• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
London Metropolitan University Featured Masters Courses
Birmingham City University Featured Masters Courses
Cass Business School Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Sheffield Featured Masters Courses
"chromatography"×
0 miles

Masters Degrees (Chromatography)

We have 60 Masters Degrees (Chromatography)

  • "chromatography" ×
  • clear all
Showing 1 to 15 of 60
Order by 
World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Read more
World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry, based at a long established UK centre of excellence.

The PG ‘Certificate in Applied Liquid Chromatography Mass Spectrometry (LCMS)’ is suited to professionals, with several years experience in analytical sciences, requiring an up-date in their skills. The unique combination of industry participation and course content provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Key Features

Course content designed for the needs of industry: Essential topics covering industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies and presentations.

Modules

Modules of the Applied Liquid Chromatography Mass Spectrometry (LCMS) programme includes:

LCMS (Liquid Chromatography Mass Spectrometry) Applications I: Proteomics
LCMS (Liquid Chromatography Mass Spectrometry) Applications II: Pharmaceutical
LCMS (Liquid Chromatography Mass Spectrometry) Applications III: Environmental and Forensic Analysis
LCMS (Liquid Chromatography Mass Spectrometry) Applications IV: Medical and life sciences
LCMS (Liquid Chromatography Mass Spectrometry) Applications V: Metabolomics, Lipidomics and Bioactive lipids

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry (MS) and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought-after. Postgraduate (PG) training is essential as undergraduates are not taught to the required depth. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence.

Key Features

Course content designed for the needs of industry:

Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute:

To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment:

MRes Applied Analytical Science (LCMS) students can experience more in-depth and ‘hands-on’ learning than most current analytical MRes programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios:

To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible thesis.

Participation of expert industrial guest lecturers:

Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessments that encourage transferrable skills essential for employment:

Including case studies, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

All MRes Applied Analytical Science (LCMS) students will complete the following taught modules:

Mass spectrometry – basics and fundamentals

Separation science and sample handling

Data analysis and method development

Professional management and laboratory practice

MRes students will also be expected to complete a 120 credit research thesis with a viva.

Professional Accreditation

Professional Development (PD) Portfolio

This will enable students to organise and highlight current competencies and training needs into a single document. This can be essential in documenting necessary requirements for continued professional development with a relevant professional body (i.e. Royal Society of Chemistry, RSC, CChem status).

A PD portfolio will typically contain:

- Educational training and experience

From external parties such as National Mass Spectrometry Facility (NMSF), industrial guest lecturers, and educational exercises recognised by the RSC.

- Practical/instrument training and experience

From external parties such as NMSf and instrument manufacturers.

- Research training and experience

MRes project - health and safety, project training, laboratory practice competency framework test and research

- Qualifications

Plus any affiliations and CV.

This will be an organised and detailed record of competencies for presenting to prospective employers with the potential to offer Swansea University (SU) PG students an edge in ensuring gainful relevant employment.

Accreditation.

An application to the Royal Society of Chemistry will be submitted after the first year of study.

Careers and Employability

Course content designed for the needs of industry

Fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development.

Extensive training in a research-led Institute

Highly practical course and extensive in-house equipment

Experience more in-depth and ‘hands-on’ MRes than most Applied Analytical Science courses.

Taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios

Assessments that encourage transferrable skills essential for employment

Professional Development (PD) Portfolio

Participation of expert industrial guest lecturers

Unique networking opportunities with relevant potential employers for enhanced employability in areas such as:

- Pharmaceuticals

- Food and Nutrition

- Clinical diagnostics

- Forensics

- Environment

- Agriculture

- Homeland security

- Marketing and sales

- Veterinary

- Cosmology

- Geology

- Textile manufacture

- Archaeology

Facilities

Applied Analytical Science graduates will be extensively trained in a research-led institute. The highly practical nature of the course and extensive in-house equipment will enable students to experience a more in-depth and 'hands-on' MRes than most current analytical courses.

Instrumentation/techniques within IMS include:

Liquid chromatography/high resolution tandem mass spectrometry (LC/HRMS and LC/HRMSn)

Liquid chromatography/mass spectrometry (LC/MSn); low resolution MS.

Nano-liquid chromatography/mass spectrometry (nano-LC/MS)

Gas chromatography/mass spectrometry (GC/MS)

Liquid chromatography/ultraviolet spectrophotometry (LC/UV)

Liquid chromatography/diode array (LC/DAD)

Electrospray ionisation-mass spectrometry (ESI-MS)

Atmospheric pressure chemical ionisation-mass spectrometry (APCI-MS)

Electron ionisation-mass spectrometry (EI-MS)

Chemical ionisation-mass spectrometry (CI-MS)

Liquid secondary ion-mass spectrometry (LSI-MS i.e. ‘Fast Atom Bombardment’, FAB),

Matrix-assisted laser desorption/ionisation-mass spectrometry (MALDI-MS)

We routinely carry out a number of sample preparation techniques including:

Solid phase extraction (SPE)

Liquid-liquid extraction (LLE)

Electrophoretic techniques

Affinity extraction

Ion-exchange

Precipitation



Read less
Why this course?. The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. Read more

Why this course?

The global drug delivery sector is set to attain significant growth over the next five years. This is driven by the introduction of technologies with improved product features. As the pharmaceutical industry continues to innovate in order to maintain growth and profitability, the use of new drug delivery technologies is being explored for many treatment areas.

The introduction of new routes of delivery combined with increasing research and development spend, has created a new market for drug delivery and there is a market need for employees with matched skill sets.

What you'll study

The programme provides specialist research training and practical experience in the design and development of effective drug delivery systems, as well as promoting directly applicable skills for career and professional development.

This course is designed to provide a robust postgraduate training and skills development for life science or physical science-based graduate students seeking employment in the pharmaceutical industry or at the life sciences interface.

The course aims to:

  • develop your understanding of the biology of specific targets for drug-based intervention
  • develop your understanding of the biopharmaceutical, pharmacokinetic & physicochemical principles important in the design and formulation of drug dosage systems
  • address the latest advances in drug delivery & targeting & develop your understanding of the concept of drug targeting using drug carriers & provide an in depth appreciation of the strategies available & utilised for a particular drug & biological barrier
  • enhance your research skills & transferable skills relevant to drug delivery in preparation for a career in the pharmaceutical industry or academia including leadership skills & entrepreneurship
  • develop your understanding of advanced research methodology to enable you to carry out independent work of publishable standard

Major projects

Within your project, you'll have the exciting opportunity to work alongside leading researchers developing the next generation of drug delivery systems. We offer a range of topics from nano to macro drug delivery systems and we consider a wide range of delivery strategies.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.

The course will also provide students with full experiential learning with facilities including:

  • formulation & manufacturing facilities
  • thermo-analytical facilities
  • particle, microparticle & nanoparticle size & surface analysis
  • dissolution analysis facilities
  • freeze-drying
  • in-vitro analysis

The course is also supported by access to the full range of analytical spectroscopic and chromatographic instrumentation for the characterisation of drug and drug delivery components, including:

  • nuclear Magnetic Resonance (NMR)
  • ultra-violet (UV)
  • attenuated total reflectance fourier transform infrared spectroscopy (ATR_FTIR)
  • mass spectrometry (MS)
  • high-pressure liquid chromatography (HPLC)
  • gas chromatography (GC)
  • liquid chromatograph/gas chromatography mass spectrometry (LC/GC-MS)

Learning & teaching

The course is delivered through lectures, tutorials and hands-on practical sessions.

If you successfully complete the required taught classes you may undertake a laboratory project for the MSc.

Assessment

Assessment of taught classes is through multiple choice tests, computer quizzes, problem solving scenarios, poster and oral presentations, essays, and formal written exams. The laboratory project is assessed through a written thesis.

Careers

This Masters programme is designed to support your career journey into the field of drug delivery and pharmaceutical sciences and provide the support for you to take up an exciting role within the pharmaceutical industry or continue your research career into a PhD programme.



Read less
Why this course?. This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances.You’re introduced to techniques for evaluating analytical data and validating analytical methods. Read more

Why this course?

This course gives you specialised knowledge of the analytical techniques used to detect, identify and quantitatively determine drugs and related substances.You’re introduced to techniques for evaluating analytical data and validating analytical methods. You’ll also examine strategies for analytical research and development.

You’ll gain practical experience in a wide range of modern instrumentation and techniques.

You’ll study

The course consists of four theory and two practical modules running between October and April followed by examinations.

If you pass all exams and wish to proceed to MSc then you’ll undertake a 10-week research project. This will be in the University or at an external company or organisation. You’ll submit a thesis at the end of August.

Facilities

The Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS) offers an excellent environment for research and teaching. It’s located in a new building with several laboratories. All are fitted with the latest equipment.

The course has access to the full range of analytical spectroscopic and chromatographic instrumentation including:

  • Nuclear Magnetic Resonance (NMR)
  • Ultra-Violet (UV)
  • Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR_FTIR)
  • Mass Spectrometry (MS)
  • High-Pressure Liquid Chromatography (HPLC)
  • Gas Chromatography (GC)
  • Liquid Chromatograph/Gas Chromatography Mass Spectrometry (LC/GC-MS)

Learning & teaching

The course is taught by experts based in SIPBS. There’s also specialised lectures from visiting professors and world-renowned scientists who are working in the pharmaceutical and analytical industries and legislative bodies, including the European Pharmacopoeia.

Teaching of theory and applications is through lectures, tutorials and web-based learning. The material is further reinforced with practical sessions which provide you with hands-on experience with a wide range of modern instrumental techniques.

Assessment

Assessment is through written and practical examinations and submission of a thesis (MSc students only).

Careers

Many of our graduates obtain positions in the pharmaceutical & chemical industries and some have continued into PhD research.

Previous graduates of the course include:

  • a number of world-renowned academics
  • the current Head of the United Nations Office on Drugs and Crime
  • the previous Head of the European Pharmacopoeia Laboratory based in Strasbourg

Where are they now?

88.9% of our graduates are in work or further study.**

Job titles include:

  • Analyst of Pharmaceutical Products
  • Analytical Assistant
  • Lab Scientist

Employers include:

  • GlaxoSmithKline
  • Ministry of Health
  • Reckitt Benckiser Healthcare Ltd

**Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12)



Read less
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013. Read more
Pharmacy at Sunderland is ranked sixth in the country, according to The Guardian University Guide 2013.

Course overview

Do you want to contribute to the discovery and development of drugs that could potentially improve the health and well-being of millions of people? The UK has long been a leader in this complex technical area, in which each new drug requires around $1 billion of development work.

Our research-led teaching and state-of-the-art facilities make the University of Sunderland one of the UK's top locations for pharmaceutical science. Our strong links with the pharmaceutical industry ensure a flow of guest speakers and good contacts for your chosen Masters project/dissertation. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

The course covers advanced pharmaceutics, pharmaceutical analysis, drug design, pharmacology, proteomics and pharmacogenomics. You will also cover regulatory processes for medicines, in line with ICH guidelines. The course is a direct response to employers’ search for postgraduates who have a mix of theoretical and practical skills and who will push boundaries in drug development.

With a Masters course, it’s important to consider the relevance of the research interests of tutors who will supervise your dissertation. At Sunderland, our interests include pharmaceutical analysis, process chemistry, various drug discovery programmes, and drug delivery systems, including those for large biological pharmaceuticals. Our academic team have produced some ‘world-leading’ research, according to the latest Research Excellence Framework (2014).

Course content

The course mixes taught elements with self-directed research. The topic of the project / dissertation is negotiated to fit both your personal interests and the expertise of Sunderland's supportive tutors. Modules on this course include:
Core modules
-Essential Research and Study Skills (20 Credits)
-Fundamentals for Pharmaceutical Science (20 Credits)
-The Pharmaceutical R&D Cycle and its Regulation (20 Credits)

Choose four out of the five following modules
-Advanced Pharmacology (15 Credits)
-Pharmacogenomics and Proteomics (15 Credits)
-Advanced Pharmaceutical Analysis (15 Credits)
-Advanced Drug Design (15 Credits)
-Advanced Pharmaceutics (15 Credits)

Choose one Masters option
-Double Project (60 Credits)
Or
-Double Dissertation (60 Credits)
Or
-Single Project (30 Credits) and Single Dissertation (30 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, open learning, laboratory work and group work.

The Masters project may involve collaboration with a pharmaceutical company. Previous projects have involved collaborations with companies such as AstraZeneca, Pfizer and Helena Biosciences.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working and problem solving. Assessment methods include laboratory reports, oral presentations, case studies, critical reviews, examinations and the Masters project.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying. As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LC-NMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment. Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures respectively. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography (x8) and Gas Chromatography for separating all kinds of samples of pharmaceutical or biomedical interest.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Your Masters project may involve collaboration with a pharmaceutical company, including working at their sites.

Employment & careers

Graduates from this course can pursue a variety of careers in the following areas; Drug Design, Pharmaceutical Analysis and Research, Pre-clinical Research in Experimental and Biological Studies, Formulation and Product Development, Pharmacogenomics and Proteomics, Clinical Research, Product Registration, Licensing and Regulatory Affairs.

Previous Sunderland graduates have been employed in companies such as GSK, Eisai, Reckitt Benckiser, Merck, Sharp & Dohme and Norbrook Laboratories.

Some students may apply for a PhD programme or those who already hold a Pharmacy degree can pursue MSc/PG Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) and go through one-year pre-registration training.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013. This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. Read more
Sunderland is ranked sixth in the UK for pharmacy and pharmacology, according to The Guardian University Guide 2013.

Course overview

This Masters is one of the few in the UK that covers biopharmaceuticals as well as pharmaceuticals. The course covers drug delivery systems for large molecules such as proteins, genes and anticancer drugs that offer innovative ways to improve the health and wellbeing of our society.

The course also covers advanced formulations and delivery of small drug molecules. There is a focus on nanotechnology, dosage forms, pharmacokinetics and statistical methods used in data analysis.

Our supportive tutors will guide the development of rigorous approaches to research including sound methodologies, good manufacturing practice, high laboratory standards and effective communication of results.

Your Masters research project will be supervised by an expert in the relevant field, possibly in collaboration with a pharmaceutical company or research institution.

This course is particularly relevant if you plan to undertake a PhD in the area of pharmaceutical sciences, biopharmaceuticals or drug delivery. It is also suitable if you are considering, or already involved in, a career in pharmaceutical-related industries, hospitals or research institutions.

Pharmacy is a particular area of strength at the University of Sunderland. We have worked with GlaxoSmithKline for over 20 years and Pfizer has funded research projects at Sunderland for over 10 years.

Course content

The course mixes taught elements with independent research and self-directed study. There is flexibility to pursue personal interests in considerable depth, with guidance and inspiration from Sunderland's supportive tutors. Modules on this course include:
-Dosage Forms and Pharmacokinetics (20 Credits)
-Delivering Gene and Therapeutic Proteins (20 Credits)
-Essential Research and Study Skills (20 Credits)
-Research Manipulation (20 Credits)
-Nanotechnology (20 Credits)
-Bioinformatics (20 Credits)
-Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, seminars, problem-based learning, laboratory work, group work and visits to relevant companies. We also welcome guest speakers from the pharmaceutical industry who deliver guest lectures and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include written examinations, online tests and coursework, which includes oral and poster presentations.

Facilities & location

Sunderland's exceptional facilities include state-of-the-art equipment for pharmaceutics, synthetic, analytical and medicinal chemistry and pharmacology.

Facilities for Chemistry
We’ve recently spent £1 million on our new state-of-the-art analytical equipment. The analytical suite contains equipment which is industry-standard for modern clinical and pharmaceutical laboratories. Our state-of-the-art spectroscopic facility allows us to investigate the structures of new molecules and potential medicinal substances. We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high-resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures. You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmaceutics and Pharmacology
Our highly technical apparatus will help you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects. In addition to equipment for standard pharmacopoeial tests, such as dissolution testing, friability and disintegration, we also have highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

We also have equipment for wet granulation, spray drying, capsule filling, tablet making, powder mixing inhalation, film coating and freeze drying.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical sciences, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles. Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PsycINF, which includes information about the psychological aspects of medicine, psychiatry, nursing, sociology, pharmacology and physiology
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Employment & careers

On completing this course you will be equipped with the skills and understanding needed for Research & Development roles with employers such as:
-Pharmaceutical and biopharmaceutical companies
-Medical research institutes
-Hospitals

Salaries for senior pharmacologists range from £35,000 to around £80,000. Clinical laboratory scientists earn an average of £36,000. A Masters degree will also enhance opportunities in academic roles or further study towards a PhD.

Read less
The first of its kind in the UK, this MSc is highly regarded by employers for its real-world relevance and applied content. The course aims to develop advanced theoretical knowledge and computational skills and apply them to help solve real-life biological problems. Read more

The first of its kind in the UK, this MSc is highly regarded by employers for its real-world relevance and applied content. The course aims to develop advanced theoretical knowledge and computational skills and apply them to help solve real-life biological problems. This MSc is recognised by the BBSRC.

Who is it for?

This course aims to equip graduate scientists with the computational skills and awareness needed to archive, analyse and interpret the vast amounts of biological data now becoming available. On completion of this course, you will be able to apply information technology to the development of new drugs and diagnostic tools.

Additionally, you will gain the skills to design and implement new tools and software plugins to fulfil the need of the research community, and will be equipped with a diverse set of knowledge and skills that directly meet the requirements of employers in this sector.

Why this course?

This new and fast-growing field requires forward-thinking people who understand both the biological and computing aspects of this science – this MSc has been specifically designed to produce graduates of this nature.

Our students come from the UK and a combination of European and International countries. You will therefore experience working closely with people from different cultures and backgrounds – essential skills for your future career.

Class sizes are kept relatively small to help create an interactive environment and to ensure each student receives excellent support from our academic team.

Informed by Industry

Cranfield University benefits from the input of a group of world-renowned experts in a range of applied sciences including bioinformatics. We lead and collaborate in diverse research and consultancy projects, both nationally and internationally.

Our collaborators include:

  • GlaxoSmithKline
  • Unilever
  • Sanofi Aventis
  • Rothamsted Research
  • The European Bioinformatics Institute
  • London School of Hygiene and Tropical Medicine
  • University of Athens
  • Cambridge University.

Course details

The taught programme is generally delivered from October until March and is comprised of eight compulsory taught modules, a group project and an individual thesis project. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

Real-life experience

Working in project teams is part of everyday working life. It requires not only your individual expertise but also an appreciation of the skills of the other members of the team. This part of the course gives you the opportunity of working as part of a team on a group project. This is an invaluable experience that will help you to recognise and implement the differing contributions that colleagues bring to team work, and the different roles that we can choose to play within a team. 

Individual project

Industry related projects

A four-month thesis project carried out either at Cranfield or an external research establishment or commercial organisation within the UK or Europe. This gives you the chance to concentrate on a subject area of particular interest to you, perhaps in collaboration with the type of organisation that you are hoping to find employment with.

Real-life-problems solving thesis projects

Our MSc students finalise their hands-on study practice with individual thesis projects that solve problems in multidisciplinary areas whilst working under academic supervision. Some recent projects include:

  • Development of a Web-based resource for tuberculosis genotyping and diagnosis from whole genome sequencing data: PhyTB.

This project by Ernest Diez (2013-2014) is focused on creating PhyTB - an application for the interactive study of variation in M.tuberculosis using data from the PhyloTrack library.

Visit project page

Further reading

  • Applications of data science and machine learning in detection of meat adulteration.

This project by MSc student Rafal Kural (2014-2015) is focused on the application of machine learning methods to unravel hidden patterns of meat samples using Fourier Transform Spectrometry, Gas Chromatography Mass Spectrometry, High Performance Liquid Chromatography and VideometerLab. Over the course of this work it has been proven that it is certainly possible to obtain very accurate detection of meat adulteration, reaching sample adulteration level prediction accuracy of 100% for GCMS and 90-97% for FTIR and VM data.

Assessment

Taught Modules 40%, Group Project 20%, Individual Research Project 40%

Your career

Bioinformatics is a fast-growing field that offers progressive career opportunities for forward-thinking people who are ready to grasp the challenge; people who understand both the biological and computing aspects of this science. 

Our MSc opens doors to careers in industry, public research establishments and university research. The multidisciplinary nature of our course has allowed our students to follow diverse career paths in various medical-related sectors including:

  • Pharmaceutical and Biotech companies
  • Plant research institutes
  • Food sector
  • Public Institutions
  • Bioinformatics
  • IT companies.


Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
Overview. Read more

Overview

This master programme aims to provide highly employable analytical scientists who not only have a thorough understanding of the key techniques within the discipline but also have successfully completed an extended project either set in an industrial context or carried out in the laboratories of one of our industrial partners.

As a student on the programme, you will benefit from our research expertise and our links with industries that provide the foundation for placement opportunities. All students on this MSc will undertake a 30 week placement with an industrial context, either in Keele University’s laboratories or at the industrial partner’s premises, which will ultimately boost your employability skills.

The focus of this master's degree is very much on each student acquiring the scientific knowledge, the technical skills and the wide range of professional skills to enable them to start their career working with confidence in an industrial or international laboratory context.

See the website https://www.keele.ac.uk/pgtcourses/mscanalyticalscienceforindustry/

Course Aims

Knowledge

- To engender and develop an enthusiasm for analytical science and provide an intellectually stimulating and beneficial learning experience

- To provide an education to master’s level in key areas of analytical science, principally in chromatography, spectroscopy, microscopy and related techniques, and including the analysis and interpretation of experimental and digital data

- To provide a thorough knowledge and experience of techniques relevant to the analytical sciences and their practical application across a range of relevant materials and applications

- To provide a critical awareness of and engagement with current methods and techniques within the analytical sciences, some of which is at, or informed by, the forefront of the discipline

Skills:

- To develop confidence in practical, analytical, problem-solving and quantitative skills within the context of analytical science

- To demonstrate the abilities and skills necessary to research, devise, plan, execute and report on an original investigation or research project within the discipline

Employment:

- To demonstrate a high level of scientific knowledge and skills, including transferable skills, in a UK-based or international workplace setting

- To be able to deal with complex issues, including ethical issues, both systematically and creatively, make sound judgements in the absence of complete data, and communicate outcomes clearly to specialist and non-specialist audiences;

- To demonstrate independence and originality in tackling and solving problems, and act autonomously in planning and implementing tasks at a professional or equivalent level

- To demonstrate the qualities and transferable skills necessary for employment requiring:

the exercise of initiative and personal responsibility,

confidence in decision-making in complex, unpredictable and open-ended situations,

the independent learning ability required for continuing professional development,

productive collaborative working with others.

Course content

The first semester is spent at Keele studying modules on research skills, industrial context and both the theory and practice of analytical techniques, principally those based on chromatography, spectroscopy and imaging/ microscopy.

The extended individual project is carried out over semesters two and three, either at Keele or in the laboratories of an industrial partner. The location and nature of the project will be decided at the start of the programme and, for each individual student, many of the skills they develop in semester one will be studied and demonstrated in the context of their project topic.

These include literature review, research context, which includes planning, financial and ethical considerations, and science communication. There will also be lectures and laboratory classes aimed at extending your understanding of analytical techniques applied to industrial materials and problems and how such measurements are quality assured.

You will also develop the ability to use a range of data analysis methods and databases to interpret the results of your work and be able to write informative reports and use other means to communicate these outcomes to others.

The assessment of the extended project will include a written report, as well as participation in a post-graduate student symposium where you will present your work to both staff and students.

An overview is provided here - https://www.keele.ac.uk/pgtcourses/mscanalyticalscienceforindustry/

Teaching & Assessment

A broad range of teaching methods are employed including lectures, laboratory classes, problems classes, workshops and informal tutorials. As this is a post-graduate course there is an emphasis on tutor-guided, independent work. During the extended project whether undertaken at Keele or within an industrial laboratory, you will work both on your own tasks and in a team context with others and this will be evidenced through your project portfolio.

Over the whole programme the assessment tasks will be set in the context of the work of a professional analytical scientist and will provide a variety of challenges within which you can demonstrate the development of your knowledge and skills.

All academic staff operate an open-door policy and are happy to provide support, advice and guidance to all students subject to their availability.

Additional Costs

There may be additional living costs associated with the industrial project placement part of this programme which would depend on the nature and location of the placement and the individual circumstances and choices of the student. These would be discussed with the course tutor prior to enrolment. There would also be general costs for text books, inter-library loans, photocopying and printing, for example.

International Students

We welcome international students on this course. All international students will undertake a project at Keele University, that links in with industry. Please contact us for the entry requirements for international students.

Applicants who have not had their secondary or tertiary education through the medium of English are expected to have attained the equivalent of an IELTS score of at least 6.5 from an IELTS provider, which is approved by Keele University. Applicants are invited to contact the University before taking the IELTs test.

Distinctive Keele Curriculum

MSc programmes at Keele offers the added value of the Distinctive Keele Curriculum (DKC), which develops students' intellectual, personal and professional capabilities (Keele Graduate Attributes) through both subject-specific and generic workshops and activities.

Scholarships

There are substantial scholarships available, please see this link: http://www.keele.ac.uk/studentfunding/bursariesscholarships/internationalfunding/postgraduate/

or

http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering. Read more
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering.

Our philosophy

The Department of Chemical Engineering is a multidisciplinary centre focusing on research into future sustainable materials and technologies. Chemical engineering research is crucial and supports development and production of new materials, fuels, drugs, consumer products, health care products, foods and beverages, electronic components, medical implants, and more.

As the number and complexity of chemical, biochemical and biological materials used in consumer products and supporting technologies increases, this research will play an increasingly vital role in the development of modern societies across the world.

Our applicants

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres. You can apply for one of our pre-defined research projects or develop your own proposal. Our academic staff are always open to ideas that extend existing work or introduce new topics to their subject areas.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/chemphd/index.html

Structure

The MPhil programme combines taught research training and applied research practice.

Candidates join the Department as a member of the Research Centre (http://www.bath.ac.uk/chem-eng/research/index.html) in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

International students

Please see the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

In addition all non-native speakers of English are required to have passed English language tests as follows.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

Only English language tests taken in the last two years are valid for entrance purposes.

About the department

This is a dynamic department, actively pursuing advanced research in many areas of chemical, biochemical and biomedical engineering, and also offering taught Masters courses. The Department is internationally recognised for its contributions to research, many of which are achieved in partnership with industry and prestigious research organisations. Our staff are highly skilled with excellent international reputations, and our facilities are amongst the best in the country.

Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

International and industrial links
We have active links with UK universities - Bristol, Durham, Glasgow, Leeds, Imperial College, Liverpool, Oxford, Cambridge, Southampton, Edinburgh - and with European institutions including the CNRS laboratory at Toulouse and Lappeenranta University of Technology in Finland together with the Universities of Alicante, Delft, Oveido, Porto, Paris, Aachen and Wroclaw.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Other resources
Postgraduate students are encouraged to become members of professional societies and to present the results of their research at national and international scientific meetings. The Department runs a vibrant weekly research seminar programme where students are given the opportunity to present their research.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad. Read more

A comprehensive training in the theory and practice of groundwater science and engineering, providing an excellent basis for careers in scientific, engineering and environmental consultancies, water companies, major industries, research, and government scientific and regulatory services in the UK and abroad.

Modules encompass the full range of groundwater studies and are supported by practical field sessions and computing and hydrogeological modelling based on industry standard software.

Course details

This is a vocational programme relevant to graduates with good Honours degrees in appropriate subjects (for example, Geosciences, Engineering, Physics, Mathematics, Chemistry, Biosciences, and Environmental Sciences). It is important to have a good knowledge of mathematics.

The lecture component of the programme encompasses the full range of hydrogeology. Modules cover drilling, well design, aquifer test analysis, laboratory test analysis, groundwater flow, hydrogeophysics, inorganic chemistry of groundwaters, organic contamination of groundwater, contaminated land and remediation, groundwater modelling, contaminant transport, hydrology, and groundwater resources assessment. 

These lecture modules are supported by practical field sessions, and by computing and hydrogeological modelling based on industry standard software. Integration of concepts developed in the taught programmes is facilitated through student-centred investigations of current issues linked to a diverse range of hydrogeological environments. 

Examinations are held in January and April. From May onwards, you undertake a project, a report on which is submitted in September. 

Projects may be field-, laboratory-, or modelling- based, and are usually of an applied nature, although a few are research-orientated. Our chemical (inorganic and organic), rock testing, computing, geophysical and borehole-logging equipment is available for you to use during this period. 

Career openings include those with consulting engineering and environmental firms, government scientific services and regional water companies, both in this country and abroad. Demand for hydrogeologists is substantial and students from the course are highly regarded by employers.

Learning and teaching

Hydrogeology is the study of groundwater; an essential component of the world’s water supply. More than 2 billion people depend on groundwater for their daily needs (approximately 30% of water supplied in the UK is groundwater). 

The aim of our Hydrogeology MSc Course is to provide students who have a good scientific or engineering background with a comprehensive training in the fundamentals of groundwater science and engineering, together with considerable practical experience.

The School is well supported and you will have the use of all equipment and facilities appropriate to your work: 

Computing

You will have access to the multiple clusters of PCs in the University Learning Centre and Library, and the School-based Earth Imaging Laboratory. The MSc course also has its own dedicated room for teaching and study with six PCs for convenient access to email, web and on-line learning resources.

The University based computers have an extensive range of software installed that covers the needs of students of all disciplines, but in common with the School-based PCs, specialist software packages used routinely by professional hydrogeologists are installed for our MSc students. These include industry standard groundwater flow modelling, contaminant transport modelling, geochemical modelling, geophysical interpretation and field and laboratory hydraulic test analysis packages. You can also register for more specialist software on the University high speed BlueBEAR computing facility if your individual project requires it. Research software developed within the Water Sciences research group is also available.

Laboratories

The School is well equipped for inorganic and organic chemical analysis of field and laboratory samples. Facilities include: Total Organic Carbon analysis, Gas Chromatography, ICP Mass Spectrometry, Ion Chromatography, Stable Isotope Mass Spectrometry and Luminescence and UV/visible spectroscopy. These facilities have been used in a wide range of MSc projects, for both standard geochemical analysis of groundwater samples and for more specific purposes including studies of persistent organic pollutants and toxic heavy metals in the environment, and denitrification in river beds. 

The School also has a dedicated microbiology laboratory equipped with an autoclave for sterilizing media and equipment, a class II safety cabinet for handing microbial samples, and incubators. 

Facilities are also available within the School and elsewhere for geological material analysis, including thin section preparation and microscopy, a wide range of electron microscopy techniques, XRD, pore size distribution determination, and surface area measurement.

Fieldwork

The School has two field sites on campus for use by MSc students and research staff. Both consist of arrays of boreholes drilled into the underlying sandstone aquifer to depths of up to 60m.

The groundwater group is well stocked with field equipment, which is used extensively in research projects, for teaching, and particularly on individual MSc projects. This equipment includes pumping test equipment (submersible pumps, generators, packers, digital pressure transducers, data loggers, divers, dip meters, pipe-work and installation frames); chemical sampling and tracer transport equipment (depth samplers, sampling pumps, tracer test equipment and field fluorimeter, hand held EC, pH and EH probes, portable chemical lab kit); geophysical equipment (resistivity imaging, electromagnetic surveying, ground penetrating radar, and borehole logging); and a secure, towable, mobile laboratory for off-site testing.

Fieldwork and projects transform theory into practice and form a large part of the course. They are supported by extensive field, laboratory and technical facilities.

A weeklong course of practical work and site visits is held in Week 7 of the Autumn Term. The content varies from year to year, but typically includes pumping tests, small-scale field tests, chemical sampling, and geophysics using the research boreholes on campus. Visits to landfill sites, water resources schemes, wetlands, and drilling sites are also arranged in collaboration with the Environment Agency, consultants and landfill operators. During the Spring Term, field demonstrations are provided by chemical sampling equipment distributors and manufacturers. You will gain further field experience either during your own 4.5 month project or when helping your colleagues on other projects.



Read less
Would you like to apply your arts or applied sciences background to the conservation of fine art?. Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper. Read more
Would you like to apply your arts or applied sciences background to the conservation of fine art?

Northumbria University’s MA Conservation of Fine Art course is the only Master of Arts course in the UK that specialises in the conservation of easel painting and works of art on paper.

Integrating a mix of fine art, science and forensic techniques, you will study a range of subjects including studio and work-based practice, conservation theory, science, technical examination, -preventive conservation and research training skills.

In addition to the core modules studied, you will have the option to undertake a work placement during years one and two in the UK or abroad.

Learn From The Best

This course is taught by a team of specialist academics who have extensive experience in the field of conservation, science and the Fine Art sectors.

Applying their specialist knowledge to their day-to-day teaching, the members of our staff are actively involved in research and consultancy - activities which are helping to define this exciting and complex profession.

We also engage with the wider conservation sector to ensure that the content of this course is in-line with professional standards and employer expectations.

Throughout the duration of this course you will receive ongoing support from our teaching staff to ensure you leave equipped with - the necessary skills and knowledge to successfully pursue a career within conservation or a related discipline.

Teaching And Assessment

Offering the opportunity for you to specialise in either works of art on paper or easel paintings conservation, this course consists of modules that will explore a range of key areas including conservation theory and practice, conservation science, art history and preventive conservation

You will leave with the technical skills required to undertake examinations, cleaning, structural repairs and stabilisation of works of art, in addition to an in-depth understanding of the historic significance artistic practice and materials play-in understanding artworks.

Significant emphasis is also placed on ethics and developing your skills in research development.

This course is primarily delivered through practical workshops where you will develop a wide range of skills using especially prepared materials and case studies selected from our unique archive collection. These activities inform and run parallel with work conducted on project paintings and other challenging artefacts.

Assessment methods focus on you applying your practical skills, academic concepts and theories to your project documentation and the authentically constructed materials that mirror real life scenarios. You will also undertake a dissertation to further demonstrate your knowledge and understanding of this subject.

Learning Environment

When studying the MA Conservation of Fine Art course you will be housed in a Grade II listed building in the heart of Newcastle city centre. You will be able to utilise techniques such as x-ray, infra-red reflectography, and ultraviolet florescence and false colour infrared photography to examine materials and artworks spanning centuries, in addition to gaining access to intriguing archives and cutting edge technology.

You may also have access to other advanced technologies such as UV fluorescence microscopy, polarised light microscopy (PLM), UV/VIS spectrophotometry, fourier transform infrared (FTIR), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), x-ray fluorescence (XRF) spectroscopy, x-ray diffraction (XRD) and scanning electron microscopy coupled with energy-dispersive x-ray spectroscopy (SEM/EDX).

You will also receive ongoing support through our innovative e-learning platform, Blackboard, which will allow you to access learning materials such as module handbooks, assessment information, online lectures, reading lists and virtual gallery tours.

Research-Rich Learning

Research-rich learning is embedded throughout all aspects of this course and our staff are continuously involved and informed by fast-moving emerging developments in conservation research and ethical debates.

All of our staff possess individual specialisms, in areas such as the development and evaluation of conservation treatments for paintings, characterisation of artists’ materials and techniques, studies in material deterioration and comprehensive documentation of works of art.

Our team also collaborate with national and international research organisations.

When studying this master’s degree, you are encouraged to develop your own individual research skills to ensure you graduate with confidence in your own practical and academic experience. These skills are further enhanced when you undertake your dissertation under the guidance of your assigned tutor.

Give Your Career An Edge

This course has been developed to reflect national guidelines and ensure that you graduate with the necessary skills and knowledge to kick-start your career within this profession. There are also many additional opportunities available to further enhance your career edge whilst you study.

Throughout the duration of this course you will create a professional portfolio, which will include examples of practical work and displays of your intellectual achievement to provide a demonstration of your skills and enhance your performance at interviews.

In addition to completing a placement to further enhance your development you will also have the opportunity to present research papers at an organised symposium.

We actively encourage you to engage with professional bodies and attend key conferences to allow you to network with professionals who are already working within the profession, and you may also have the opportunity to advantage of our partnership with Tyne and Wear Archives and Museums, whose collection supports a number of activities. Our long standing links with the National Trust, Tate Britain and the estate of Francis Bacon have created exciting projects for our MA and PhD students.

Your Future

This course will equip you with a deep understanding of both the skills and knowledge required to work effectively in fine art conservation laboratories or conservation jobs across the world.

You may choose to work in galleries or museums, or progress your research to PhD level.

Recent illustrious alumni list, include Virginia Lladó-Buisán Head of Conservation & Collection Care Bodleian Libraries, Britta New, Paintings Conservator at the National Gallery in London and Eleanor Hasler, Head of Paper Conservation at Kew Gardens.

As your professional development is in-line with the current postgraduate professional standards for the Conservation of Fine Art, your access to postgraduate professional jobs within the conservation sector is likely to be enhanced.

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Applied Analytical Science (LCMS) at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

World demand for mass spectrometry and chromatography has grown at an unprecedented rate, with qualified graduates in short supply and highly sought after. Swansea is the only UK institution to offer a range of schemes solely dedicated to these topics, drawing upon expertise in the Institute of Mass Spectrometry (IMS), based at a long established UK centre of excellence. The MSc in Applied Analytical Science (LCMS) includes fundamentals of MS and chromatography with key industrial topics covering ‘-omics’, pharmaceutical, environmental and forensic analysis, data handling, professional management and good laboratory practice (GLP). The unique combination of industry participation and content on the Applied Analytical Science (LCMS) programme provides a vocationally-relevant qualification with invaluable training and experience sought in the UK and worldwide.

Professional Accreditation

We are pleased to announce that the Royal Society of Chemistry (RSC) has accredited the “MSc in Applied Analytical Science (LCMS)” for satisfying the academic requirements of the award of CHARTERED CHEMIST (CChem) from 2015 and awarded to qualifying students. Accreditation of Postgraduate schemes have only recently been undertaken by the RSC and our scheme is one of the first to achieve accreditation.

Key Features

Course content for the Applied Analytical Science (LCMS) programme is designed for the needs of industry: Essential topics such as fundamentals of mass spectrometry and separation science, professional management of laboratory practice, data analysis and method development plus industrially-current applications areas.

Extensive training in a research-led Institute: To improve their analytical science skills to professional levels required for the workplace.

Highly practical course and extensive in-house equipment: MSc students can experience more in-depth and ‘hands-on’ learning than most current analytical MSc programmes. Additional sessions including experiment design, health and safety, and laboratory skills are held in preparation of the research project, to ensure students are adequately equipped for project work.

Many taught modules encourage problem solving skills, involving relevant simulated (pre-existing) scenarios: To develop analytical thinking, professional and academic skills through advanced practical and theoretical studies and the submission of a scientifically defensible dissertation.

Participation of expert industrial guest lecturers: Unique opportunities to network with potential employers and enhanced employability prospects in highly skilled and relevant areas such as pharmaceuticals, agriculture, food and nutrition, homeland security, clinical diagnostics, veterinary and forensic science, environmental analysis, plus marketing and sales, to name a few.

Assessment that encourage transferrable skills essential for employment: Including case studies, presentations, problem sheets, data processing and informatics exercises in addition to the traditional examinations and essay based assignments.

Modules

Modules on the Applied Analytical Science (LCMS) programme typically include:

• Mass spectrometry – basics and fundamentals

• Separation science and sample handling

• Data analysis and method development

• Professional management and laboratory practice

• Proteomics

• Pharmaceutical

• Environmental and forensic analysis

• Medical and life sciences

• Metabolomics, lipidomics and bioactive lipids

• Data analysis and method development

• Dissertation: MS experimental project



Read less
The MSc is building a reputation for producing excellent scientists and highly sought after graduates. Our postgraduates have been offered employment in some of the most prestigious companies in the UK and Europe, in fields ranging from analytical toxicology to forensic DNA analysis. Read more
The MSc is building a reputation for producing excellent scientists and highly sought after graduates. Our postgraduates have been offered employment in some of the most prestigious companies in the UK and Europe, in fields ranging from analytical toxicology to forensic DNA analysis.

On this course, you can study a range of specialist areas in analytical and forensic science. It focuses on cutting edge research, the latest analytical techniques, and transferable and professional skills that will prepare you to practise as a professional analytical or forensic scientist. A 60 credit research project of your choice allows you to customise the MSc and specialise in your chosen field.

“Completing this MSc gave me a much more advanced knowledge of analytical instruments and techniques and has been a great help in preparing me for the role that I now have in toxicology. The amount of hands on practical experience in the Masters is much more extensive than in a Bachelors degree and it’s the higher level of practical work that can make the difference. Covering a variety of techniques applied to a wide range of sample types ensures you have an understanding that other graduates will not have, particularly after the completion of your dissertation by spending a considerable amount of time in the lab. The addition of the PRINCE2 qualification also makes you more employable to commercial labs. I have no doubt that without this MSc my chances of gaining a job with a career path would be significantly less.” – Laura Miles, MSc Analytical and Forensic Science graduate.

What You Will Study

You will study the following modules:
- Advanced DNA analysis
- Separation science
- Analytical toxicology
- Interpretation, evalutation and presentation of casework
- Advanced crime scene and evidence analysis
- Project design, management and enterprise
- Laboratory research project

Our tuition offers detailed training in the following areas:

- DNA Analysis
You will gain a thorough understanding of DNA analysis and interpretation techniques. There is practical training in a large range of advanced extraction techniques, quantitation, amplification and electrophoresis of DNA, through simulated case-work using our crime scene house and DNA analysis laboratory.

- Analytical Toxicology and Separation Science
You will gain knowledge of the basis and application of a number of novel analytical and extraction techniques such as chiral chromatography, supercritical fluid chromatography, solid phase microextraction and derivatisation techniques. You will also receive high level practical training in ion mobility mass spectrometry, GCMS/MS, LCMS/MS and ICP-OES. There is a particular focus on hair as a matrix for forensic toxicological analysis. You will also be fully trained in experimental design and effective method development.

- Major crime scene analysis
You will learn how to effectively process major and specialist crime scenes through our simulation facilities, and will study novel mapping techniques such as 3D scanning and LIDAR as applied to crime scene investigation.

- Expert witness techniques
To improve your employment prospects, you will also learn about the law as it relates to the forensic scientist and their relationship with the police, lawyers and courts, and the role of the expert witness. You will receive training from professional case working forensic scientists in how to draft expert witness statements and how to give testimony in court.

- Data analysis and Prince 2 qualification
For added benefit, there will be guest lectures from eminent analytical scientists and forensic practitioners, and you will be encouraged to observe courtroom proceedings and visit analytical laboratories. You will receive training in advanced data analysis techniques which is very desirable for potential employers. You will even complete a PRINCE 2 foundation certificate as part of this course, which will stand you in good stead for the management of major projects in laboratories. The PRINCE 2 award is a prestigious, internationally recognized qualification. Please note additional fees apply.

- Additional Fees:
There is an additional fee of £1,500 for this course which covers the Prince2 Project Management course and laboratory costs.

Learning and teaching methods

Modules are studied sequentially throughout the course. There are periods of self directed learning where you will study online material including journals, research notes and recommended books before engaging in hands on laboratory training, lectures and seminars on campus.

The course is available as a one year full time option, or 2 years part time option. All students complete a research project in your chosen area of specialisation.

Work Experience and Employment Prospects

There are many exciting employment opportunities in the analytical and forensic science sector. Key recruitment areas are DNA profiling, analytical chemistry and toxicological analysis. In these competitive fields, a postgraduate qualification will really make you stand out from the crowd. We have had an excellent response to the MSc analytical and forensic science from science companies across the UK. Major national companies have even contacted the University specifically asking for our MSc Analytical and Forensic Science graduates to apply for positions with them.

Our MSc graduates have been offered employment in toxicology, DNA and forensic science companies across the UK. An MSc award in Analytical and Forensic Science will demonstrate to employers the highest level of achievement and training.

Work experience

Students have the opportunity to undertake a work placement with Synergy Health Laboratories where they will undertake laboratory training. There is also an opportunity to conduct your research project in collaboration with Synergy Health with the possibility of working towards developing UKAS accredited methods of analysis -the ultimate standard in analytical science and a huge boost to your C.V.

Assessment methods

You will complete 120 credits of taught modules across the course, and an original laboratory research project (60 credits). For this, you will apply and extend your practical skills and knowledge in a key area of analytical or forensic science that interests you.

Read less

Show 10 15 30 per page



Cookie Policy    X