• University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

Kingston University Featured Masters Courses
Cardiff University Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Leeds Featured Masters Courses
"cheminformatics"×
0 miles

Masters Degrees (Cheminformatics)

We have 2 Masters Degrees (Cheminformatics)

  • "cheminformatics" ×
  • clear all
Showing 1 to 2 of 2
Order by 
This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Read more

This MSc offers a comprehensive guide to all aspects of modern day drug design. It is taught by research scientists, clinicians and industry experts. Our graduates have progressed to undertake or obtain PhDs or medical studentships, or have found employment in both the private and public sector.

About this degree

The programme covers all aspects of drug design, including genomics, bioinformatics, structural biology, cheminformatics, molecular modelling and fragment-based drug design, drug target selection, intellectual property and marketing. New therapies and research areas such as antibodies, siRNA, stem cells and high throughput screening are covered. Students will develop essential skills such as research methods and techniques of drug design.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits) is also offered.

A Postgraduate Certificate (60 credits) is also offered

Core modules

  • Bioinformatics and Structural Biology
  • Target Identification and High Throughput Screening
  • Cheminformatics and Computer Drug Design
  • Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
  • Biophysical Screening Methods, Protein NMR and Phenotypic Screening
  • Fragment Based Drug Design (FBDD)
  • Target Selection - Scientific Grounds
  • Target Selection - Commercial and Intellectual Property

Optional modules

There are no optional modules for this programme.

Dissertation/report

All MSc students undertake an independent research project which can take the form of a wet lab or dry lab computational or modelling based project or an external project with an industrial sponsor.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, self study, practical sessions and discussion groups. The research project forms one third of the programme. Each of the taught modules is assessed by unseen written examination (50%) and coursework (50%). The research project is assessed by the dissertation and viva.

Further information on modules and degree structure is available on the department website: Drug Design MSc

Careers

The programme will provide a good background for students looking to establish a career in drug design/discovery and related industries (biotech, pharma, national research laboratories and NHS agencies), and for industry professionals seeking to gain a greater understanding of new methodology. The knowledge and transferable skills delivered will also be useful for those intent on further PhD or medical studies.

Recent career destinations for this degree

  • Clinical Research Assistant, King's College London
  • Laboratory Analyst, GSK (GlaxoSmithKline)
  • Scientist, AstraZeneca
  • PhD Biochemistry, University of Cambridge
  • PhD Researcher (Molecular Biology), EMBL (European Molecular Biology Laboratory)

Employability

Graduates from this programme have progressed to PhD/medical studentships at different universities and research institutes around the world, including Oxford, UCL, Grenoble, EMBL, and in the USA and China. Many alumni have secured positions in research teaching and technical sales in the private and public sectors.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL is ranked 7th in the QS World University Rankings 2018 and is located in the centre of one of the world's finest cities. UCL is one of Europe's best and largest centres for biomedical research.

At the Wolfson Institute for Biomedical Research, we have pioneered multidisciplinary research with a particular emphasis on translating that research into useful clinical benefit. Our research expertise includes: medicinal chemistry, computational drug design, neuronal development and signalling, cell cycle control, intensive care medicine, stem cells, mitochondrial biology and cancer.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Read more

This programme is offered by the UCL Division of Medicine and the Wolfson Institute for Biomedical Research and is designed for the more research-oriented student, complementing the Drug Design MSc. Conducting cutting-edge research within the drug industries and UCL's academic group, it offers opportunities for networking and future career development.

About this degree

This programme teaches students the latest methodologies and approaches and covers all aspects of drug design: drug discovery, computational and structural biology, screening, assay development, medicinal chemistry, and most importantly the industrial practices involved in modern drug design technology.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (30 credits), three optional modules (45 credits) and a dissertation/report (105 credits).

Core modules

  • Investigating Research
  • Researcher Professional Development

Plus two taught transferable skills modules delivered by CALT (UCL Centre for the Advancement of Learning and Teaching

Optional modules

Students select three of the following.

  • Bioinformatics and Structural Biology as applied to Drug Design
  • Target Identification and High Throughput Screening
  • Cheminformatics and Computer Drug Design
  • Biological Molecules as Therapeutics - Antibodies, siRNA, and Stem Cells
  • Biophysical Screening Methods, Protein NMR and Phenotypic Screening
  • Fragment-based Drug Design
  • Target Selection - Commercial and Intellectual Property Aspects
  • Target Selection - Scientific Grounds

Dissertation/report

All students undertake an independent research project which culminates in a dissertation of 15,000 to 20,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials and problem classes, critical journal clubs and a research project. Assessment is through coursework, practicals, laboratory work, examination, dissertation and oral presentation.

Further information on modules and degree structure is available on the department website: Drug Design MRes

Careers

We expect students graduating from this programme to take leading roles in drug discovery and development worldwide or to undertake further PhD-level research. Drug Design MRes graduates have found jobs in the pharmaceutical industry as well as PhD studentships in leading universities

Employability

The advanced knowledge and skill set acquired by taking this programme will enable students to find employment in the pharmaceutical and biotech industries in a global market.

Why study this degree at UCL?

The division hosts research groups in the areas of medicine, pharmaceutical research, cell cycle, neurobiology, mitochondrial function, stem cells and cancer. Underpinning the translational aspects of the biomedical research, we have a medicinal chemistry group which conducts research where chemistry and biology intersect, using the latest techniques and developing new ones for the study of biological systems.

The division collaborates extensively within industry and academia to develop biological tools and therapeutic agents. There are plenty of opportunities to conduct translational research that has an impact on drug discovery.

Pharmaceutical and biotech companies, well established in the West, have been transferring their research and development to the East. Given these substantial developments, particularly in China and India, the programme will have a broad international appeal.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Division of Medicine

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X