• University of Glasgow Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Southampton Solent University Featured Masters Courses
Coventry University Featured Masters Courses
University of Kent Featured Masters Courses
"chemometrics"×
0 miles

Masters Degrees (Chemometrics)

  • "chemometrics" ×
  • clear all
Showing 1 to 10 of 10
Order by 
Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Read more

Chemistry: Molecular Chemistry

Molecular chemistry is a creative science, where chemists synthesize molecules with new biological or physical properties to address scientific or societal challenges. Think of new catalytic conversions, lead compounds for future medicines or the next generation of conducting polymers. The specialisation Molecular Chemistry offers education in connection with top-level research in the Institute for Molecules and Materials (IMM), enabling you to develop in-depth knowledge of the design, synthesis and characterization of unprecedented functional molecular structures.

See the website http://www.ru.nl/masters/chemistry/molecular

Why study Molecular Chemistry at Radboud University?

- The IMM at Radboud University hosts an internationally renowned cluster of molecular chemistry groups, where you will participate in challenging research projects.
- The IMM Organic Chemistry department was recently awarded a 27 million euro NWO Gravity programme grant. Among the teaching staff are two ERC advanced grant and two ERC starting grant winners.
- Teaching takes place in small groups and in a stimulating, personal setting.

Admission requirements for international students

1. A completed Bachelor's degree in Chemistry, Science or a related area
In general, you are admitted with the equivalent of a Dutch Bachelor's degree in Chemistry, Science with relevant subjects, or a related programme in molecular science. In case of other pre-education, students must have passed preliminary examinations containing the subject matter of the following well-known international textbooks (or equivalent literature). Any deficiencies in this matter should be eliminated before you can take part in this specialisation. If you want to make sure that you meet our academic requirements, please contact the academic advisor.
- Organic chemistry: e.g. Organic Chemistry (Bruice)
- Biochemistry: e.g. Biochemistry (Lehninger)
- Physical chemistry: e.g. Physical chemistry (Atkins)
- 30 EC of chemistry or chemistry-related courses at third year Bachelor's level

2. A proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English* without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of >575 (paper based) or >90 (internet based)
- An IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE) with a mark of C or higher

Career prospects

Approximately 40% of our graduates take up a PhD position, either in Nijmegen or elsewhere in the world. Our research institutes, in particular the Institute for Molecules and Materials, have vacancies for PhD projects every year. Our graduates also find work as researchers and managers in the chemical industry, or in one of our spin-off companies. A small proportion will not work in science, but for instance as a policymaker at a governmental organisation.

Our approach to this field

The Master's specialisation in Molecular Chemistry offers main stream chemistry courses and research topics, for those students that aim to deepen their knowledge and experimental skills in the heart of chemistry. The Institute for Molecules and Materials offers a state-of-the-art research infrastructure and hosts world-class research groups where you can conduct independent research, under the personal guidance of a researcher. Often, this leads to a scientific publication with you as a co-author.

Besides an internship in fundamental science, you can also chose to perform research in an industrial environment. Approximately one third of our students do one of their internships in a chemical company, both large (e.g. DSM, Synthon, AkzoNobel) and small (e.g. MercaChem, FutureChemistry, Chiralix).

Interested in going abroad? Contact one of our researchers, they can easily connect you to top groups elsewhere in the world. In the past few years, molecular chemistry students did internships in Oxford (UK), Princeton (US), Berkeley (US), Karolinska Institute (Sweden), ETH Zurich (Switzerland), etc.

Our research in this field

In the Master's specialisation Molecular Chemistry, the unique research facilities that Radboud University has to offer are coupled with the top level research within the Institute for Molecules and Materials (IMM). A selection of research groups for this specialisation are:
- Synthetic organic chemistry (Prof. Floris Rutjes): The group focuses on the development of new and sustainable synthetic (multistep)reactions by using bio-, organo- or metal-catalysts or combinations thereof, synthesis of druglike compound libraries, synthesis of bio-orthogonal click-reactions and chemical synthesis in continuous flow microreactors

- Analytical chemistry (Prof. Lutgarde Buydens): Research involves new chemometric methodologies and techniques for the optimisation of molecular structures. The research programme is designed around four areas: Methodological chemometrics, spectroscopic image analysis, molecular chemometrics, and analysis of genomics, metabolomics and proteomics data.

- Bio-organic chemistry (Prof. Jan van Hest): This groups uses Nature as inspiration for the design of functional molecules. Research lines that fit in this specialisation include: design and synthesis of modified peptides to alter their biological function, hybrid polymers containing biomolecules for use as antibacterial materials, and smart compartmentalisation strategies to enable multi-step reactions in a single reaction flask.

- Molecular materials (Prof. Alan Rowan): The aim of the group is the design and synthesis of novel polymers, self-organising molecules and ordered crystals and the subsequent investigation of their properties. Research topics related to his specialisation are: functional systems for application in catalysis, new OLEDS (organic LEDS), and liquid crystals.

See the website http://www.ru.nl/masters/chemistry/molecular

Read less
Do you want to take up a career in research and development? We’re recruiting ambitious students with degrees in Chemistry, Physics, Life Sciences, Engineering, Mathematics or Statistics. Read more
Do you want to take up a career in research and development? We’re recruiting ambitious students with degrees in Chemistry, Physics, Life Sciences, Engineering, Mathematics or Statistics.

We offer you a coherent training programme in Analytical Science, a central and interdisciplinary science which supports research and development in a huge number of key industries. Analytical Science underpins many aspects of biological and clinical sciences,environmental sciences, pharmaceutical sciences, materials science and synthetic chemistry. This course offers expertise from international experts within academia and collaborating companies like Syngenta and AstraZeneca.

You’ll gain hands-on experience in a variety of relevant techniques, enabling you to work in any modern laboratory since the skills you acquire will be readily transferable between disciplines. You’ll also have an incredible opportunity to undertake cutting-edge research with a world-leading group or company. By the end of the course you’ll be positioned to take up employment in research and development roles within a number of sectors, or to take up further study with a PhD.

Structure

The course spans 1 year, the first 23 weeks are lecture-based, providing you with a diverse toolbox in analytical sciences enabling you to complete a successful 20 week research project.
Term 1 and Term 2 (23 weeks):
-Mass Spectrometry
-Chromatography & Separation Science
-Team Research Project: Real World Analysis
-Electrochemistry & Sensors
-Principles & Techniques in Quantitative and Qualitative Analysis
-Magnetic Resonance
-Techniques for the Characterisation of Biomolecules
-Microscopy & Imaging
-Statistice for Data Analysis
-Transferable Skills

Then choose 1 of:
-Advanced Electron Microscopy - Theory & Practice
-Advanced Statistics & Chemometrics

Research Project (20 weeks):
-Immerse yourself in a real research project, supervised by our renowned academics.

Read less
Quality by Design (QbD) is based on the application of product and process sciences, from early-to-late stages of the product development cycle, to provide accelerated regulatory submission pathways for new drug applications. Read more
Quality by Design (QbD) is based on the application of product and process sciences, from early-to-late stages of the product development cycle, to provide accelerated regulatory submission pathways for new drug applications.

•This is the first MSc dedicated to the new QbD approach to pharmaceutical process and product development
•QbD instils quality into the product while it is being developed and manufactured rather than waiting for post-production testing
•This forms part of a major initiative, being driven and supported by US, EU, and Japanese regulatory authorities, and defined within the Q8, Q9 and Q10 Guidelines from the International Committee on Harmonization (ICH)
•Benefit from investment in new, dedicated good manufacturing practice laboratories, links to the pharmaceutical industry and involvement of industrial practitioners in our course design and delivery

The course contains areas of core knowledge and skills with an emphasis on application of ‘Quality by Design’ principles and continuous improvement activities to the development and manufacture of pharmaceutical products. The course has been structured to ensure you have a coherent and balanced programme of study in the following areas:

• Principles and Practices of Quality by Design
• Product Design: Pre-formulation and Formulation
• Analytical Techniques in Materials Science
• Process Design, Control and Manufacturing
• Advances in Drug Delivery
• Biopharmaceuticals
• Process Analytical Technology and Chemometrics
• Experimental Design and Research Methods

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr02/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits) or

Research Project Nodule (30 credits)

CM6022 Research Project and Dissertation in Pharmaceutical Analysis (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr03/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6026 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)

Elective modules

EV4002 Environmental Monitoring (10 credits)
PF6301 Biopharmaceuticals: Formulation Design, Secondary Processing and Regulatory Compliance (10 credits)

Research Project Module (30 credits)

CM6020 Research Project and Dissertation in Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. Read more
MSc degree courses are provided in three key areas of Analytical Chemistry, Environmental Analytical Chemistry and in Pharmaceutical Analysis. They are designed to provide advanced knowledge and hands-on training in modern analytical instrumental techniques. Separation science, sensors, and spectroscopic techniques are key elements alongside chemometrics, instrumentation and advanced research project completion. You will have the flexibility to specialise in a chosen field and further advancement to PhD research is available to highly motivated and talented postgraduates.

Visit the website: http://www.ucc.ie/en/ckr04/

Course Details

On completion of this course, you will be able to:

- identify, formulate, analyse and solve problems in the analysis of chemical compounds
- outline fundamental and applied aspects of chemical analysis
- design and carry out a method of pharmaceutical and chemical analysis, including instrumental analysis
- prepare written laboratory reports that provide a description of the experiment, explain the experiment and reasoning clearly, and provide an appropriate conclusion
- communicate effectively with the chemistry, environmental and pharmaceutical communities
- carry out research and method development in chemical, pharmaceutical and environmental analysis
- prepare a written research report in the form of a dissertation

Format

The courses consist of a 12 month full-time intensive programme of lectures, laboratory work on set experiments and a dissertation based on individual research and development in the selected field of modern analytical science, under the supervision of an expert staff member. Part-time students may complete the course over 24 months subject to flexible day release from industry.

Core modules

CM6012 Modern Analytical Techniques, Chemical Data Analysis and GLP (10 credits)
CM6013 Separation Science, Sensors and Process Analytical Technology (10 credits)
CM6014 Materials, Pharmaceutical and Bio-analysis (10 credits)
CM6015 Practice of Analytical Chemistry (10 credits)
CM6027 Industry Led Workshops (5 credits)
CM6027 Taught Postgraduate Transferable Skills Development (5 credits)
EV4002 Environmental Monitoring (10 credits)

Research Project Module (30 credits)

CM6021 Research Project and Dissertation in Environmental Analytical Chemistry (30 credits)

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#analysis

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees. Students also have the opportunity to travel aboard to do their research project. This highlights the international recognition of the course and the close links established between the course and the relevant institutes.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in future careers as PhD researchers, research projects are offered across a broad range of topics.

Careers

The MSc courses aim to provide you with the necessary skill set to develop methods and solve problems as demanded by many industries today (including pharmaceutical, environmental and forensic analytical laboratories). You are also introduced to research and innovation in analytical science.

Many analytical chemists, pharmaceutical chemical analysts and environmental chemical analysts go on to pursue careers in industry, government and forensic laboratories and opportunities for further research often result.

The course sets out to bridge the gap between the current undergraduate degree knowledge and what is relevant and expected by industry. There is a strong emphasis on developing transferable skills and ensuring that the career path for the student is either industry or academically focused. A large percentage of students gain employment in industry after completion of the course, however a number of graduates also decide to progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Designed in close collaboration with industry, this programme takes a theoretical and a practical approach to ensure it meets the requirements of potential employers. Read more
Designed in close collaboration with industry, this programme takes a theoretical and a practical approach to ensure it meets the requirements of potential employers.

The interdisciplinary nature of the MSc makes it suitable for applicants from a wide variety of engineering and scientific backgrounds. It is appropriate for you if you wish to enter, or enhance, a technical career in the petroleum, oil and gas industry.

This MSc is studied full-time over one year starting in September and comprises two semesters of taught modules followed by an individual research project.

This programme integrates important, current and employer relevant themes and enables students to acquire knowledge and skills across a wide range of appropriate topics for petroleum, oil and gas technology, with an emphasis upon chemical engineering applications.

This MSc is taught by lectures, practical experiments and design projects, supported by problem classes and tutorials. Laboratory-based work is an important part of the programme and takes a number of forms, from experimental investigation carried out individually in a short period of time, to extended group project work in which teamwork, project management and communication skills are as important as technical proficiency.

Core modules

• Energy Technologies
• Advanced Process Safety and Control
• Industrial Management, Research Skills and Project Planning
• Advanced Process Simulation and Modelling Techniques
• Petroleum and Petrochemical Engineering
• Chemometrics for Engineers
• Petroleum, Oil and Gas: Chemical Engineering Technologies MSc Project

The focus on technology, its applications, uses and refinements, are novel features of this programme.

Our campus is ideally situated in the Humber region, which is home to more than 350 companies involved in the chemical and allied industries including ConocoPhillips, BP Chemicals, Total, Reckitt Benckiser and Smith and Nephew.

As a student on the MSc, you will gain access to some of the best facilities in the UK including the Centre for Assessment of Technical Competency (CATCH). This £8 million centre provides a fantastic opportunity to experience realistic equipment and operating procedures.

We work closely with industry to ensure the standard of our teaching keeps pace with advances in the profession. For this reason, our engineering graduates are highly soughtafter by all employment sectors.

The School’s continued development of chemical engineering-related provision has the support of the chemical and process engineering’s professional body, the IChemE.

Research areas

The School focuses on the application of research to solve real-world problems by taking a multi-disciplinary approach. Specialist research activities in a broad range of chemical engineering topics are currently being undertaken and include: process simulation; energy utilisation; carbon capture and sequestration; oil and gas engineering; heat transfer and fluid dynamics.

Read less
This programme offers the opportunity to gain a qualification by following a structured route in scientific research. It is closely linked with parallel MPhil and PhD programmes of work. Read more
This programme offers the opportunity to gain a qualification by following a structured route in scientific research. It is closely linked with parallel MPhil and PhD programmes of work. Students can select from a wide range of theory courses appropriate to their individual research topic across the disciplines of chemical and life sciences. The programme comprises taught courses (60 credits) and a research project (120 credits) and is suitable for students who want to gain a postgraduate research qualification and strengthen their practical skills. The research project may be partially assessed by the publication of an original paper rather than a traditional thesis. The programme is designed to provide a comprehensive insight into the mechanics of research from both the literature and experimental perspectives. On successful completion of the programme, students are able to critically assess the primary research literature in depth, and appreciate the significance of the economic, environmental and social impact of research and development in a competitive industrial world. They can also design and carry out experiments to test hypotheses, and compose and present scientific information for publication purposes. The university has an extensive network of overseas contacts, with staff based in, or regularly visiting, some 40 to 50 countries. Overseas students are able to obtain an MSc by Research by attending classes for three to four months in the UK, with a project based and supervised in their own country, subject to approval by the Faculty of Engineering and Science.

The aims of the programme are:

- To provide a critical understanding of the knowledge base required for a proposed research project

- To provide and build upon analytical, conceptual and research skills

- To achieve an understanding of the research methods appropriate to the chosen field

- To undertake a critical investigation of an approved topic.

Visit the website http://www2.gre.ac.uk/study/courses/pg/res/science

What you'll study

Recent topics include:

Analytical informatics and chemometrics
Biomarker profiling
Biomaterials
Cell biology and intracellular gene delivery
Medicinal chemistry and drug-delivery systems
Nanotechnology
Mass Spectrometry
Pharmaceutical materials science
Biotechnology
GIS and remote sensing
Chemostratigraphy and inorganic forensic fingerprinting
Geography - sustainable development
Landscape ecology
Palaeoenvironmental analysis
Solar energy conversion and hydrogen production

Students must also take 60 credits of Master's level courses in order to obtain the award.

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through coursework and a dissertation or a published original research paper.

Career options

This programme offers opportunities in the public and private sectors.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms. Data plays a role in almost every scientific discipline, business industry or social organisation. Read more
Learning how to turn real-world data sets into tools and useful insights, with the help of software and algorithms.

Data plays a role in almost every scientific discipline, business industry or social organisation. Medical scientists sequence human genomes, astronomers generate terabytes of data per hour with huge telescopes and the police employ seismology-like data models that predict where crimes will occur. And of course, businesses like Google and Amazon are shifting user preference data to fulfil desires we don’t even know we have. There is therefore an urgent need for data scientists in whole array of fields. In the Master’s specialisation in Data Science you’ll learn how to turn data into knowledge with the help of computers and how to translate that knowledge into solutions.

Although this Master’s is an excellent stepping-stone for students with ambitions in research, most of our graduates work as data consultants and data analysts for commercial companies and governmental organisations.

Why study Data Science at Radboud University?

- This specialisation builds on the strong international reputation of the Institute for Computing and Information Sciences (iCIS) in areas such as machine learning, probabilistic modelling, and information retrieval.
- We’re leading in research on legal and privacy aspects of data science and on the impact of data science on society and policy.
- Our approach is pragmatic as well as theoretical. As an academic, we don’t just expect you to understand and make use of the appropriate tools, but also to program and develop your own.
- Because of its relevance to all kinds of different disciplines, we offer our students the chance to take related courses at other departments like at language studies (information retrieval and natural language processing), artificial intelligence (machine learning for cognitive neuroscience), chemistry (pattern recognition and chemometrics) and biophysics (machine learning and optimal control).
- The job opportunities are excellent: some of our students get offered jobs before they’ve even graduated and almost all of our graduates have positions within six months after graduating.
- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Computing Science together with the specialisation in Web and Language Interaction (Artificial Intelligence). This will take three instead of two years.

See the website http://www.ru.nl/masters/datascience

Admission requirements for international students

- A proficiency in English
In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- TOEFL score of >550 (paper based) or >213 (computer based) or >80 (internet based)
- IELTS score of >6.0
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data:
- To come up with a creative and useful solution.
- To find or program the right tool to turn the data into knowledge.
- To communicate the obtained findings to others.

By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

The job perspective for our graduates is excellent. Industry desperately needs data science specialists at an academic level, and thus our graduates have no difficulty in find an interesting and challenging job. A few of our graduates decide to go for a PhD and stay at the university, but most of our students go for a career in industry. They then typically either find a job at a larger company as consultant or data analysis, or start up their own company in data analytics.

Examples of companies where our graduates end up include SMEs like Orikami, Media11 and FlexOne, and multinationals like ING Bank, Philips, ASML, Capgemini, Booking.com and perhaps even Google.

Our approach to this field

Data nowadays plays a role in almost every scientific discipline as well as industry and is rapidly becoming a key driver of scientific discoveries, business innovation, and solutions for societal challenges such as better healthcare. Medical scientists are sequencing and analysing human genomes to uncover clues to infections, cancer, and other diseases. With huge telescopes, astronomers generate terabytes of data per hour to study the formation of galaxies and the evolution of quasars. Businesses like Google and Amazon are sifting social networking and user preference data to fulfill desires we don't even know we have. Police employing seismology-like data models can predict where crimes will occur and prevent them from happening.

It is then with good reason that data science has been called the sexiest job of the 21st century. Many companies complain about the difficulty to find skilled data scientists and predict this to be even harder in the future. A professional data scientist has fine problem-solving, analytical, programming, and communication skills. He or she applies those skills to analyse a problem in the light of the available real-world data, to come up with a creative and useful solution, to find or program the right tool to turn the data into knowledge, and to communicate the obtained findings to others. By combining data, computing power and human intellect, data scientists can make a real difference to help and improve our society.

See the website http://www.ru.nl/masters/datascience

Read less
* One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Read more

Studentships

* One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Studentships will be awarded based on academic merit and are open to all applicants, regardless of fee status (home/EU/overseas). Please indicate 'Data Science' in the first line of your personal statement.

* Two PhD Studentships targeted at successful graduates from this stream. Two 3-year PhD studentships will be on offer, targeted at students obtaining a minimum of a Pass with Merit on the Data Science stream. These studentships will cover the cost of tuition fees for home/EU applicants and a stipend at standard Research Council rates.

Stream overview

The Data Science stream provides an interdisciplinary training in analysis of ‘big data’ from modern high throughput biomolecular studies. This is achieved through a core training in multivariate statistics, chemometrics and machine learning methods, along with research experience in the development and application of these methods to real world biomedical studies. There is an emphasis on handling large-scale data from molecular phenotyping techniques such as metabolic profiling and related genomics approaches. Like the other MRes streams, this course exposes students to the latest developments in the field through two mini-research projects of 20 weeks each, supplemented by lectures, workshops and journal clubs. The stream is based in the Division of Computational and Systems Medicine and benefits from close links with large facilities such as the MRC-NIHR National Phenome Centre, the MRC Clinical Phenotyping Centre and the Centre for Systems Oncology. The Data Science stream is developed in collaboration with Imperial’s Data Science Institute.

Who is this course for?

Students with a degree in physical sciences, engineering, mathematics computer science (or related area) who wish to apply their numeric skills to solve biomedical problems with big data.

Stream Objectives

Students will gain experience in analysing and modelling big data from technologically advanced techniques applied to biomedical questions. Individuals who successfully complete the course will have developed the ability to:

• Perform novel computational informatics research and exercise critical scientific thought in the interpretation of results.
• Implement and apply sophisticated statistical and machine learning techniques in the interrogation of large and complex
biomedical data sets.
• Understand the cutting edge technologies used to conduct molecular phenotyping studies on a large scale.
• Interpret and present complex scientific data from multiple sources.
• Mine the scientific literature for relevant information and develop research plans.
• Write a grant application, through the taught grant-writing exercise common to all MRes streams.
• Write and defend research reports through writing, poster presentations and seminars.
• Exercise a range of transferable skills by taking short courses taught through the Graduate School and the core programme of the
MRes Biomedical Research degree.

Projects

A wide range of research projects is made available to students twice a year. The projects available to each student are determined by their stream. Students may have access from other streams, but have priority only on projects offered by their own stream. Example projects for Data Science include (but are not limited to):

• Integration of Multi-Platform Metabolic Profiling Data With Application to Subclinical Atherosclerosis Detection
• What Makes a Biological Pathway Useful? Investigating Pathway Robustness
• Bioinformatics for mass spectrometry imaging in augmented systems histology
• Processing of 3D imaging hyperspectral datasets for explorative analysis of tumour heterogeneity
• Fusion of molecular and clinical phenotypes to predict patient mortality
• 4-dimensional visualization of high throughput molecular data for surgical diagnostics
• Modelling short but highly multivariate time series in metabolomics and genomics
• Searching for the needle in the haystack: statistically enhanced pattern detection in high resolution molecular spectra

Visit the MRes in Biomedical Research (Data Science) page on the Imperial College London web site for more details!

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X