course.

Assessment

Students taking 12 elective modules will write a short thesis (up to 10,000 words). Students taking 10 elective modules will write a long thesis (up to 20,000 words). In both cases, 10% of the marks will be assigned through a pre-submission presentation, and 10% of the marks will be assigned through a post-submission presentation.

Students will take 5 core modules, and then either 5 elective modules (and a long thesis) or 7 elective modules (and a short thesis). All core modules are examined purely by coursework. Some of the elective modules are also examined wholly or partly by coursework.

Some of the elective modules are examined wholly or partly by written examination.

At the discretion of the Examiners, candidates may be required to take an additional oral examination on the work submitted during the course, and on the general field of knowledge within which it falls.

Continuing

Students wishing to apply for continuation to the PhD would normally be expected to attain an overall mark of 70%.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

There are no specific funding opportunities advertised for this course. For information on more general funding opportunities, please follow the link below.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
The REaCT course will provide you with a detailed understanding of the key renewable energy generation technologies and the factors which influence their exploitation. Read more
The REaCT course will provide you with a detailed understanding of the key renewable energy generation technologies and the factors which influence their exploitation.

It provides the foundations necessary to understand the principles of solar, wind and marine energy technologies and also the knowledge required to understand: the efficient distribution of renewables; their integration into usage into zero carbon built infrastructure and to determine the economic and climate issues affecting the choice of renewable.

Career opportunities

In completing this multidisciplinary course you will become highly employable in an area of technology which will be of dominant importance in this century. The course will provide you with all the necessary skills required if you wish to continue to study for a PhD and contribute your own ideas to advance these key technologies.

Read less
Global warming and fossil fuel depletion increasingly place the development of sustainable energy systems at the top of political agendas around the world. Read more
Global warming and fossil fuel depletion increasingly place the development of sustainable energy systems at the top of political agendas around the world. Major investments in new energy technologies and systems to improve energy efficiency and reduce greenhouse gas emissions will continue to grow the coming decades.

To meet this challenge this master’s programme provides a state of the art education lectured by world-leading researchers and industry professionals in combination with access to unique research facilities.

By acquiring deep technical knowledge in the main energy technologies and by understanding how they interact with economics and energy policies, our graduates become experts in identifying sustainable solutions to complex problems in the energy field.

Programme description

The future will most likely mainly be powered by renewable energy sources like hydropower, bioenergy, solar energy and wind power, but in the process of getting there; society needs a bridge between the technologies of today and the ones of the future.

At Chalmers, we are experts in the bridging technologies and systems that will characterize the professional careers of energy engineers in the coming decades.

Besides analysing the present and expected future energy systems and technologies, the programme covers the transition between them. With this, we offer world-leading education in technologies for clean and efficient heat and power generation, Carbon Capture and Storage (such as chemical looping and oxyfuel combustion), optimization and CO2 mitigation of chemical and industrial processes, efficient energy use in buildings, smart power grids for wind and solar power integration and bioenergy. At a system level, we specialize in energy systems modelling and planning and in environmental impact analysis of the energy sector trough life cycle analysis, ecological risk and environmental assessments.

Energy, is one of Chalmers Areas of Advance and tops the budget list for Chalmers strategic research and educational plan. Our faculty consists of world-renowned researchers like Christian Azar, Lina Bertling and Simon Harvey.

This unique, hands-on and state-of-the-art education in the area of advanced energy technologies and systems provides you with the proficiency needed to undertake energy engineering tasks that assess both technical, environmental and financial aspects.

You will be able to not only master current energy systems and technologies but also get a close insight to the ones of the future.

Educational methods

As we strive for a balance between individual and group assignments, you will take part in lectures, projects, case studies, problem-solving sessions, laboratories and seminars, providing you with an opportunity to train in team-work as well as both written and oral communication and presentation skills.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Membrane Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Membrane Technology at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University is a world-leader in the area of membrane technologies for water treatment.

Key Features of MSc by Research in Membrane Technology

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way. The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of membrane technologies for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.
- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.
- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research in Membrane Technology has a wide range of subject choices including:

Modelling membrane processes
Membrane and process characterisation
Hazardous substances
Bioprocessing
Development of new membranes
Ozonation and Advanced Oxidation Processes (AOPs)
Pilot scale studies

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Links with industry

One of the major strengths of Membrane Technology at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources. Read more
Our Energy programmes allow you to specialise in areas such as bio-energy, novel geo-energy, sustainable power, fuel cell and hydrogen technologies, power electronics, drives and machines, and the sustainable development and use of key resources.

We can supervise MPhil projects in topics that relate to our main areas of research, which are:

Bio-energy

Our research spans the whole supply chain:
-Growing novel feedstocks (various biomass crops, algae etc)
-Processing feedstocks in novel ways
-Converting feedstocks into fuels and chemical feedstocks
-Developing new engines to use the products

Cockle Park Farm has an innovative anaerobic digestion facility. Work at the farm will develop, integrate and exploit technologies associated with the generation and efficient utilisation of renewable energy from land-based resources, including biomass, biofuel and agricultural residues.

We also develop novel technologies for gasification and pyrolysis. This large multidisciplinary project brings together expertise in agronomy, land use and social science with process technologists and engineers and is complemented by molecular studies on the biology of non-edible oilseeds as sources for production of biodiesel.

Novel geo-energy

New ways of obtaining clean energy from the geosphere is a vital area of research, particularly given current concerns over the limited remaining resources of fossil fuels.

Newcastle University has been awarded a Queen's Anniversary Prize for Higher Education for its world-renowned Hydrogeochemical Engineering Research and Outreach (HERO) programme. Building on this record of excellence, the Sir Joseph Swan Centre for Energy Research seeks to place the North East at the forefront of research in ground-source heat pump systems, and other larger-scale sources of essentially carbon-free geothermal energy, and developing more responsible modes of fossil fuel use.

Our fossil fuel research encompasses both the use of a novel microbial process, recently patented by Newcastle University, to convert heavy oil (and, by extension, coal) to methane, and the coupling of carbon capture and storage (CCS) to underground coal gasification (UCG) using directionally drilled boreholes. This hybrid technology (UCG-CCS) is exceptionally well suited to early development in the North East, which still has 75% of its total coal resources in place.

Sustainable power

We undertake fundamental and applied research into various aspects of power generation and energy systems, including:
-The application of alternative fuels such as hydrogen and biofuels to engines and dual fuel engines
-Domestic combined heat and power (CHP) and combined cooling, heating and power (trigeneration) systems using waste vegetable oil and/or raw inedible oils
-Biowaste methanisation
-Biomass and biowaste combustion, gasification
-Biomass co-combustion with coal in thermal power plants
-CO2 capture and storage for thermal power systems
-Trigeneration with novel energy storage systems (including the storage of electrical energy, heat and cooling energy)
-Engine and power plant emissions monitoring and reduction technology
-Novel engine configurations such as free-piston engines and the reciprocating Joule cycle engine

Fuel cell and hydrogen technologies

We are recognised as world leaders in hydrogen storage research. Our work covers the entire range of fuel cell technologies, from high-temperature hydrogen cells to low-temperature microbial fuel cells, and addresses some of the complex challenges which are slowing the uptake and impact of fuel cell technology.

Key areas of research include:
-Biomineralisation
-Liquid organic hydrides
-Adsorption onto solid phase, nano-porous metallo-carbon complexes

Sustainable development and use of key resources

Our research in this area has resulted in the development and commercialisation of novel gasifier technology for hydrogen production and subsequent energy generation.

We have developed ways to produce alternative fuels, in particular a novel biodiesel pilot plant that has attracted an Institution of Chemical Engineers (IChemE) AspenTech Innovative Business Practice Award.

Major funding has been awarded for the development of fuel cells for commercial application and this has led to both patent activity and highly-cited research. Newcastle is a key member of the SUPERGEN Fuel Cell Consortium. Significant developments have been made in fuel cell modelling, membrane technology, anode development and catalyst and fuel cell performance improvements.

Facilities

As a postgraduate student you will be based in the Sir Joseph Swan Centre for Energy Research. Depending on your chosen area of study, you may also work with one or more of our partner schools, providing you with a unique and personally designed training and supervision programme.

You have access to:
-A modern open-plan office environment
-A full range of chemical engineering, electrical engineering, mechanical engineering and marine engineering laboratories
-Dedicated desk and PC facilities for each student within the research centre or partner schools

Read less
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University is a world-leader in the area of desalination for water treatment.

Key Features of Desalination and Water Re-use Programme

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of desalination for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.
- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.
- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research Desalination and Water Re-use has a wide range of subject choices including:

- Modelling membrane processes
- Membrane and process characterisation
- Hazardous substances
- Ozonation and Advanced Oxidation Processes (AOPs)
- Pilot scale studies

MSc by Research in Desalination and Water Re-us typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Desalination and Water Re-use programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

The Desalination and Water Re-use programme also benefits from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Links with industry

One of the major strengths of Desalination and Water Re-use at Swansea University is the close and extensive involvement with local, national and international engineering companies. The Desalination and Water Re-use programme has links with the following companies:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Read more
Electronic engineering defines the very fabric of today’s modern technologically advanced society. A myriad of consumer electronic products - televisions, CD and DVD players - are in daily use by practically everyone on the planet. Mobile phones and computers enable global communications on a scale unimaginable even a few decades ago. Yet electronic engineering continues to develop new capabilities which will shape the lives of future generations.

This programme aims to provide a broad based Electronic Engineering MSc which will enable students to contribute to the future development of electronic products and services. The course reflects the School’s highly regarded research activity at the leading edge of electronic engineering. The MSc will provide relevant, up-to-date skills that enhance the engineering competency of its graduates and allows a broader knowledge of electronic engineering to be acquired by studying important emerging technologies, such as, optoelectronics, bioelectronics, polymer electronics and micromachining. The course is intended for graduates in a related discipline, who wish to enhance and specialise their skills in several emerging technologies.

Course Structure
This course runs from 29 September 2014 to 30 September 2015.

The course structure consists of a core set of taught and laboratory based modules that introduce advanced nanoscale and microscale device fabrication processes and techniques. In addition, device simulation and design is addressed with an emphasis placed on the use of advanced CAD based device and system based modelling. Transferable skills such as project planning and management, as well as, presentational skills are also further developed in the course.

Taught Modules:

Introduction to Nanotechnology & Microsystems*: focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Modelling and Design: Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.



Advanced Sensor Systems: Provides students with an understanding of more complex sensor systems and a view of current developments in specific areas of sensor development. Applications of these systems and their main producers and users are also discussed.

Masters Mini Project: focuses on applying the skills and techniques already studied to a mini project, the theme of which will form the basis of the research project later in the year.

RF and Optical MEMs*: Introduces the use and benefits of miniaturisation in RF and optical technologies. The module will investigate improvements in component characteristics, and manufacturing processes. Applications of RF and optical nano and microsystems will be discussed using examples.

Microengineering*: Provides an introduction to the rapidly expanding subject of microengineering. Starting with a discussion of the benefits and market demand for microengineered systems, the module investigates clean room-based lithographic and related methods of microfabrication. Micro manufacturing issues for a range of materials such as silicon, polymers and metals will be discussed along with routes to larger scale manufacture. A range of example devices and applications will be used to illustrate manufacturing parameters.

Further Microengineering*: This module builds on the knowledge of microengineering and microfabrication gained in the Microengineering module. The module examines a broad range of advanced manufacturing process including techniques suitable for larger scale production, particularly of polymer devices. This module also examines specialist fabrication methods using laser systems and their flexibility in fabricating macroscopic and sub micron structures.

Mobile Communication Systems*: This module will provide an in-depth understanding of current and emerging mobile communication systems, with a particular emphasis on the common aspects of all such systems.

Broadband Communication Systems: This module provides students with an in-depth understanding of current and emerging broadband communications techniques employed in local, access and backbone networks. Particular emphasis will be focussed on the following aspects: 1) fundamental concepts, 2) operating principles and practice of widely implemented communications systems; 3) hot research and development topics, and 4) opportunities and challenges for future deployment of broadband communications systems.

Data Networks and Communications*: This module will provide an in-depth understanding of how real communication networks are structured and the protocols that make them work. It will give the students an ability to explain in detail the process followed to provide end to end connections and end-user services at required QoS.

Masters Project Preparation: To place computing and engineering within a business context so that students relate the technical aspects of their work to its commercial and social dimensions and are able to prepare project plans which take into account the constraints and limitations imposed by non-technical factors.

*optional modules

Research Project
After the successful completion of the taught component of the MSc programme, the major individual project will be undertaken within the world-leading optoelectronics or optical communications research groups of the School. Students will then produce an MSc Dissertation.

Read less
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. Read more
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. This course provides students with advanced skills and vital training in renewable energy, energy efficiency and business.

Students will gain essential technical skills in the field as well as becoming fluent in the financial, marketing and managerial aspects of modern business. The course aims to develop confidence and understanding in the specialist field of entrepreneurship applied to technology that can arise from the research base of sustainable energy subjects. Graduates from the course will be well placed to pursue careers in renewable energy technology industries.

By the end of the course, you will have gained useful and technical knowledge in the areas of sustainable energy and business as well as the application of technologies to proposed business models, and you will be adept at communicating and presenting yourself and your projects to an audience.

Students will develop:
useful and technical knowledge in the areas of sustainable energy and business
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
knowledge of the application of technologies to proposed business models

Previous projects have included:

promotion of energy efficient building technologies in developing countries through Clean Development Mechanism
Solar Decathlon Zero Carbon House - Mass market solution for the Solar Eco House concept
technical analysis of photovoltaic for small scale application & its economic viability - case study Nigeria
design of a framework for the application of CDM measures to promote rural electrification of microcredit systems

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden. Read more

MSc Water Technology

The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden

Programme summary

There are a lot of new and existing global problems related to the availability and quality of water for personal, agricultural and industrial use. And these problems require sustainable solutions with a minimal impact on the environment. Water technology has unfortunately not been a focal point of most academic research and education programmes, despite its enormous importance to society. Instead, the expertise of various research groups is usually concentrated on other processes and in some cases, only later dedicated to water treatment in spin-off projects. New technologies will be necessary to develop new concepts for the treatment of waste water. And also for the production of clean water from alternative sources like salt (sea) water, waste water or humid air in order to minimise the use of precious groundwater. These challenges require academically trained experts who can think out-of-the-box and help to find practical solutions in the near future. A dedicated joint Master Water Technology programme has been created to train and educate these experts.

The MSc Water Technology is situated in Leeuwarden, the capital of water technology, and is offered jointly by three Dutch universities: Wageningen University, the University of Twente and the University of Groningen. A combined technological approach, based on state-of-the-art universities in science and technology, will search for solutions to several developments within business and society; with a worldwide impact on the demand for and use of water. One dedicated Master programme with joint degree allows for flexibility and can be adapted to the changing needs of the labour market. Wageningen University offers a strong focus on environmental sciences, the University of Twente on science and technology, and the University of Groningen on fundamental sciences. Students will be educated in the multidisciplinary laboratory of the technological top institute for water technology called Wetsus.

The MSc Water Technology programme specifically targets students interested in beta science and technology. The programme offers a unique combination of scientific insights and technological applications from the field of Biotechnology and Chemical Engineering. This combined approach for problem solving within the global framework of water problems is an asset to the programme. The programme is a valuable addition for postgraduate students with a completed bachelor degree in Environmental Engineering, Chemical Engineering and Biotechnology; or in related fields with a strong knowledge of mathematics, physics, chemistry and/or biology, and with affinity of water processes. Students are challenged with examples and case studies of real (research) problems that they might encounter as water professionals.

Students apply for the MSc Water Technology programme at Wageningen University, but will be registered at the other two universities as well. They will have access to the facilities of all three universities. Upon the successful completion of the programme, students receive one joint degree MSc Water Technology issued by all participating universities.

Specialisations

There are no official specialisations within the programme Water Technology. Students specialise themselves by doing a thesis within one of the research fields. Some examples are: Priority compounds, Virus Control, Applied water physics, Desalination, Concentrates, Biofouling, Aquatic worms, Advanced waste water treatment, Algae, Separation at source, Resource recovery, Membrane processes and operation for wastewater treatment and reuse and Sensoring.

Your future career

This study domain is becoming more and more relevant due to the urgent need for new technologies to meet global water problems. Water technology for public drinking water production and sewage water treatment is a very large market. Furthermore, the largest use of fresh water is for irrigation purposes. The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that businesses involved in water technology will grow tremendously. Besides this, human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies. In many EU countries, the lack of talented technological professionals is becoming an increasingly limiting factor. The programme prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Student Stefanie Stubbé.
"Wetsus gave me the opportunity to get personalized education: teachers that take the time for you and fellow students that challenge and collaborate with you at the same time. Water technology is going to be huge in the future; I already experienced that at several companies when I searched for an internship. Although it is sometimes hard work and far away from the "city-life" in the Netherlands; I've never regretted my choice to start this Master!"

Related programmes:
MSc Biotechnology
MSc Environmental Sciences

Read less
The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation. Read more

About the course

The deployment of power electronic converters and electrical machines continues to grow at a rapid rate in sectors such as hybrid and all-electric vehicles, aerospace, renewables and advanced industrial automation. In many of these applications, high performance components are combined into sophisticated motion control and energy management systems. This course will give you a rigorous and in-depth knowledge of the key component technologies and their integration into advanced systems.

Our graduates are in demand

Many go to work in industry as engineers for large national and international companies, including ARUP, Ericsson Communications, HSBC, Rolls-Royce, Jaguar Land Rover and Intel Asia Pacific.

Real-world applications

This is a research environment. What we teach is based on the latest ideas. The work you do on your course is directly connected to real-world applications.

We work with government research laboratories, industrial companies and other prestigious universities. Significant funding from UK research councils, the European Union and industry means you have access to the best facilities.

How we teach

You’ll be taught by academics who are leaders in their field. The 2014 Research Excellence Framework (REF) puts us among the UK top five for this subject. Our courses are centred around finding solutions to problems, in lectures, seminars, exercises and through project work.

Accreditation

All of our MSc courses are accredited by the Institution of Engineering and Technology (IET), except the MSc(Eng) Advanced Electrical Machines, Power Electronics and Drives and MSc(Eng) Bioengineering: Imaging and Sensing. We are seeking accreditation for these courses.

First-class facilities

Semiconductor Materials and Devices

LED, laser photodetectors and transistor design, a high-tech field-emission gun transmission electron microscope (FEGTEM), a focused ion beam (FIB) milling facility, and electron beam lithographic equipment.

Our state-of-the-art semiconductor growth and processing equipment is housed in an extensive clean room complex as part of the EPSRC’s National Centre for III-V Technologies.

Our investment in semiconductor research equipment in the last 12 months totals £6million.

Electrical Machines and Drives

Specialist facilities for the design and manufacture of electromagnetic machines, dynamometer test cells, a high-speed motor test pit, environmental test chambers, electronic packaging and EMC testing facilities, Rolls-Royce University Technology Centre for Advanced Electrical Machines and Drives.

Communications

Advanced anechoic chambers for antenna design and materials characterisation, a lab for calibrated RF dosimetry of tissue to assess pathogenic effects of electromagnetic radiation from mobile phones, extensive CAD electromagnetic analysis tools.

Core modules

Power Electronic Converters; AC Machines; Permanent Magnet Machines and Actuators; Motion Control and Servo Drives; Advanced Control of Electric Drives; Energy Storage and Management; MSc Individual Project; Major Research Project.

Examples of optional modules

Power Semiconductor Devices; Advanced Signal Processing; Packaging and Reliability of Microsystems; Electronic Communication Technologies; Systems Design.

Teaching and assessment

You’ll learn through research-led teaching, lectures, laboratories, seminars, tutorials and coursework exercises. Assessment is by examinations, coursework and a project dissertation with poster presentation.

Read less
The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. Read more
The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. The programme offers a unique, multidisciplinary approach which distinguishes it from other Master’s courses in the field of energy studies: It analyses the links between the different levels of energy governance, from an international to a local level, offering problem-focused learning at the crossroads of theory and practice. The one-year Master’s programme stretches over three terms and takes place in two study locations: Nice and Berlin.

Overview of the year

Nice

The first term in Nice encompasses classes on the basics of the four energy modules (International energy governance, Economic energy governance, the EU energy governance and Energy and territories). Each module is complemented by seminars dealing with current energy issues. An academic or professional expert is invited for each event.

Berlin

For their second term students move on to Berlin where teaching in the four modules continues in the form of workshops. Each module organises a half-day workshop with an expert. Students prepare the workshops in group work delivering papers on themes linked to the topic of the seminar (climate negotiations, energy stock exchange, the role of the EU interconnections in the European energy market, the EU funds and the territorial energy policy). To better understand the local energy challenges in the framework of the German Energy Transition Field, visits will also be organised in co-operation with local institutions and companies. Another focus of this term will be put on the methodology classes, one dedicated to the research work and the Master’s thesis, the second one to project management.

Nice

In April students return to Nice. The third term aims at deepening their knowledge on the four energy modules. A special focus is also given to the methodological support for the students’ work on their thesis including individual meetings with the academic supervisors. In the two simulations the participants will forge their negotiation techniques with regard to the construction of wind farms at local level and work out of a strategy for an international energy cooperation. Written and oral exams in June will conclude this term.

During this term students will finalise their work on their thesis in close contact with their academic supervisors. The thesis will be delivered in mid-June and defended at the end of June.

Curriculum

International energy governance

This module delivers the theoretical knowledge on the main international energy related issues and conflicts (resource curse, neoinstitutionalism, developmentalism, weak/strong States etc.).
It also provides the participants with concrete examples of the emergence and regulation of energy conflicts worldwide in order to analyse better how they exert pressure on the security and diversification of the energy supply. (10 ECTS)

Economic energy governance

Economic and market fundamentals are applied to the energy sector in order to understand the current multiple national, regional, and local low carbon energy pathways in the world.
The module examines how the different markets are regulated and how they influence the transitions from fossil fuels to renewable energies. The economic perspective will highlight the role of liberalisation, privatisation and regulation of the sector. (10 ECTS)

European energy governance

The aim of this module is to highlight the EU priorities and its decision-making process regarding clean energy transition in Europe, thus helping to understand political economy factors that both inhibit and accelerate it.
While focusing on how the different EU policies challenge institutional architectures and multilevel governance schemes, the module provides an insight into issues currently facing European policy makers such as social acceptance, sustainability of renewable energies as well as rapid advancement in clean energy technologies. (10 ECTS)

Energy and territories

Participants will examine how EU regions and cities and more generally territories develop their own low carbon strategy at the crossroads of many policies (housing, waste management, transport, fuel poverty, environment and energy) and in the framework of a multilevel governance system.
Concrete examples of local and regional strategies will be delivered in order to analyse the levers and obstacles for more decentralisation. (10 ECTS)

Methodology modules

Students will acquire skills in research methodology, energy project management and the elaboration of energy strategies. They will concretely experiment different methodological tools: first of all through the research work for their thesis, second thanks to the methodological tools of project management. Students will be involved in a simulation game in which they will have to decide on the construction of a wind park in a territory. In a negotiation game, participants will have to elaborate a common strategy in the perspective of international energy cooperation. (20 ECTS)

Thesis

For their Master’s thesis participants will carry out a profound research work on an energy issue, chosen and elaborated in regular coordination with their supervisor.
The thesis will require the application of the methodological tools which the students have acquired during the programme.
The academic work will involve in-depth desk research, possible interviews with external partners and the writing of a thesis of approximately 17,000 words. Candidates will defend their thesis in an oral exam. (30 ECTS)

Applications and Scholarships

Candidates can submit their application dossier by using the form available on the Institute’s website. They should also include all the relevant documents, or send them by post or e-mail. An academic committee meets regularly in order to review complete applications.
A limited number of scholarship funds can be awarded to particularly qualified candidates to cover some of the costs related to studies or accommodation. The deadline for applications is: 1 July

Please do not hesitate to contact us for any enquiry.

Read less
With the global agenda on climate change focusing on the role of renewable and sustainable technologies and energy, this course provides you with a dynamic and exciting overview of this constantly changing industry. Read more
With the global agenda on climate change focusing on the role of renewable and sustainable technologies and energy, this course provides you with a dynamic and exciting overview of this constantly changing industry. The course provides an up-to-date overview of all the major renewable energy sources. This includes the engineering applications of clean energy, energy economics and markets, as well as socio-economic, energy security ad political issues.

Key Course Features

-The course looks at the engineering aspects of clean energy, energy economics and markets. The cost/ benefit/ tariff/risk analysis of renewables is compared with traditional fossil fuel and nuclear energy sources. Socio-economic, energy security and political issues are addressed as well as environmental factors of different energy sources.
-The MSc in Renewable Engineering and Sustainable Energy is accredited by the Institute of Engineering and Technology (IET) and Energy Institute (EI), and provides you with the required training for registering for Chartered Engineer status.

What Will You Study?

FULL-TIME MODE (SEPTEMBER INTAKE)
The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

The six taught modules will have lectures and tutorials/practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)
For the January intake, students will study three specialist modules first during the second trimester from January to May.

Other three common modules the students will study in the first trimester of the next academic year from September to January. On successful completion of the taught element of the programme the students will be progressed to the Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE
The taught element, part one, of the programmes will be delivered in two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year.

The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis. The dissertation element (i.e. Part Two) will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours.

During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE
-Engineering Research Methods
-Sustainable Design & Innovation
-Engineering Systems Modelling & Simulation
-Control Systems Engineering
-Renewable Engineering
-Renewables: Environment, economic, social and political.
-Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Assessment and Teaching

You will be assessed throughout your course by a variety of methods including portfolios, presentations and, for certain subjects, examinations.

Career Prospects

The Engineering Council now requires a Chartered Engineer to be qualified to Masters level or its equivalent, so there has never been a better time to consider studying for an engineering masters qualification. This course has been tailored to meet the needs of employers in this area, for you to be able to gain career advancement or specialise in renewable energy.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X