• Leeds Beckett University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Kent Featured Masters Courses
Coventry University Featured Masters Courses
University of Kent Featured Masters Courses
Swansea University Featured Masters Courses
"chip" AND "design"×
0 miles

Masters Degrees (Chip Design)

  • "chip" AND "design" ×
  • clear all
Showing 1 to 15 of 62
Order by 
Systems in mobile telephones, computers, cars and aircraft are shrinking, with many parts implemented as a single integrated circuit. Read more

Course Summary

Systems in mobile telephones, computers, cars and aircraft are shrinking, with many parts implemented as a single integrated circuit. This course prepares you for the rapidly changing skills required to support this. The focus is on system-on-chip design techniques and extensive practical use of cutting-edge and industry-standard methods. You will be taken through the system-on-chip design process, from concept to implementation.

Modules

Semester one: System-on-Chip Electronic Design Automation; Nanoelectronic Devices; Digital System Design; System-on-Chip Design Techniques

Semester two: SOC Design Project; Automated Software Verification; Analogue and Mixed Signal CMOS Design; Advanced Wireless Communication Networks and Systems; Medical Electrical and Electronic Technologies; Cryptography; Digital Systems Synthesis; Embedded Processors

Visit our website for further information...



Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. Read more
The MSc Electronics with System-On-Chip Technologies aims to produce postgraduates with an advanced understanding of the various routes to implementing systems-on-chip (SoC) and with hands-on experience of the design of such systems using several approaches to their implementation. The core aim of the course is to produce students who are “silicon qualified” by providing them with a complete SoC design experience by setting a framework of activities that allow the student to use industry-standard Computer-Aided-Engineering (CAE) software tools for the fast and accurate design, simulation and verification of integrated circuits.

Course structure

Each MSc course consists of three learning modules (40 credits each) plus an individual project (60 credits). Each learning module consists of a short course of lectures and initial hands-on experience. This is followed by a period of independent study supported by a series of tutorials. During this time you complete an Independent Learning Package (ILP). The ILP is matched to the learning outcomes of the module. It can be either a large project or a series of small tasks depending on the needs of each module. Credits for each module are awarded following the submission of a completed ILP and its successful defence in a viva voce examination. This form of assessment develops your communication and personal skills and is highly relevant to the workplace. Overall, each learning module comprises approximately 400 hours of study.

The project counts for one third of the course and involves undertaking a substantial research or product development project. For part-time students, this can be linked to their employment. It is undertaken in two phases. In the first part, the project subject area is researched and a workplan developed. The second part involves the main research and development activity. In all, the project requires approximately 600 hours of work.
Further flexibility is provided within the structure of the courses in that you can study related topic areas by taking modules from other courses as options (pre-requisite knowledge and skills permitting).

Prior to starting your course, you are sent a Course Information and Preparation Pack which provides information to give you a flying start.

MSc Electronics Suite of Courses

The MSc in Electronics has four distinct pathways:
-Robotic and Control Systems
-Embedded Systems
-System-on-Chip Technologies
-Medical Instrumentation

The subject areas covered within the four pathways of the electronic suite of MSc courses offer students an excellent launch pad which will enable the successful graduate to enter into these ever expanding, fast growing and dominant areas. With ever increasing demands from consumers such as portability, increased battery life and greater functionality combined with reductions in cost and shrinking scales of technologies, modern electronic systems are finding ever more application areas.

A vastly expanding application base for electronic systems has led to an explosion in the use of embedded system technologies. Part of this expansion has been led by the introduction of new medical devices and robotic devices entering the main stream consumer market. Industry has also fed the increase in demand particularly within the medical electronics area with the need of more sophisticated user interfaces, demands to reduce equipment costs, demands for greater accessibility of equipment and a demand for ever greater portability of equipment.

The technical tasks undertaken in ILPs, along with the required major project, thoroughly exercise the concepts covered in the course modules and give scope for originality and industry-relevant study. Team-working activities encouraged within modules, along with the all-oral individual examination regimen employed in this Electronics MSc Suite, have proven solidly beneficial in refining the communication and employability-enhancing skills that are strongly valued by industry.

Read less
This programme offers distinct specialisation areas in electronics. analogue VLSI design, bioelectronics and analogue and digital systems. Read more

Programme description

This programme offers distinct specialisation areas in electronics: analogue VLSI design, bioelectronics and analogue and digital systems.

In analogue VLSI design, our facilities include a unique custom designed analogue integrated circuit specifically designed to support laboratory based teaching. Our advanced design and prototyping laboratories, advanced micro and nano fabrication facilities and state-of-the-art digital system laboratories use the latest industry standard software tools.

Alternatively, students may specialise in the emergent discipline of bioelectronics where our research and teaching interests include access to the fabrication facilities at the Scottish Microelectronics Centre. For students who wish to study a more general electronics course including digital systems, a prescribed course selection is available.

Programme structure

This programme is run over 12 months, with two semesters of taught courses, with a number of options, followed by a research project, leading to a masters thesis.

Semester 1 courses:
Analogue IC Design
Analogue VLSI A
Discrete-Time Signal Analysis
Power Electronics
Principles of Microelectronic Devices
Digital Systems Laboratory A
Introduction to Bioelectronics
Biosensors

Semester 2 courses:
Digital System Design
Digital Systems Laboratory
Research Project Preparation
Electronic/Electrical Engineering System Design
Analogue VLSI B
Sigma Delta Converters
Analogue Circuit Design
Microfabrication Techniques
Biosensors and Instrumentation
Lab-on-Chip Technologies
Biomedical Imaging Techniques
Embedded Mobile and Wireless Systems
Modern Economic Issues in Industry
Technology and Innovation Management

Career opportunities

You will gain significant practical experience in analogue and digital laboratories and become familiar with the latest industry standard design software and environments. Having been exposed to concepts such as design re-use and systems on chip technology, you will be able to cooperate with others in electronic system design.

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

- Robot Detectives
LSBU holds an international reputation as a world leader in the use of robotics in non-destructive testing and developing intelligent robotic systems. Groundbreaking projects have ranged from building wall climbing robots to robots that work under water and oil.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechatronics-robotics-engineering-msc

Modules

- Embedded system design
This module shows you how to design and implement an Embedded System on a single IC. You will learn about the basics and the benefits of all programmable devices. The SOC (System on Chip) process flow is explained for FPGAs (Field Programmable Gate Arrays) stressing the role played by the Hardware Description Languages (HDL). The accompanying workshops demonstrate the use of tools and methodologies as well as the programming, verifying and protecting your designs. We use the commercial software Quartus II and QSYS and the hardware development platform DE2 by Altera.

- Individual project
The individual project is a major element of the course. It involves a wider spectrum of multidisciplinary research in design, manufacturing systems, quality management and IT, with due regard to the efficient exploitation of the technology, materials and marketing resources of industrial firms. Students are encouraged to work on industrial-based projects.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based workshops to inculcate the principles of machine learning and classification. The module covers: Bayesian decision theory, parametric density estimation, linear discriminant functions, perceptrons, support vector machines, neural networks and clustering.

- Microprocessor-based control and robotics
This module will provide information allowing you to critically evaluate and make the right choice of the microprocessor that will be at the heart of your embedded system. To this effect we provide a thorough discussion and qualitative comparison of the various microprocessor architectures and the methods of the software development available to you. The workshop assignments involve interfacing 8 and 32 bit microcontrollers to a wide range of devices, including robotic manipulators and control/measurement instrumentation.

- Electromechanical systems and manufacturing technology
This module consists of two parts. The first part covers the design of electromechanical components of the embedded system. The material presented here derives from the fields of Mechatronics and Robotics. The second part provides information on modern developments in the field of materials and the manufacturing. Examples of topics covered include applications of nano-technology, use of polymers and composites. Manufacturing techniques are described together with process modelling and control that is essential to produce the material to the required specification.

- Technology evaluation and commercialisation
This module includes: research product idea generation; product definition and value proposition; market research and assessment; functional assessment of product concepts; and strategic assessment of commercial viability.

- Technical, research and professional skills
This module includes: an introduction to project management, project planning, research project characteristics, ethics, feasibility analysis of requirements and resources; research methods; stages in project management; modelling and optimisation tools (PERT and CPM); technical report writing.

- Robotics
This module introduces you to the basic elements and principles of modern robotics. You'll gain a thorough theoretical and practical understanding of the fundamental concepts of this important and fast developing field. Essential geometric concepts will be introduced and these will be applied to the analysis and control of several different types of machines. A key feature of the module will be the wide range of robotic devices studied, from industrial serial manipulators, through mobile robots to quadcopters. The workshop for this modules includes various topics such as Robot Programming, Path Planning, Mapping and Localisation.

- MSc project
The individual project is a major element of the course. We offer a supervision of projects from a wide spectrum of either specialized or multi-disciplinary topics. There are opportunities for individual-centered projects as well for the student being allocated specific tasks within a larger research effort. Students are encouraged to work on industrial-based projects under joint supervision with their employer.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University after time working in industry

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Read less
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling. Read more
Our MSc Computational Finance equips you with the core concepts and mathematical principles of modern quantitative finance, plus the operational skills to use computational packages (mainly Matlab) for financial modelling.

We provide practical, hands-on learning about how modern, highly computerised financial markets work, how assets should be priced, and how investors should construct a portfolio of assets. In addition to traditional topics in derivatives and asset pricing, we place a special emphasis on risk management in non-Gaussian environment with extreme events.

You master these areas through studying topics including:
-Non-linear and evolutionary computational methods for derivatives pricing and portfolio management
-Applications of calculus and statistical methods
-Computational intelligence in finance and economics
-Financial markets

You also graduate with an understanding of the use of artificial financial market environments for stress testing, and the design of auctions and other financial contracts.

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation.

Our research is geared towards real-world, practical applications, and many of our academic staff have experience of applying their findings in industry and in advising the UK government.

This course is also available on a part-time basis.

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Financial Engineering and Risk Management
-Introduction to Financial Market Analysis
-Learning and Computational Intelligence in Economics and Finance
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Big-Data for Computational Finance (optional)
-Industry Expert Lectures in Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Artificial Neural Networks (optional)
-High Frequency Finance and Empirical Market Microstructure (optional)
-Machine Learning and Data Mining (optional)
-Trading Global Financial Markets (optional)
-Creating and Growing a New Business Venture (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Constraint Satisfaction for Decision Making (optional)

Read less
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. Read more
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. The resulting growth in mobile and satellite communications industries has created a high demand for graduates with expertise in the key areas of digital, mobile and satellite communications and networking.

With significant input from industry, this course produces highly competent graduates who can fill key positions and play leading roles in shaping this rapidly evolving field. By graduation, you will be well-equipped to develop new engineering applications for the next generation of communication systems. You will also be given the chance to undertake a six-month unpaid internship*.

Your studies will include advances in antennas and propagation, digital transmission, satellite communications, mobile communications, satellite networks, wireless applications, digital signal processing and product management. All this is enriched with seminars, field trips and a period of internship* in industry. You will also learn to use the latest engineering design tools, including the Systems ToolKit (STK) used by NASA for planning space missions.

Routes of study:
The course is available to study via two routes:
- MSc Mobile and Satellite Communications (with internship)
- MSc Mobile and Satellite Communications (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1431-msc-mobile-and-satellite-communications-with-internship

What you will study

You will study the following modules:
- Mobile Communication Technologies
- Satellite Communications
- Digital Communications Systems
- Applied Digital Signal Processing
- Product Management and Integrating Case Studies
- Six month Internship
- MSc Major Project

Optional modules:
- Wireless and Personal Communications
- Satellite Networking

Learning and teaching methods

You will be taught through lectures, tutorials and workshops involving hands-on systems modelling and simulations using state-of-the-art hardware and software facilities. Students will also engage in supervised research supported by full access to world-class online and library facilities.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:

MSc Mobile and Satellite Communications (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Mobile and Satellite Communications (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Advancements in technology such as the increased use of Wi-Fi, are creating exciting career opportunities for graduates with the right skills. Graduates of this Masters award can enter the telecommunications industry in many different roles, conduct research or work towards a PhD.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Mobile and Satellite Communications (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 25 internship places available. Students who wish to undertake an internship must apply for the MSc Mobile and Satellite Communications (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Mobile and Satellite Communications (without internship) which is a shorter programme.

Assessment methods

Each of the six taught modules is typically assessed through 50% coursework and 50% closed-book class test. The major project is assessed through presentation to a panel of examiners, viva and written report.

Facilities

A state-of-the-art University library gives you access to most of the world’s leading publications. Other major facilities include a Cisco Academy networking laboratory, a Wireless Communications laboratory including a 1-65 GHz anechoic chamber and a satellite communication earth station, and a Communication Systems simulation laboratory equipped with PCs running the latest versions of MATLAB, SIMULINK, STK and other software.

In addition, we have recently opened a Calypto lab, which has software licences and support for the Catapult C toolset. This is used to develop advanced electronic products, such as the next generation of smart phones, more quickly and cost-effectively and to help engineers overcome design challenges in the increasingly complex world of board and chip design. The lab is sponsored by Calypto Design Systems Inc, a leader in electronic design automation. We are one of only four UK universities and 60 universities globally that have been granted permission to use the software worth £1.9m.

The new Renesas Embedded Systems lab comprises 25 new high-end terminals running cuttingedge tools. The facility was designed in collaboration with Renesas, the world’s leading supplier of microcontrollers, whose sponsorship helps ensure that students are always working with the latest technologies and development tools.

Teaching

The course is led by Professor Otung, a Chartered Engineer and internationally acclaimed author of Communication Engineering textbooks used in leading universities around the world, and supported by an impressive and highly-qualified teaching and supervision team. Generations of graduates from this course speak very highly of not only the cutting-edge expertise and technical skills that they developed on the course but also of the inspiration, professionalism and friendship of the entire teaching team.

Read less
Electronics and information technology are vital for global industries to function, and career opportunities continue to increase in the sector. Read more
Electronics and information technology are vital for global industries to function, and career opportunities continue to increase in the sector. This course will develop your ability to manage new technologies and ensure high levels of product quality. It is ideal if you want a career in the electronics or IT industry, or if you already work in the engineering industry and want to enhance your potential.

With this flexible Masters programme, you can tailor your qualification to suit your individual needs and build on your existing studies and experience. The course includes a 15-week project, which you may conduct in industry* and could lead to job opportunities when you graduate. You will work on industrial case studies and be involved in ‘live’ mini-projects. If you study part-time and continue working in the electronics industry, you may be able to relate your major project to an aspect of your company’s work.

*Subject to a suitable placement being obtained by the student and an appropriate project being agreed between the company and the University.

See the website http://courses.southwales.ac.uk/courses/415-msc-electronics-and-information-technology

What you will study

Modules include Product Management and ICS, and a Major Project.

You will then select the rest of your study programme in discussion with the scheme manager. At least three of the modules selected must be from the area of electronics.

Learning and teaching methods

The course is delivered in three major blocks to offer an intensive but flexible learning pattern, with two start points each year – February and September. There are six taught modules and a 15-week major project. If you study part-time, you will complete three modules in year one and three in year two. Year three will consist of the Major Project.

Work Experience and Employment Prospects

On graduation from this course, there are many exciting engineering and management careers open to you. These range from design and development of the latest electronic products, to the application of information technology to support industrial applications.

Assessment methods

Typically, each module will be assessed through 50% coursework and 50% tests in class.

Facilities

In addition to providing dedicated Mac and PC labs, we have specialist facilities for the whole range of courses. We’ve recently opened a Calypto lab, which has software licences and support for the Catapult C toolset. This is used to develop advanced electronic products, such as the next generation of smart phones, more quickly and cost-effectively and to help engineers overcome design challenges in the increasingly complex world of board and chip design. The lab is sponsored by Calypto Design Systems Inc, a leader in electronic design automation. We are one of only four UK universities and 60 universities globally that have been granted permission to use the software, worth £1.9m.

The Faculty’s new Renesas Embedded Systems lab comprises 25 new high-end terminals running cuttingedge tools. The facility was designed in collaboration with Renesas, the world’s leading supplier of microcontrollers, whose sponsorship helps ensure that students are always working with the latest technologies and development tools.

Read less
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems. Read more
This Masters in Computer Systems Engineering exposes students to state-of-the-art miniaturised and mobile computer systems and smart device technology, allowing them to acquire the complementary hardware and software knowledge and skills required for understanding and designing such systems.

Why this programme

◾You will be taught jointly by the Schools of Engineering and Computing Science. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are a computer engineering graduate, this programme will enhance your knowledge; if you are an electronic engineering graduate you can focus on developing your software skills; or if you are computer science graduate you can focus on developing your hardware skills.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the MSc in Computer Systems Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses
◾Digital signal processing
◾Either networked systems or computer communications
◾Human–computer interaction
◾Software and requirements engineering
◾MSc project.

Optional courses typically include
◾Advanced operating systems
◾Artificial intelligence
◾Computer architecture
◾Digital communications 4
◾Human-centred security
◾Information retrieval
◾Internet technology
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Real time embedded programming
◾Safety critical systems.

Projects

◾In addition to taught work and practical assignments you will also complete a joint research project worth 60 credits in one of the state-of-the-art laboratories in the schools.
◾This extended project is an integral part of the MSc programme: many of these are linked to industry while others are related to research in either of the participating Schools.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Computer Systems Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾As computer systems have reduced in size, and are increasingly mobile with more complex functionalities, they are now a fundamental component of smart device technology.
◾This postgraduate programme is particularly suited to acquiring the complementary hardware and software knowledge and skills required for understanding and designing such systems.
◾The programme makes use of the combined resources and complementary expertise of the engineering and computing science staff to deliver a curriculum which is relevant to the needs of industry.
◾The School of Computing Science has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Computer Systems Engineering include: IBM, J.P. Morgan, Amazon, Adobe and Red Hat.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the computer/software industry.
◾The Computer Systems Engineering MSc programme also provides excellent preparation for those wanting to pursue a PhD in a similar research field.

Career prospects

Career opportunities include positions in software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence and services for the heavy industries, for example generator and industrial motor control systems, etc.

Read less
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics. Read more
This Masters in Electronics & Electrical Engineering is designed for both new graduates and more established engineers. It covers a broad spectrum of specialist topics with immediate application to industrial problems, from electrical supply through systems control to high-speed electronics.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾If you are an electronics and electrical engineering graduate wanting to improve your skills and knowledge; a graduate of another engineering discipline or physical science and you want to change field; looking for a well rounded postgraduate qualification in electronics and electrical engineering to enhance your career prospects, this programme is designed for you.
◾The MSc in Electronics and Electrical Engineering includes lectures on "Nanofabrication", "Micro- and Nanotechnology", "Optical Communications" and "Microwave and Millimetre Wave Circuit Design", "Analogue CMOS circuit design", VLSI Design and CAD", all research areas undertaken in the James Watt Nanofabrication Centre.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake*.

*For suitably qualified candidates.

Programme structure

Modes of delivery of the MSc in Electronics and Electrical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will undertake a project where you will apply your newly learned skills and show to future employers that you have been working on cutting-edge projects relevant to the industry.

Courses include

(six normally chosen)
◾Bioelectronics
◾Computer communications
◾Control
◾Digital signal processing
◾Electrical energy systems
◾Energy conversion systems
◾Micro- and nano-technology
◾Microwave electronic and optoelectronic devices
◾Microwave and millimetre wave circuit design
◾Optical communications
◾Power electronics and drives
◾Real-time embedded programming
◾VLSI design
◾MSc project.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronics and Electrical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾This programme is aimed at training new graduates as well as more established engineers , covering a broad spectrum of specialist topics with immediate application to industrial problems.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronics and Electrical Engineering include: Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, software development, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
The Master’s programme in Electronics Engineering focuses on the design of integrated circuits and System-on-Chip in advanced semiconductor technologies. Read more
The Master’s programme in Electronics Engineering focuses on the design of integrated circuits and System-on-Chip in advanced semiconductor technologies. This requires a broad spectrum of knowledge and skills across many fields within engineering and science, far beyond the curriculum of traditional electronics education. The programme provides a competitive education in digital, analogue and Radio Frequency (RF) integrated circuits (IC) and System-on-Chip (SoC) design, combined with in-depth knowledge in signal processing, application specific processors, embedded systems design, modern communications systems and radio transceivers design.

The modern society depends to a large extent on reliable and efficient electronics. Mobile phones, internet, PCs and TVs are just a few examples that constantly improve in terms of functionality, performance and cost. In addition, there is a growing number of concepts and technologies which will significantly improve areas such as: mobile and broadband communications, healthcare, automotive, robotics, energy systems management, entertainment, consumer electronics, public safety and security, industrial applications and much more. This indicates that there will be vast industrial opportunities in the future, and also a high demand for competent engineers with the required knowledge and skills to lead the design of such complex integrated circuits and systems.

The programme is arranged by several strong divisions at the department of Electrical Engineering and the department of Computer and Information Science. These groups, which include more than 60 researchers and 10 internationally recognized professors, have excellent teaching experience, world-class research activities which cover nearly the entire field of integrated electronic design, state-of-the-art laboratories and design environments, as well as close research collaboration with many companies worldwide.

The programme starts with courses in wireless communication systems, digital integrated circuits, digital system design, analogue integrated circuits and an introduction to radio electronics, providing a solid base for the continuation of the studies. Later on, a large selection of courses provides two major tracks of studies, including common and specific courses. The tracks are:
System-on-Chip with focus on digital System-on-Chip design and embedded systems.
Analogue/Digital and RF IC design with emphasis on the design of mixed analogue/digital and radio frequency integrated circuits.

The programme offers several large design project courses, giving excellent opportunities for students to improve their design skills by using the same state-of-the-art circuit and system design environments and CAD tools that are used in industry today. For instance, in the project course VLSI Design students will design real chips using standard CMOS technology that will be sent for fabrication, measured and evaluated in a follow-up course. Only few universities in the world have the know-how and capability to provide such courses.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Logic and Computation at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Logic and Computation at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Logic is the basis for reasoning about what we can express and compute, having a profound influence in philosophy, linguistics, mathematics, computer science, and electronics. Since the invention of computers, logic has always been the primary source of ideas and techniques for the theoretical and practical development of programming.

Today, as the scope of programming technologies expands, and the horizon of applications widens, research in logic and its applications in software and hardware development is booming. In industry, formal methods are an integral part of system development, e.g., in automotive electronics, avionics, and chip design.

The MRes Logic and Computation course will teach you about advanced techniques in logic and their applications in research problems in computer science. You will receive an elite education of direct relevance to research and development problems in contemporary information and communication technology (ICT).

Key Features

Teaching score of Excellent.

Highest percentage of top-class researchers of any Computer Science department in Wales – and only 12 in the UK have higher.

70% of the research activity assessed as world-leading or internationally excellent.

Our industrial programme IT Wales which can arrange vacation employment placements.

A state-of-the-art education.

Friendly staff, committed to the highest standards.

A university with high success rate, low drop-out rate, and excellent student support.

Swansea's Library spends more per student on books and other resources than any other university in Wales, and most in the UK.

Course Content

Research Component

The main part of the MRes in Logic and Computation is a substantial and challenging project involving cutting edge research. The completion of such a project will give you the ability and confidence to pursue a successful career in industrial research and development, or to proceed to academic PhD studies.

Taught Component

In seminars and reading courses you will enter the world of research by studying general topics in theoretical computer science as well as special topics for your research project. Guided by your supervisor you will conquer new technical subjects and learn to critically assess current research.
Lecturers and students will meet regularly to discuss recent developments and give informal talks. Topics of the seminars are chosen in accordance with the research projects, and will cover material such as:

Theorem proving techniques
Formal program verification
Algebraic and coalgebraic specification
Modelling of distributed systems
Advanced methods in complexity theory
Additionally you will choose selected taught modules covering important topics such as Critical Systems, IT Security, Concepts of Programming
Languages, Artificial Intelligence Applications, Design Patterns and Generic Programming.

Facilities

The Department is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

90% of Swansea’s Computer Science graduates are in full-time employment or further study within six months of graduating (HESA June 2011).

Some example job titles from the HESA survey 2011:

Software Engineer: Motorola Solutions

Change Coordinator: Logica

Software Developer/Engineer: NS Technology

Workflow Developer: Irwin Mitchell

IT Developer: Crimsan Consultants

Consultant: Crimsan Consultants

Programmer: Evil Twin Artworks

Web Developer & Web Support: VSI Thinking

Software Developer: Wireless Innovations

Associate Business Application Analyst: CDC Software

Software Developer: OpenBet Technologies

Technical Support Consultant: Alterian

Programming: Rock It

Software Developer: BMJ Group

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling. Read more
On our MSc Algorithmic Trading, we equip you with the core concepts and quantitative methods in high frequency finance, along with the operational skills to use state-of-the-art computational methods for financial modelling.

We enable you to attain an understanding of financial markets at the level of individual trades occurring over sub-millisecond timescales, and apply this to the development of real-time approaches to trading and risk-management.

The course includes hands-on projects on topics such as order book analysis, VWAP & TWAP, pairs trading, statistical arbitrage, and market impact functions. You have the opportunity to study the use of financial market simulators for stress testing trading strategies, and designing electronic trading platforms.

In addition to traditional topics in financial econometrics and market microstructure theory, we put special emphasis on areas:
-Statistical and computational methods
-Modelling trading strategies and predictive services that are deployed by hedge funds
-Algorithmic trading groups
-Derivatives desks
-Risk management departments

Our Centre for Computational Finance and Economic Agents is an innovative and laboratory-based teaching and research centre, with an international reputation for leading-edge, interdisciplinary work combining economic and financial modelling with computational implementation. We are supported by Essex’s highly rated Department of Economics, School of Computer Science and Electronic Engineering, and Essex Business School.

We are ranked Top 10 in the UK in the 2015 Academic Ranking of World Universities, with more than two-thirds of our research rated ‘world-leading’ or ‘internationally excellent (REF 2014).

Professional accreditation

This degree is accredited by the Institution of Engineering and Technology (IET).This accreditation is increasingly sought by employers, and provides the first stage towards eventual professional registration as a Chartered Engineer (CEng).

Our expert staff

This course is taught by experts with both academic and industrial expertise in the financial and IT sectors. We bring together leading academics in the field from our departments of economics, computer science and business.

Our staff are currently researching the development of real-time trading platforms, new financial econometric models for real-time data, the use of artificially intelligent agents in the study of risk and market-based institutions, operational aspects of financial markets, financial engineering, portfolio and risk management.

More broadly, our research covers a range of topics, from materials science and semiconductor device physics, to the theory of computation and the philosophy of computer science, with most of our research groups based around laboratories offering world-class facilities.

Specialist facilities

We are one of the largest and best resourced computer science and electronic engineering schools in the UK. Our work is supported by extensive networked computer facilities and software aids, together with a wide range of test and instrumentation equipment.
-We have six laboratories that are exclusively for computer science and electronic engineering students. Three are open 24/7, and you have free access to the labs except when there is a scheduled practical class in progress
-All computers run either Windows 7 or are dual boot with Linux
-Software includes Java, Prolog, C++, Perl, Mysql, Matlab, DB2, Microsoft Office, Visual Studio, and Project
-Students have access to CAD tools and simulators for chip design (Xilinx) and computer networks (OPNET)
-We also have specialist facilities for research into areas including non-invasive brain-computer interfaces, intelligent environments, robotics, optoelectronics, video, RF and MW, printed circuit milling, and semiconductors

Your future

We have an extensive network of industrial contacts through our City Associates Board and our alumni, while our expert seminar series gives you the opportunity to work with leading figures from industry.

Our recent graduates have gone on to become quantitative analysts, portfolio managers and software engineers at various institutions, including:
-HSBC
-Mitsubishi UFJ Securities
-Old Mutual
-Bank of England

We also work with the university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-CCFEA MSc Dissertation
-Big-Data for Computational Finance
-High Frequency Finance and Empirical Market Microstructure
-Introduction to Financial Market Analysis
-Professional Practice and Research Methodology
-Quantitative Methods in Finance and Trading
-Trading Global Financial Markets
-Cloud Technologies and Systems (optional)
-Constraint Satisfaction for Decision Making (optional)
-Creating and Growing a New Business Venture (optional)
-Digital Signal Processing (optional)
-Evolutionary Computation and Genetic Programming (optional)
-Financial Engineering and Risk Management (optional)
-High Performance Computing (optional)
-Industry Expert Lectures in Finance (optional)
-Learning and Computational Intelligence in Economics and Finance (optional)
-Mathematical Research Techniques Using Matlab (optional)
-Programming in Python (optional)
-Text Analytics (optional)

Read less
The applications of embedded systems can be found in all sectors of the economy. consumer electronics, car industry, media and process industries and also banking and commerce. Read more

Course Summary

The applications of embedded systems can be found in all sectors of the economy: consumer electronics, car industry, media and process industries and also banking and commerce. This course will equip you with the key skills required to design embedded systems. This includes hardware design and verification, real-time computing, embedded processors with extensive practical use of cutting-edge and industry-standard tools and methods. You will be taken through the embedded system design process, from concept to implementation and testing.

Modules

Semester one: Real-Time Computing and Embedded Systems; Digital System Design; System on Chip Design Techniques; Digital Coding and Transmission; Signal Processing

Semester two: Project Preparation, Embedded Processors; Formal Design of Systems; Personal Multimedia Communications; Advanced Systems and Signal Processing; Cryptography

Visit our website for further information...



Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X