• Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
University of Leeds Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"cibse"×
0 miles

Masters Degrees (Cibse)

We have 28 Masters Degrees (Cibse)

  • "cibse" ×
  • clear all
Showing 1 to 15 of 28
Order by 
Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry. Read more

About the course

Energy management using sustainable technologies and implementation of environmental initiatives play a rapidly increasing role in many public organisations and industry.

There is an urgent need for trained personnel to advise, implement and deliver strategies and management for sustainable practices. This programme empowers graduates with a sound knowledge of sustainable technologies and skills for effective energy management with regard for environmental protection. It will enable them to create new opportunities for their employers by bringing an appreciation for current research into industrial use.

Building Services Engineering courses awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

College Research wins CIBSE Building Performance Award 2013.

Aims

This programme will give graduates the sound knowledge and skills required for effective energy management and environmental protection.

Students will develop themes of expertise facilitated by an MSc project and dissertation, which also provides a useful introduction to students thinking of embarking on a doctoral research degree.

Links with industry are a key element of the programme, including guest speakers from various industry sectors.

Course Content

Compulsory Modules:

Energy Conversion Technologies
Sustainable Built Environment
Renewable Energy Technologies
Sustainable Energy Development
Environmental Legislation: Energy and Environmental Review and Auditing
Environmental Hazard and Risk
Research Methods and Sustainable Engineering
Masters Project and Dissertation

Optional Modules (choose one)

Strategic Management, Innovation and Enterprise
Project Management

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June. Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Special Features

Award-winning, accredited courses
Brunel’s Building Services Engineering courses have received the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers. Brunel offers a number of MSc courses in mechanical engineering, all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE) and Chartered Institute of Building Services Engineers (CIBSE).

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

World-class research
Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

Sustainable Energy : Technologies and Management MSc is accredited by the Institution of Mechanical Engineering (IMechE), and The Chartered Institution of Building Services Engineers (CIBSE). Additionally we are seeking reaccreditation with the Energy Institute as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Read less
MSc Building Services Engineering can help you to become a Chartered Building Services Engineer. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI,. Read more
MSc Building Services Engineering can help you to become a Chartered Building Services Engineer. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI,

This building services masters degree is a great choice for any engineering graduate looking to take their career to the next level. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the course receives global recognition and graduates have enjoyed career success with construction firms around the world.

Programme description

The building services engineering profession is a vibrant and important component of both the construction and engineering sectors of industry. The MSc Building Services Engineering is aimed at engineering graduates to enable them to progress towards full chartered (CEng) status.

There is a strong demand for good quality chartered building services engineers who have the wide and multi-disciplinary knowledge that enables them to operate effectively on projects involving diverse technical challenges. Engineers now require a period of postgraduate study after achieving an Honours degree on an accredited BEng programme before they can become eligible for chartered (CEng) status. The MSc Building Services Engineering programme has been designed primarily as a period of further learning to follow an honours degree in building services engineering or environmental engineering.

The programme offers you the opportunity to broaden your knowledge and experience of all technical aspects of building services design as well as providing an understanding of building management.

Assessment

Various methods are used to assess the modules depending on the nature of the module. These include written examination, course work, and oral presentation. Normally there is more than one assessment component in each module.

Professional accreditation

The programme is approved by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute. The MSc and a suitable accredited BEng (Hons) degree will together form the educational base for full CEng status.

Career Opportunities

The design of mechanical and electrical services for buildings of all types is a typical job profile and is carried out within mechanical and electrical design consultancies or within design-and-build construction companies.

Management of building facilities is another common employment destination, or in some cases the management of merchant or naval shipping and associated installations. Equipment manufacturers offer design and marketing opportunities.

Installation and commissioning of equipment and systems also offers technical and management opportunities.

Read less
Broaden your understanding of environmental issues in the context of your previous background and qualifications. This is the challenge that the Energy and Environmental Management masters course brings. Read more
Broaden your understanding of environmental issues in the context of your previous background and qualifications. This is the challenge that the Energy and Environmental Management masters course brings.

Commercial and industrial organisations, local authorities and public bodies are all facing increased environmental legislation and regulation and require more environmental input to their activities than ever before.

This is a fantastic opportunity to become an environmental specialist in a sector that may, or may not, be related to your previous qualifications.

There are several different available start dates and study options for this course - for more information, see the relevant web-page:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00810-1PTA-1718/Energy_&_Environmental_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00810-1PTAB-1718/Energy_&_Environmental_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00961-1FTAB-1718/Energy_&_Environmental_Management?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Environmental problems require solutions which encompass social, political and economic issues, as well as scientific and technological principles. Accredited by the Chartered Institution of Water and Environmental Management CIWEM, the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI this programme gives you a deeper understanding of the issues involved.

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies all require some environmental input to their activities.

The programme challenges you to broaden your understanding of environmental issues in the context of your previous background and qualifications. You will have the vision to grasp the inter-disciplinary nature of the environmental issues.

Why Choose This Programme?

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies, all require some environmental input to their activities. The environment offers opportunities to those who understand the issues involved and have a vision broad enough to grasp their inter-disciplinary nature. Thus, the programme offers students the challenge to broaden their understanding of environmental issues in the context of their previous backgrounds and qualifications.

Assessment

A combination of coursework, exams and projects.

Accreditation

The programme is accredited by the CIWEM, CIBSE and the Energy Institute EI. Memberships of these institutions are free for students from accredited programmes. Membership of a professional institution is important for securing employment.

The programme is recognised by the Engineering Council as suitable further learning for BEng (Hons) degree graduates from an accredited degree to meet the academic requirement for CEng registration.

Career Opportunities

Graduates of this programme can expect to find work as environmental specialists within a range of sectors often related to various previous qualifications. Graduates have gone on to work for employers including regulators such as Scottish Environmental Protection Agency (SEPA), various local authorities and national and international consultancy companies including Carl Bro Group, ERS Land Regeneration and Valpack.

Read less
Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the building services masters degree is a great choice for any engineering graduate looking to take their career to the next level and become a Chartered Building Services Engineer. Read more
Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the building services masters degree is a great choice for any engineering graduate looking to take their career to the next level and become a Chartered Building Services Engineer.

The Building Services Engineering masters receives global recognition and graduates have enjoyed career success with construction firms around the world.

This course has several different available start dates and study methods - please view the relevant web-page for more information:
JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTAB-1617/Building_Services_Engineering_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTA-1718/Building_Services_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00931-1FTAB-1718/Building_Services_Engineering?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTAB-1718/Building_Services_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme description

The building services engineering profession is a vibrant and important component of both the construction and engineering sectors of industry. The MSc Building Services Engineering is aimed at engineering graduates to enable them to progress towards full chartered (CEng) status.

There is a strong demand for good quality chartered building services engineers who have the wide and multi-disciplinary knowledge that enables them to operate effectively on projects involving diverse technical challenges. Engineers now require a period of postgraduate study after achieving an Honours degree on an accredited BEng programme before they can become eligible for chartered (CEng) status. The MSc Building Services Engineering programme has been designed primarily as a period of further learning to follow an honours degree in building services engineering or environmental engineering.

The programme offers you the opportunity to broaden your knowledge and experience of all technical aspects of building services design as well as providing an understanding of building management.

Assessment

Various methods are used to assess the modules depending on the nature of the module. These include written examination, course work, and oral presentation. Normally there is more than one assessment component in each module.

Professional accreditation

The programme is approved by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute. The MSc and a suitable accredited BEng (Hons) degree will together form the educational base for full CEng status.

Career Opportunities

The design of mechanical and electrical services for buildings of all types is a typical job profile and is carried out within mechanical and electrical design consultancies or within design-and-build construction companies.

Management of building facilities is another common employment destination, or in some cases the management of merchant or naval shipping and associated installations. Equipment manufacturers offer design and marketing opportunities.

Installation and commissioning of equipment and systems also offers technical and management opportunities.

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team. Read more

About the course

This innovative course is for people who wish to understand the ways new and renewable energy can be harnessed in buildings, who wish to gain the ability to undertake the simulation and modelling tasks which are essential for credible building performance analysis, and acquire the ability to work creatively within a multidisciplinary design team.

The need for sustainable approaches to building design is universally acknowledged. As the effects of climate change are felt, the drive towards more energy efficient buildings is intensifying. Sustainable buildings need not be technologically complex but a high level of sophistication in design procedures and performance analysis is required.

The course has an interdisciplinary approach that gives a broad insight into energy and sustainability issues, and in-depth knowledge of the computer modelling techniques that are used in the design of modern sustainable buildings.

The course has been approved by both the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute for completing the educational requirements for chartered engineer registration.

Reasons to Study;

• Flexible study options
the course is designed to be flexible and fit around you with on campus, part-time or full-time or distance learning options, and multiple exit awards from a full master’s to a single module

• Accredited by CIBSE and the Energy Institute
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Interdisciplinary teaching
develop a broad insight in to energy and sustainability issues, with in-depth knowledge of computer modelling techniques for the design of modern sustainable buildings

• Excellent graduate career prospects
graduates of the programme have gone on to work for the European Commission, Mott MacDonald, WSP Group, WYG, and Arup; as well as a variety of other energy and environmental consultancies, central and local government and multinational organisations

• Academic and research expertise
With more than 30-year’s research experience, our Institute of Energy and Sustainable Development (IESD) research and teaching staff provide students with a unique opportunity to learn from scientists actively involved in furthering knowledge and sharing expertise

Course Structure

Modules

The MSc has been designed to offer flexibility, with attended or distance learning study available and a range of possible awards from a full MSc to a single module. Modules studied:

• Sustainable Development
• Energy in Buildings
• Sustainable Energy
• Resource-Efficient Design
• Energy and Thermal Performance
• Ventilation and Daylight Modelling
• Energy Analysis Techniques
• Research Methods
• Design Project

Teaching and Assessment

Full-time students attend for two days each week and receive formal lectures from experienced researchers and teaching staff, complemented by informal seminars and group discussions. Part-time students attend one day per week. You will also be expected to undertake self-directed study. All teaching material is fully documented and available on the web-based virtual learning environment (VLE) before timetabled events take place.

Distance learning students follow a structured study plan provided on the VLE, supported by discussion forums with other students, and email and telephone conversations with the module leader. Our course has been commended in an academic quality review for its “innovative and sophisticated forms of e-based learning and teaching”.

All assessment is by coursework. Each taught module has two items of coursework. The first is a smaller assignment for which feedback is given while the module is being studied. A second, major assignment is due at a later date after the material has been assimilated.

As well as the eight taught modules, students complete either an individual dissertation or a team-based design project, and all students get to attend the annual MSc conference, where final year students present.

Contact and learning hours

You will normally attend two - four hours of timetabled taught sessions each week for each module undertaken during term time; for full time study this would be 12 hours per week during term time. You can also expect to typically undertake a further hours of six hours independent study and assignments as required per week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies all require some environmental input to their activities. Read more
With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies all require some environmental input to their activities. The MSc Energy and Environmental Management challenges you to broaden your understanding of environmental issues in the context of your previous background and qualifications.

Graduates of this programme can expect to find work as environmental specialists within a range of sectors often related to various previous qualifications.

This course can also be taken part-time - for more information, see the web-page: http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00810-1PTAB-1617/Energy_&_Environmental_Management_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Environmental problems require solutions which encompass social, political and economic issues, as well as scientific and technological principles. Accredited by the Chartered Institution of Water and Environmental Management (CIWEM), the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute (EI) this programme gives you a deeper understanding of the issues involved.

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies all require some environmental input to their activities.

The programme challenges you to broaden your understanding of environmental issues in the context of your previous background and qualifications. You will have the vision to grasp the inter-disciplinary nature of the environmental issues.

Why Choose This Programme?

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies, all require some environmental input to their activities. The environment offers opportunities to those who understand the issues involved and have a vision broad enough to grasp their inter-disciplinary nature. Thus, the programme offers students the challenge to broaden their understanding of environmental issues in the context of their previous backgrounds and qualifications.

Assessment

A combination of coursework, exams and projects.

Accreditation

The programme is accredited by the CIWEM, CIBSE and the Energy Institute (EI). Memberships of these institutions are free for students from accredited programmes. Membership of a professional institution is important for securing employment. The programme is recognised by the Engineering Council as suitable further learning for BEng (Hons) degree graduates from an accredited degree to meet the academic requirement for CEng registration.

Career Opportunities

Graduates of this programme can expect to find work as environmental specialists within a range of sectors often related to various previous qualifications. Graduates have gone on to work for employers including regulators such as Scottish Environmental Protection Agency (SEPA), various local authorities and national and international consultancy companies including Carl Bro Group, ERS Land Regeneration and Valpack.

Read less
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. Read more
MSc Fire Safety Engineering is concerned with the study of fire development and prevention and the means by which its consequence may be reduced to a minimum in human, environmental and financial terms. This postgraduate degree emphasises Fire Safety Engineering in the context of buildings and infrastructure. This involves skills and knowledge crossing all areas of learning including fire chemistry, physics of heat transfer, biology and toxicity, structures, law and legislation, environmental impact, risk management and design. It is supported by an established research base and builds on the training and educational programmes offered by the Institution of Fire Engineers.

This course is designed for students who will eventually hold senior positions within the fire-related professions. Throughout the programme, emphasis will be placed on self-motivation, critical thinking and analytical depth. The application of Fire Safety Engineering is multi-disciplinary and, as in the professional world, you will carry out project work, which will facilitate dialogue between the Fire Engineer and other members of the design and management teams.

PROFESSIONAL ACCREDITATION

This MSc is accredited by both the Energy Institute (EI) and the Chartered Institution of Building Services Engineers (CIBSE) as fulfilling the further learning requirement for Chartered Engineer status, whilst also being a recognised course by the Institution of Fire Engineers (IFE).

LEARNING ENVIRONMENT AND ASSESSMENT

The course will be delivered through lectures, tutorials and practical exercises. Guided teaching and formal assessments will enhance the development of transferable skills such report-writing, maintenance of case notes, formal presentations, participation in discussions, ability to work to deadlines, computing skills, public speaking, scientific analysis, adherence and development of laboratory protocols and research methods.

There are different assessment methods employed across the modules. Some modules are assessed by both examination and coursework while others are assessed by coursework only, which may take the form of group projects, modelling exercises or time-controlled assignments or seminar presentations.

Benefiting from extensive research funding, we hold an enviable reputation for the quality of our teaching and research activities. All Fire courses are underpinned by the Research Centre in Fire and Hazards and benefit from the dedicated fire laboratories including equipment for small and intermediate scale facilities.

Our well-equipped modern fire engineering laboratory facilities comprise of state-of-the-art fire research equipment, used by experienced academics, are available for research and teaching. There are specialist facilities which include analytical and material characterisation equipment. A number of experiments, ranging from the investigation of fire retardants to the combustion properties of materials, and fire toxicity can be undertaken. We also have computational fluid dynamics facilities, that provide the use of CFD based fire modelling for research, teaching and consultancy.

FURTHER INFORMATION

Combined into a single-discipline, our Fire Safety Engineering Master’s degree meets a challenge of modern industrial needs. Graduates have become leaders in a range of backgrounds from fire services to civil engineering to safety management. The course is fully accredited by three professional institutions (CIBSE, EI and IFE) that play an active part in ensuring the course is developed to meet professional needs.

This course is supported by an established research base (Centre for Research in Fire and Hazards Science) which builds on the training and educational programmes offered by the Institution of Fire Engineers. Full-time students can underpin their studies with a range of balancing modules. The remainder of the MSc is a series of options which may involve external speakers as well as expertise from our staff. Students should check availability if they wish to undertake any option in particular.

MSc Fire Safety Engineering commences in Semester 1 with Fires in Buildings which examines: fundamental principles; mechanisms controlling spread of fires and fire development in enclosures; movement and smoke control; fire resistance and fire severity; human behaviour in fires and evacuation; the mechanism of fire suppression agents. Running in parallel, a Research Methods module supports the Dissertation, which is an in-depth study involving theoretical, computational, experimental or investigative analysis. The Dissertation is undertaken in Semester 3 together with the Engineering Design Project, which is an integration of themes of design, ICT and technology within a practical context requiring students to work in teams as well as individuals.

Read less
Building Services Engineers design strategies and technology that make buildings work for us in today’s fast-paced, ecologically responsible and cost-driven construction industry. Read more
Building Services Engineers design strategies and technology that make buildings work for us in today’s fast-paced, ecologically responsible and cost-driven construction industry. It is an exciting, broad-based and challenging profession and the role is evolving and expanding today at an unprecedented rate.

Our Building Services Engineering Programme considers low carbon building design, passive and active strategies for efficiency and wellbeing, and the integration of renewable energy systems into buildings. It deals with services engineering issues, building the multidisciplinary skills required to cope with the challenges in services design and implementation which will be experienced in the working environment. As a conversion course, it provides students with the best foundation for launching or accelerating a career as a Building Services Engineer, or technical sustainability consultant. These are critical roles in interdisciplinary design teams, and as a consequence rank among the highest paid built environment professionals with rapid career advancement opportunities.

The scope of our programme has unprecedented flexibility inbuilt, to allow you to focus on areas of particular interest to you, and your career development, through your individual course choices.

Professional Development and Recognition

The programme meets the professional development needs as specified by the Engineering Council (ECUK) and relevant engineering institutions in the UK Standard for Professional Engineering Competence (UK-SPEC).

It allows graduates at either Diploma or MSc level to achieve a qualification equivalent to an MEng which will therefore gain professional recognition by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute (EI). The programme does this by providing:

• learning which contributes to the educational requirement for CEng;
• design tasks undertaken to an acceptable standard;
• development of transferable skills appropriate to professional practice.

Flexible Study Options

This programme can be studied full-time, part-time or via Independent Distance Learning (IDL), ideal for those in employment or with other commitments, providing flexible study options that fit around work or family. As an IDL student you will not be required to attend any lectures, tutorials or other events at any of Heriot-Watt University’s campuses, and you can also arrange to sit examinations in a location close to you.

Those who are close to our Dubai Campus will, in addition, benefit from our local support in the form of dissertation supervision and access to licensed software programmes and subscribed literatures, depending on availability.

Programme Content

Students undertake eight taught courses for the Diploma plus the research dissertation for the MSc. Students can opt to complete a total of four courses and graduate with the Heriot Watt University Postgraduate Certificate.

The taught element of the programme comprises 8 courses, with five core courses and three optional courses out of eight available alternatives:

Semester 1

• Building Electrical and Lighting Services (core)
• Ventilation and Air Conditioning (core)
• Contracts and Procurement (optional)
• Water Conservation (optional)
• Sustainable Design and Development (optional)
• Climate Change, Sustainability & Adaptation (optional)

Semester 2

• Thermofluids (core)
• Human Factors (core)
• Architectural Acoustics (optional)
• People and Organisational Management for the Built Environment (optional)
• Energy Systems and Buildings (optional)
• Carbon Footprinting (optional)
• Low Carbon Buildings (core)

English language requirements

If English is not the applicant’s first language a minimum of IELTS 6.5 or equivalent is required with all elements passed at 6.0 or above.

Applicants who have previously successfully completed programmes delivered in the medium of English language may be considered and will be required to provide documentary evidence of this. Examples would be secondary school education or undergraduate degree programme. A minimum of at least one year of full time study (or equivalent) in the medium of English language will be required.

We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme, please visit: http://www.hw.ac.uk/study/english.htm

Read less
This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry. Read more

About the course

This programme responds to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge within the building services industry.

Professional ‘Building Services Engineers’ design all of the systems that are necessary in a building for occupants to carry out their business. These systems include: heating, lighting, air-conditioning and electrical systems. The role is increasingly involved with the provision of sustainable, energy efficient and green building within our society. Services have to be carefully designed and installed so that they are unobtrusive and aesthetically pleasing, and also work in harmony with the architecture of the building. The programme will respond to the worldwide demand for building services engineers who have a sound knowledge engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The course is available either as a full-time, 1-year programme at Brunel or as a 3-to-5 year distance learning programme.

Aims

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and emissions control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is suitable for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study

1 Year Full-Time: The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-5 Years Distance Learning: The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to study yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

The course comprises four core modules, three technical modules and a dissertation. The taught modules are:

Core Modules:

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Dissertation

Technical Modules:

Building Management and Control Systems
Design of Fluid Services and Heat Transfer Equipment
Building Services Design and Management

Special Features

There are several advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additioanlly we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year.
Examinations are normally taken in May. MSc dissertation project normally is carried out over four months (full-time students) or one year (distance learning students) and it is accessed by submission of an MSc dissertation.

Read less
This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility. Read more

About the course

This course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility.

It caters to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles – and the ability to apply this knowledge to complex situations.

Management modules cover engineering finance and accounting, people management, business organisation and facilities and contract management.

Aims

Building Service Engineers help buildings to deliver on their potential by working with architects and construction engineers to produce buildings that offer the functionality and comfort we expect, with the minimum impact on our environment. They design the lighting appropriate for the space, the heating, cooling, ventilation and all systems that ensure comfort, health and safety in all types of buildings, residential commercial and industrial.

Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment.

With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important.

As an interdisciplinary profession that involves the specification, design, installation and management of all the engineering services associated with the built environment, comfort and function also need to be combined – which calls for engineers with a wide range of knowledge and skills.

This MSc programme is for:

Recent engineering and technology graduates, moving into building services and related disciplines.
Established engineers and technologists, working in building services and faced with the challenge of new areas of responsibility.
Engineers who want to develop technical understanding and expertise across the multi-disciplines of building services engineering.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in building services engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with building services engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.

Course Content

Modes of Study
3-5 Years Distance Learning

The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.

Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Compulsory Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Engineering Finance and Accounting
Management of People in Engineering Activities
Organisation of Engineering Business
Management of Facilities and Engineering Contracts
Dissertation

Students should choose one of the two themes below:

Theme A - Traditional

Energy Conversion Technologies
This element provides a broad introduction to the principles of energy conversion and thermodynamic machines and demonstrates their application to energy conversion and management in buildings. Emphasis is placed on refrigeration plant, energy conversion plant and energy management.
Refrigeration covers the basic principles and components of vapour compression systems, heat pumps and absorption systems.
Energy Conversion considers power cycles, combined heat and power, combustion processes, boiler plant, thermal energy storage and environmental impacts of plant operation.

Theme B - Renewable

Renewable Energy Technologies
This element includes: energy sources, economics and environmental impact, energy storage technologies, the role of renewables, solar thermal, solar electricity, wind power generation, hydro, tidal and wave power, biofuels, building integrated renewables.

Special Features

There are several advantages in choosing Brunel's Building Services programme:

Award-winning courses: Building Services Engineering courses at Brunel have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities

We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

The course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng).

Teaching

Students are supplied with a study pack in the form of text books and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. Read more
The Renewable Energy programme was created to allow BEng graduates to achieve the educational requirements to become a Chartered Engineer under the Engineering Council’s UK-SPEC scheme. The course is currently accredited by the Chartered Institute of Building Services Engineers (CIBSE) and the Energy Institute as suitable for further learning towards Chartered Status for engineering graduates. This accreditation has international acceptance under the Washington Accord. Please note that the programme is only suitable as further learning in conjunction with an accredited BEng programme.

Visit the website: http://www.ulster.ac.uk/course/msc-renewable-energy-and-energy-management-pt-el

How to apply: https://www.ulster.ac.uk/apply/how-to-apply#pg

Course detail

- Description -

The aim of the course is straightforward, in that it is designed to meet a need for engineers and energy professionals to deliver energy conscious and environmentally sustainable solutions for use by the public, industry, services and government.
It seeks to provide an opportunity for graduates and professionals to acquire knowledge of renewable energy and energy management, and to develop skills appropriate to its practice. To achieve this it seeks to increase capacity for understanding the theoretical concepts and socio-economic principles and techniques upon which renewable energy technologies and energy management strategies are founded. To this end, the course is designed to produce graduates who have an in-depth knowledge and understanding of the scientific, technological issues concerning energy systems.
The programme seeks to develop graduates who will have the knowledge, insight and skills to lead programmes of change, new design or retrofit solutions that require the deployment of either or both energy efficiency measures and renewable energy technologies.
The eight taught modules are designed to give students a broad expertise in the ever expanding range of Renewable Energy technologies combined with the more fundamental requirements demanded by Energy Management.
Graduates are expected to achieve skills in identifying, developing, analysing and critically appraising solutions and to apply those skills in a professional manner. The students who progress to the MSc from the PgD will also be expected to demonstrate a comprehensive understanding of techniques applicable to their own research, combined with the management of an independent investigation in an area related to energy technology, with the aim of producing graduates with the capability to pursue a career in research and development through independence, self motivation and initiative.

Why Choose Ulster University ?

1. Over 92% of our graduates are in work or further study six months after graduation.
2. We are a top UK university for providing courses with a period of work placement.
3. Our teaching and the learning experience we deliver are rated at the highest level by the Quality Assurance Agency.
4. We recruit international students from more than 100 different countries.
5. More than 4,000 students from over 50 countries have successfully completed eLearning courses at Ulster University.

Flexible payment

To help spread the cost of your studies, tuition fees can be paid back in monthly instalments while you learn. If you study for a one-year, full-time master’s, you can pay your fees up-front, in one lump sum, or in either five* or ten* equal monthly payments. If you study for a master’s on a part-time basis (e.g. over three years), you can pay each year’s fees up-front or in five or ten equal monthly payments each year. This flexibility allows you to spread the payment of your fees over each academic year. Find out more by visiting https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

https://www.ulster.ac.uk/apply/fees-and-finance/postgraduate

Scholarships

A comprehensive range of financial scholarships, awards and prizes are available to undergraduate, postgraduate and research students. Scholarships recognise the many ways in which our students are outstanding in their subject. Individuals may be able to apply directly or may automatically be nominated for awards. Visit the website: https://www.ulster.ac.uk/apply/fees-and-finance/scholarships

English Language Tuition

CELT offers courses and consultations in English language and study skills to Ulster University students of all subjects, levels and nationalities. Students and researchers for whom English is an additional language can access free CELT support throughout the academic year: https://www.ulster.ac.uk/international/english-language-support

Read less
This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level. Read more

About the course

This course aims to produce graduates with qualities and transferable skills for demanding employment in the engineering sector. Graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level.

Students may elect to follow one of two streams: Thermofluids or Solid Body Mechanics.

Engineering courses within the Department are underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy and the environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK.

Aims

Mechanical engineers apply their scientific knowledge to solve problems and design machines that help us enjoy a better lifestyle. They have an enviable choice of industries open to them and this advanced course helps you develop the versatility to deal with complex challenges faced by senior engineers.

On this course you will:
Develop the versatility and depth to deal with new and unusual challenges across a range of engineering areas
Develop imagination and creativity to enable you to follow a successful engineering career with national and international companies and organisations
Continue your professional development to Chartered Engineer status with confidence and acquire new skills at the highest level.

Brunel offer a number of mechanical engineering MSc courses, all accredited by professional institutes as appropriate additional academic study (further learning) for thos seeking to become qualified to register as Chartered Engineers (CEng).

Our collaborative research with numerous outside organisations includes major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Accrediting professional institutes vary by course and include The Institute of Mechanical Engineers (IMechE),The Energy Institute (EI) and The Chartered Institute of Building Services Engineers (CIBSE).

Course Content

During the first two terms (September - March) you will take eight modules, out of which:
Four are the same for both streams (compulsory modules - 15 credits each)
The other four (15 credits each) are different for the two streams.

In May the final examinations for the taught modules will take place and in their third term (June - September) students will complete the final dissertation.

You have the option to choose one of two specialisations, or ‘streams,’ for your dissertation:
Thermofluids, or
Solid Body Mechanics.

Compulsory Modules

Strategic Management, Innovation and Enterprise
Research Methods and Sustainable Engineering
Advanced Modelling and Design
Computer Aided Engineering 1
Dissertation (Individual project)

Optional Modules

Choose one of the two themes below:

Theme 1 – Thermofluids
Advanced Thermofluids
Advanced Heat and Mass Transfer
Energy Conversion Technologies
Renewable Energy Technologies

Theme 2 – Solid Body Mechanics
Advanced Solid Body Mechanics
Dynamics and Modal Analysis
Structural Design and FEA
Human Factors in Design

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students

The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Accreditation

Advanced Mechanical Engineering is accredited by the Institution of Mechanical Engineering (IMechE). This will provide a route to Chartered Engineer status in the UK.
At Brunel we provide many opportunities and experiences within your degree programme and beyond – work-based learning, professional support services, volunteering, mentoring, sports, arts, clubs, societies, and much, much more – and we encourage you to make the most of them, so that you can make the most of yourself.

Read less

Show 10 15 30 per page



Cookie Policy    X