• University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
University of Bradford Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Worcester Featured Masters Courses
Northumbria University Featured Masters Courses
"chemical" AND "risk"×
0 miles

Masters Degrees (Chemical Risk)

  • "chemical" AND "risk" ×
  • clear all
Showing 1 to 15 of 94
Order by 
The MSc programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. Read more
The MSc programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. It is intended for anyone working in process safety, technical safety, safety engineering or nuclear safety within major hazard industries, such as oil and gas, petrochemical, chemical, nuclear, transportation and mining.

Our MSc in Risk and Safety Management (IChemE Process Safety Pathway) is approved by IChemE as meeting the knowledge and understanding requirements for IChemE's Professional Process Safety Engineer qualification.
For students wishing to follow the IChemE Pathway, the PgDip modules must include Physical Effects Modelling, and Incident Investigation Analysis.

Risktec delivers 4 types of postgraduate academic awards via distance learning, in partnership with Liverpool John Moores University (LJMU):
• Masters Degree (MSc) in Risk & Safety Management
• Postgraduate Diploma (PgDip) in Risk & Safety Management
• Postgraduate Certificate (PgCert) in Risk & Safety Management
• Certificate of Professional Development (CPD) for single subject modules

Masters programme in Risk and Safety Management

Our next Masters programme in Risk and Safety Management starts on 1st February 2018 and consists of the following 12 modules, plus a 15,000 word dissertation:

• Principles of Risk Management
• Research Methods in Risk & Safety Management
• Hazard Identification
• Risk Analysis
• Health, Safety & Environmental (HSE) Management Systems
• Risk Reduction & ALARP
• Culture, Behaviour and Competency
• Bowtie Risk Management
• Physical Effects Modelling or HAZOP Study
• Emergency Response & Crisis Management
• Human Factors in Design & Operations
• Incident Investigation & Analysis or Safety/HSE Cases

Each module takes 8 weeks to complete and is delivered online by highly experienced, practising risk and safety management consultants working in the safety-critical, major hazard industries.
Students may enrol on shorter programmes (PgCert or PgDip) and then upgrade to the Masters.
Certain individual modules may also be studied, leading to CPD awards.

Why select a Distance Learning Programme with Risktec?

- Risktec is respected as a leading risk and safety management consulting and education company, with some of the world’s most impressive companies as clients.
- Gaining a formal postgraduate qualification from a recognised institution helps improve your career prospects and could also increase your remuneration.
- A postgraduate qualification helps an inexperienced graduate to prove to a prospective employer their commitment to the field of risk and safety.
- A postgraduate qualification can be a ‘fast-track’ into the growing risk and safety market for people working in related fields.
- An experienced person already working as a risk and safety practitioner will gain a broader and deeper knowledge of the subject, while also achieving formal recognition of their hard earned experience.
- Participants can study at a time that best suits them, working at their own pace and from home.
- Participants gain access to Risktec’s experienced consultant-teachers, as well as the opportunity to network and interact with other students during group tasks.
- Distance learning avoids the costs of travel and accommodation associated with classroom learning.

Distance learning is delivered via our online learning environment, ‘Risktec Online’. The modules’ materials comprise slides and explanatory notes, plus references to further reading and useful websites. Students engage in online activities including tests, discussions and group tasks. This approach encourages participation and interaction amongst students.
Support from the module teacher is available throughout the programme. Our distance learning programmes are 100% online, therefore students can study and submit assessments from anywhere in the world.

For more details please contact or visit http://www.risktec.tuv.com/training-and-education/scheduled-courses.aspx

Read less
The PgDip programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. Read more
The PgDip programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. It is intended for anyone working in process safety, technical safety, safety engineering or nuclear safety within major hazard industries, such as oil and gas, petrochemical, chemical, nuclear, transportation and mining.

The PgDip is part of our MSc in Risk and Safety Management (IChemE Process Safety Pathway), which is approved by IChemE as meeting the knowledge and understanding requirements for IChemE's Professional Process Safety Engineer qualification.
For students wishing to follow the IChemE Pathway, the PgDip modules must include Physical Effects Modelling and Incident Investigation Analysis.

Risktec delivers 4 types of postgraduate academic awards via distance learning, in partnership with Liverpool John Moores University (LJMU):
• Masters Degree (MSc) in Risk & Safety Management
• Postgraduate Diploma (PgDip) in Risk & Safety Management
• Postgraduate Certificate (PgCert) in Risk & Safety Management
• Certificate of Professional Development (CPD) for single subject modules

Our next

Postgraduate Diploma programme in Risk and Safety Management

will starts on 1st February 2018. and consists of the following 12 modules:
• Principles of Risk Management
• Research Methods in Risk & Safety Management
• Hazard Identification
• Risk Analysis
• Health, Safety & Environmental (HSE) Management Systems
• Risk Reduction & ALARP
• Culture, Behaviour and Competency
• Bowtie Risk Management
• Physical Effects Modelling or HAZOP Study
• Emergency Response & Crisis Management
• Human Factors in Design & Operations
• Incident Investigation & Analysis or Safety/HSE Cases

Each module takes 8 weeks to complete and is delivered on-line by highly experienced, practising risk and safety management consultants working in the safety-critical, major hazard industries.
Students may enrol on the one year programmes leading to a PgCert, the two year programme leading to a PgDip or the three year programme leading to an MSc or certain individual modules may also be studied leading to the award of a CPD.

Why select a Distance Learning Programme with Risktec?

- Risktec is respected as a leading risk and safety management consulting and education company, with some of the world’s most impressive companies as clients.
- Gaining a formal postgraduate qualification from a recognised institution helps improve your career prospects and could also increase your remuneration.
- A postgraduate qualification helps an inexperienced graduate to prove to a prospective employer their commitment to the field of risk and safety.
- A postgraduate qualification can be a ‘fast-track’ into the growing risk and safety market for people working in related fields.
- An experienced person already working as a risk and safety practitioner will gain a broader and deeper knowledge of the subject, while also achieving formal recognition of their hard earned experience.
- Participants can study at a time that best suits them, working at their own pace and from home.
- Participants gain access to Risktec’s experienced consultant-teachers, as well as the opportunity to network and interact with other students during group tasks.
- Distance learning avoids the costs of travel and accommodation associated with classroom learning.

Distance learning is delivered via our online learning environment, ‘Risktec Online’. The module material comprises slides and explanatory notes, plus references to further reading and useful websites. Students engage in online activities including tests, discussions and group tasks. This approach encourages participation and interaction amongst students.

Support from the module teacher is available throughout the programme. Our distance learning programmes are 100% online, therefore students can study and submit assessments from anywhere in the world.

For more details please contact or visit http://www.risktec.co.uk/training-and-education/scheduled-courses.aspx

Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Why Bradford?

Flexibility of career path – Choice of three routes:
-Chemical Engineering - advanced chemical engineering and process technology skills for exciting and challenging careers in chemical and process industries
-Petroleum Engineering -matches the needs in different areas of oil and gas production and in medium/small operating and consulting companies
-Polymer Engineering - design and operation of processes to engineer materials with advanced properties leading to careers in diverse manufacturing sectors

Research Strengths - Internationally acclaimed research activities in the following areas:
-Chemical and Petrochemical Engineering
-Polymers
-Energy
-Water
-Pharmaceutical engineering
-Coating and advanced materials engineering

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017/

[[Modules
MSc Chemical & Petroleum Engineering (Chemical Engineering Background)
-Desalination Technology
-Materials & Manufacturing Processes
-Transport Phenomena
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

MSc Chemical & Petroleum Engineering (non-Chemical Engineering Background)
-Desalination Technology
-Transport Phenomena
-Chemical Engineering Practice
-Material & Manufacturing Processes
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
The PgCert programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. Read more
The PgCert programme has been developed by practitioners for practitioners, and is available via face-to-face, distance learning and blended learning. It is intended for anyone working in process safety, technical safety, safety engineering or nuclear safety within major hazard industries, such as oil and gas, petrochemical, chemical, nuclear, transportation and mining.

The PgCert is part of our MSc in Risk and Safety Management (IChemE Process Safety Pathway), which is approved by IChemE as meeting the knowledge and understanding requirements for IChemE's Professional Process Safety Engineer qualification.

Risktec delivers 4 types of postgraduate academic awards via distance learning, in partnership with Liverpool John Moores University (LJMU):
• Masters Degree (MSc) in Risk & Safety Management
• Postgraduate Diploma (PgDip) in Risk & Safety Management
• Postgraduate Certificate (PgCert) in Risk & Safety Management
• Certificate of Professional Development (CPD) for single subject modules

Our next

Postgraduate Certificate programme in Risk and Safety Management

starts on 1st February 2018 and consists of the following 6 modules:
• Principles of Risk Management
• Research Methods in Risk & Safety Management
• Hazard Identification
• Risk Analysis
• Health, Safety & Environmental (HSE) Management Systems
• Risk Reduction & ALARP

Each module takes 8 weeks to complete and is delivered on-line by highly experienced, practising risk and safety management consultants working in the safety-critical, major hazard industries.
On successful completion of the PgCert programme, students may upgrade to the PgDip or MSc programmes.
Certain individual modules may also be studied, leading to CPD awards.

Why select a Distance Learning Programme with Risktec?

- Risktec is respected as a leading risk and safety management consulting and education company, with some of the world’s most impressive companies as clients.
- Gaining a formal postgraduate qualification from a recognised institution helps improve your career prospects and could also increase your remuneration.
- A postgraduate qualification helps an inexperienced graduate to prove to a prospective employer their commitment to the field of risk and safety.
- A postgraduate qualification can be a ‘fast-track’ into the growing risk and safety market for people working in related fields.
- An experienced person already working as a risk and safety practitioner will gain a broader and deeper knowledge of the subject, while also achieving formal recognition of their hard earned experience.
- Participants can study at a time that best suits them, working at their own pace and from home.
- Participants gain access to Risktec’s experienced consultant-teachers, as well as the opportunity to network and interact with other students during group tasks.
- Distance learning avoids the costs of travel and accommodation associated with classroom learning.

Distance learning is delivered via our online learning environment, ‘Risktec Online’. The module material comprises slides and explanatory notes, plus references to further reading and useful websites. Students engage in online activities including tests, discussions and group tasks. This approach encourages participation and interaction amongst students.

Support from the module teacher is available throughout the programme. Our distance learning programmes are 100% online, therefore students can study and submit assessments from anywhere in the world.

For more details please contact or visit http://www.risktec.co.uk/training-and-education/scheduled-courses.aspx

Read less
Risk has become a key concept in modern society. Read more

Programme Background

Risk has become a key concept in modern society. Growing concern about the environment and a number of disasters have served to focus attention on the hazards and risks involved in a wide range of activities from offshore oil production to rail and air transport; from the design of football stadia to the operation of chemical plants and environmental protection. Today there is a wide range of techniques available to assess risk and reliability, both in relation to safety and in the wider sense. These techniques now underpin new legislation on safety and have relevance over a broad spectrum of activities, including environmental and other systems, where risk and reliability are key concerns.

The MSc/PG Diploma programme in Safety, Risk and Reliability Engineering is designed to give a thorough understanding of these techniques and experience of their application to a variety of real-world problems. It aims to provide students with an understanding of safety, risk and reliability engineering in both a qualitative and quantitative manner, and to develop the skills to apply this understanding. The programme will also introduce students to recent developments in analytical techniques, e.g. computer modelling of risk, reliability and safety problems.

Professional Recognition

This MSc degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) undergraduate first degree. See http://www.jbm.org.ukfor further information.

The MSc and PgDip degrees have also been accredited by the Institution of Occupational Safety and Health (IOSH). Graduates are eligible to join IOSH as Graduate members and then undertake an initial professional development process that leads to Chartered membership. http://www.iosh.co.uk for further information.

Programme Content

The MSc/Postgraduate Diploma in Safety, Risk and Reliability Engineering is only available by attendance-free distance learning. The programme comprises eight courses. All courses have written examinations and some have compulsory coursework elements. MSc students are also required to complete an individual project (dissertation). This programme has a stronger engineering bias and you should only attempt this if you have done some University level mathematics or equivalent. Otherwise the Safety and Risk Management course might be more appropriate.

For the project component of the programme distance learners are likely to develop something based in their country of residence with advice and supervision from staff in the School. This may well include work with a local company or may involve independent study. Individual arrangements will be set up with each student.

For more detailed information on this programme please contact the Programme Leader before applying (see above).

Courses

• Risk Assessment and Safety Management
This course aims to give students an appreciation of risk from individual and societal perspectives as well as understanding the basic principles of risk assessment and modelling and how safety management works in practice.

• Systems Reliability
Gives an understanding of the qualitative and quantitative techniques that are used in the reliability, availability and maintainability analysis of all types of engineering systems.

• Learning from Disasters
Provides students with an in depth understanding of some of the classic disasters and their consequences by using a range of practical accident investigation techniques. Students will learn to analyse complex histories in order to find the underlying root cause.

• Safety, Risk and Reliability
Leads to an understanding of the principles of structural reliability theory and its application to risk and reliability engineering.

• Fire Safety, Explosions and Process Safety
Introduces students to the basic principles of fire safety science and engineering, and develops skills in associated modelling leading to an understanding of principal fire/explosion related issues in process safety.

• Data Analysis and Simulation
Develops knowledge of statistical data analysis and its application in engineering and science and introduces the concepts of using simulation techniques for analysis of complex systems. It also teaches linear optimisation techniques and the ability to apply them to solve simple problems.

• Human Factors Methods
This course will equip students from academic and/or industrial backgrounds with knowledge on, and the means to deploy, a wide range of specialist human factors techniques. The emphasis is on method selection, application, combination and integration within existing business practices. Students will develop a critical awareness of what methods exist, how to apply them in practice and their principle benefits and limitations.

•Environmental Impact Assessment
Provides the candidate with the knowledge and understanding of the principles and processes of the Environmental Impact Assessment. By the end of the course, the student should be familiar with the European EIA legislation and its translation into the Scottish planning system, and be able to demonstrate an understanding of the EIA process, the tools and the agents involved in an EIA and the possible problems with using EIA as a decision making tool. It is also intended that the student will be able to appreciate the purpose of the EIA process from a number of perspectives; that of a developer, an EIA practitioner and a policy maker.

Read less
This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. Read more

Why this course?

This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. The course has a strong project-based approach and is relevant to the recruitment needs of a wide range of employers.

It meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Our course is one of the few MSc programmes to offer the module Safety Management Practices. It offers exposure to best industry practice and much required industrial training.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedchemicalprocessengineering/

You’ll study

This is a modular course. To gain the Postgraduate Certificate you need to pass six modules.

The Diploma requires eight taught modules and a group project.

The MSc requires eight taught modules, a group design project and an individual research project. You'll work with our talented team of researchers on chemical engineering issues of the future.

The key areas of the programme are:
Chemical & Process Engineering:
- process design principles
- safety management practices
- energy systems
- colloid engineering
- multi-phase processing
- petroleum engineering
- environmental control technologies
- process safety design
- emerging technologies
- programming & optimisation

Multidisciplinary Skills:
- project management
- risk management
- information management
- understanding financial information

If you want to study the same scope of subjects but be part a sustainable engineering programme, you should apply for the MSc Sustainable Engineering: Chemical Processing pathway.

You’ll work on an individual research project with our highly talented team of leading researchers on chemical engineering issues of the future.

Facilities

We're one of the largest chemical engineering departments in the country.
We have new state-of-the-art research laboratories. These include experimental facilities for light scattering, spectroscopy, adsorption measurements and high pressure viscometry.
You'll have access to the department's own dedicated computer suite which is installed with industry standard software.

Accreditation

The course meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Guest lecturers

In the Emerging Technologies modules you’ll benefit from external speakers who are leading practitioners in their field.

Learning & teaching

All classes are delivered over a twelve week period.
The Emerging Technologies module makes extensive use of external speakers who are leading practitioners in their field.
The Safety Management Practices module offers exposure to best industry practice and is one of a few MSc programmes to offer much required industrial training.

Assessment

Assessment is through a balanced work load of class based assessment, individual and group based projects and exams.

Careers

There is growing demand for high-calibre graduates who can develop and apply advanced process technologies in chemical and process industries.

Some students may be eligible to apply for PhD places in the department and across the Engineering faculty.

How much will I earn?

- The average graduate starting salary for a chemical engineer is £28,000*.
- The average salary for chemical engineers with experience is £53,000*.
- Chartered chemical engineers can earn £70,000* plus.

*Information is intended only as a guide.

Read less
This new and innovative Masters programme caters for the current global need for toxicologists and ecotoxicologists who are competent in conducting hazard and risk evaluation of chemical substances. Read more
This new and innovative Masters programme caters for the current global need for toxicologists and ecotoxicologists who are competent in conducting hazard and risk evaluation of chemical substances.


Aims
The programme aims at providing students with an advanced and up-to-date understanding of the effects of chemicals on human and environmental health and the resulting impact on chemical risk assessment and regulation. The programme covers both human and ecotoxicological risk assessment and includes modules on topical areas, such as mixtures toxicology, endocrine disruption and computational toxicology. Some modules have been designed specifically to be offered as short-term training programmes for professionals


The course is suitable for graduates interested in obtaining a qualification in human and environmental health, as well as students already in full time employment who require either formal qualifications or intend to revalidate their qualifications in toxicology. This will contribute to their continuing professional development (CPD) and towards the requirements for the UK Register of Toxicologists.


Course contents
The MSc in Toxicology and Risk Assessment comprises a total of 8 taught modules, including 6 compulsory modules and 2 (out of 3) optional modules.

Compulsory modules:
• Priority Pollutants and Human Health Effects (Autumn term, 12 weeks)
• Essentials in Ecotoxicology (Autumn term, 12 weeks).
• Designing, Analysing and Interpreting Toxicological Studies (Autumn term, 5 consecutive days)
• Current Practice in Chemical Risk Assessment (Spring term, 5 consecutive days)
• Chemical Regulation and Legislation in the EU (Autumn term, 5 consecutive days)
• Carcinogens and Mutagens (Autumn term, 12 weeks).

Optional Modules: (students will have to complete 2 out of 3 optional modules):
• Mixtures Toxicology and Cumulative Risk Assessment (Spring term, 5 consecutive days)
• Reproductive Toxicology and Endocrine Disruption (Spring term, 12 weeks)
• Computational Toxicology: Modelling and Predicting Toxicity (Spring term, 5 consecutive days)

Dissertation
Depending on student’s interests and their progress through the course, they will have the opportunity to carry out their dissertation with collaborators from Industry and regulatory bodies.

Throughout the course, students will be required to develop a personal development plan, agreed upon with tutors, which will structure and enhance their professional and personal development.


Continuing Professional Development (CPD)
A number of our specialised modules are run as intensive short-courses, which can be taken individually by participants without having to enroll for the full course. The aim is to support professionals already in employment in advancing their knowledge in specific areas, as well as developing their careers.

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. Read more
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. The Chemical Process Engineering MSc at UCL is specifically designed to facilitate this collaboration and provides graduates from a variety of engineering and science disciplines with the advanced training necessary to enter the chemical or biochemical industries.

Degree information

The programme covers core chemical engineering subjects alongside a wide range of options. Students choose either a research or an advanced design project. The advanced design project option is aimed at students who have not undertaken a design project during their undergraduate degree and eventually seek to become Chartered Engineers.

Students undertake modules to the value of 180 credits.

The programme consists of six optional modules (90 credits) and a project (90 credits).

Optional modules 1 (15 credits each) - students must choose three optional modules from the list below (45 credits in total).
-Advanced Process Engineering
-Advanced Safety and Loss Prevention
-Chemical Reaction Engineering II
-Electrochemical Engineering and Power Sources
-Energy Systems and Sustainability
-Fluid-Particle Systems
-Molecular Thermodynamics
-Nature Inspired Chemical Engineering
-Process Systems Modelling and Design (students taking this module must have passed the equivalent of Process Dynamics and Control in their first degree)
-Process Dynamics & Control
-Separation Processes
-Transport Phenomena II

Optional modules 2 (15 credits each) - students must choose three optional modules from the list below (45 credits in total).
-Advanced Bioreactor Engineering
-Environmental Systems
-Mastering Entrepreneurship
-Project Management
-Water and Wastewater Treatment

Research project/design project
All MSc students undertake either a Research Project (90 credits) or an Advanced Design Project (90 credits) that culminates in a project report and oral examination. Students who have already passed a Design Project module in their first degree cannot select the Advanced Design Project module.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Invited lectures delivered by industrialists provide a professional and social context. Assessment is through written papers, coursework, a report on the research or design project and an oral examination.

Careers

Upon completion, our graduates can expect to play a major role in developing the technologies that make available most of the things that we use in everyday life and provide the expertise and technology to enhance our health and standard of living. These activities may involve the development of new materials, food processing, water treatment, pharmaceuticals, transport and energy resources as well as being at the frontline, addressing present environmental issues such as climate change.

Typical destinations of recent graduates include: Amec Process and Energy, British Petroleum, Royal Dutch Shell, National Grid, Health & Safety Executive. Career profiles of some of our recent MSc graduates are available on our website.

Top career destinations for this degree:
-Project Engineer, Global Energy
-Process Engineer, Nigerian National Petroleum Corporation
-Process Engineer, Petrofac
-Project Control Administrator, Mott MacDonald
-Project Engineer, Kinetics Process Systems Pte Ltd

Employability
Students gain in-depth knowledge of core chemical engineering subjects and of the advanced use of computers in process design, operation and management. They receive thorough training in hazard identification, quantification and mitigation, as well as in risk management and loss prevention, and also learn how to design advanced energy systems, with emphasis on sustainability, energy efficiency and the use of renewable energy sources. Students learn how to make decisions under uncertain scenarios and with limited available data and receive training on how to plan, conduct and manage a complex (design or research) project.

Why study this degree at UCL?

UCL Chemical Engineering, situated in the heart of London, is one of the top-rated departments in the UK, being internationally renowned for its outstanding research.

The programme is the first of its kind in the UK and is accredited by the Institution of Chemical Engineers (IChemE) as meeting IChemE's requirements for Further Learning to Master's Level. This recognition will fulfil an important academic qualification for MSc graduates with suitable first degrees in eventually becoming Corporate Members of IChemE.

Read less
WHAT YOU WILL GAIN. - Skills and know-how in the latest and developing technologies in safety, risk and reliability. - Practical guidance and feedback from industrial automation experts from around the world. Read more
WHAT YOU WILL GAIN:

- Skills and know-how in the latest and developing technologies in safety, risk and reliability
- Practical guidance and feedback from industrial automation experts from around the world
- Live knowledge from the extensive experience of expert instructors
- Credibility and respect as the local safety, risk and reliability expert in your firm
- Global networking contacts in the industry
- Improved career choices and income
- A valuable and accredited Master of Engineering (Safety, Risk and Reliability)** qualification

Next intake is scheduled for June 26, 2017. Applications now open; places are limited.

INTRODUCTION

A powerful force is driving industrial growth and change, and it’s only getting stronger. That force? Uncertainty. Society increasingly demands more efficient transport, more power production, safer energy exploration and processing, less waste, smarter products and of course, all at lower costs. All these demands spotlight uncertainty, and how we need to manage uncertainty through engineering, science and technology. Modern engineers face an intriguing set of challenges when tackling uncertainty and they have developed some of the smartest methods, tools, techniques and approaches for understanding system safety, risk and reliability.

The Master of Engineering (Safety, Risk and Reliability) is the ideal gateway to boost your capacity to tackle these real world increasingly complex issues. In the 21st century, industry will routinely deal with novel hazardous processing technologies, complex energy grid load-balancing from renewables, driverless cars, artificial vision to augment control and feedback in sub-sea exploration – and the infinitesimal scale of nanotechnologies in bionic engineering. Currently, people are at the heart of many hazardous work environments, exposed to the consequences of uncontrolled events; but soon, artificial intelligence will afford more human tasks to be automated (and present a host of newer risks, in exchange for the retired ones). This progress has to be examined in systematic terms – terms that integrate our understandings of technical fallibility, human error and political decision-making.

This program has been carefully designed to accomplish three key goals. First, a set of fundamental concepts is described in useful, manageable ways that encourage rapid and integrated knowledge-acquisition. Second, that knowledge is applied in creative and imaginative ways to afford practical, career-oriented advantages. Third, the learning that results from the integration of knowledge and application is emboldened by activities and projects, culminating in a project thesis that is the capstone of the program. This carefully designed learning journey will develop factual understanding and also exercise participant’s creativity and design-thinking capabilities. Employers are hungry for these skills, and program graduates can expect a significant advantage when interacting with employers, clients, consultants and fellow engineering peers.

ENTRANCE REQUIREMENTS

To gain entry into this program, applicants need one of the following:
a) a recognized 3-year bachelor degree in an engineering qualification in a congruent* field of practice with relevant work experience**.
b) a 4-year Bachelor of Engineering qualification (or equivalent), that is recognized under the Washington Accord or Engineers Australia, in a congruent*, or a different field of practice at the discretion of the Admissions Committee.
c) a 4-year Bachelor of Engineering qualification (or equivalent) that is not recognized under the Washington Accord, in a congruent* field of practice to this program.

AND
An appropriate level of English Language Proficiency equivalent to an English pass level in an Australian Senior Certificate of Education, or an IELTS score of 6.5 (with no individual band less than 6.0) or equivalent as outlined in the EIT Admissions Policy.

* Congruent field of practice means one of the following with adequate Safety, Risk and Reliability content (fields not listed below to be considered by the Dean and the Admissions committee on a case-by-case basis):
• Chemical and Process Engineering
• Electronic and Communication Systems
• Instrumentation, Control and Automation
• Industrial Automation
• Industrial Engineering
• Agricultural Engineering
• Electrical Engineering
• Manufacturing and Management Systems
• Mechanical and Material Systems
• Mechatronic Systems
• Production Engineering
• Mechanical Engineering
• Robotics

**Substantial industrial experience in a related field is preferred, with a minimum of two years’ relevant experience.

PROGRAM STRUCTURE

Students must complete 48 credit points comprised of 12 core subjects and one capstone thesis. The thesis is the equivalent of one full semester of work. There are no electives in this course. The program duration is two years full time, or equivalent. Subjects will be delivered over 4 terms per year. Students will take 2 subjects per term and be able to complete 8 units per year. There will be a short break between terms. Each term is 12 weeks long.

LIVE WEBINARS

During the program you will participate in weekly interactive sessions with the lecturers and other participants from around the world. Each unit's weekly live tutorial will last 60 to 90 minutes. We take student availability into consideration wherever possible before scheduling webinar times. All you need to participate is an adequate Internet connection, speakers and a microphone. The software package and setup details will be sent to you at the start of the program.

COURSE FEES

EIT provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customized to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your query regarding courses fees and payment options, please query via the below button and we will respond within 2 business days.

Read less
Our Sustainable Chemical Engineering MSc, PGDip gives scientists and engineers with an understanding of sustainable engineering practices the opportunity to work with researchers in the field of new energy technologies. Read more
Our Sustainable Chemical Engineering MSc, PGDip gives scientists and engineers with an understanding of sustainable engineering practices the opportunity to work with researchers in the field of new energy technologies. This includes areas such as fuel cells and gasification, process intensification and new advanced materials.

The course meets the growing need for engineers skilled in material and process engineering. It highlights the potential of sustainable engineering and provides an understanding of the environmental, economic and social issues associated with the operation of industrial processes.

It is intended for honours graduates with an engineering or chemical science based degree who wish to learn how to apply their knowledge to sustainable chemical and process engineering design.

You will gain specialist knowledge and understanding via lecture classes, seminars and personal supervision. The course uses taught modules in a variety of topics, including:
-Sustainable design and manufacture
-Renewable energy
-Energy management
-Materials

In addition, you will benefit from the use of industrial case studies and visiting speakers. Academics, such as Dr Sue Haile, work with you and are responsible for supervising your final projects.

Placements

You will have a unique opportunity to complete a three month work placement with a local company or research organisation. Projects vary from examining the sustainability of existing or new processes, to environmental assessment and energy efficiency, and examination of Carbon Reduction Potential versus the Potential Risk.

Read less
This postgraduate degree in chemical research will provide you with the skills and knowledge to carry out novel research in your chosen area of chemistry. Read more
This postgraduate degree in chemical research will provide you with the skills and knowledge to carry out novel research in your chosen area of chemistry. You will join an existing research group under the guidance of a research supervisor, spending the majority of time on a research project. This can be in any of the department’s current research areas that include some reference to chemical and biological sciences. The remaining part of the degree is spent following advanced lecture courses that will provide the necessary theoretical and technical background to your chosen research area.

This programme is intended for students who want to gain the qualifications necessary for pursuing a research career, or who want to update their existing training.

On successful completion of this programme, you will understand the theoretical background required to undertake research in a given topic and be able to explain relevant research methods and tools. You will have acquired a firm grasp of recent advances in your field of study and be able to formulate a research or method development plan and carry out the appropriate literature and data searches. You will also be able to apply a critical and professional approach to data quality, carry out chemical manipulations and operate advanced equipment and work safely and efficiently in a laboratory, carrying out risk assessments where appropriate.

This is a laboratory-based subject, which means individual contact between staff and students is frequent. Numerous opportunities exist and are created for you to comment on, and to take responsibility for, the direction of your studies.

By accommodating you in an established research group and requiring you to partake in group activities, including research colloquia and presentations, the programme aims to provide training in the transferable skills required for successful research. It is individually tailored for each student and arranged by the research supervisor.

Read less
This postgraduate programme in Environmental Science. Pollution and Monitoring provides a rigorous academic treatment of the fundamental scientific principles and practice of assessing and controlling the extent of environmental damage by Man’s activities. Read more
This postgraduate programme in Environmental Science: Pollution and Monitoring provides a rigorous academic treatment of the fundamental scientific principles and practice of assessing and controlling the extent of environmental damage by Man’s activities. The course emphasises the technology and principles behind the processes and techniques related to the reduction of emissions to air, land and water and the effects of pollution.

The course develops understanding of the complex interactions of societies and their environments, and a critical awareness of how these interactions are unevenly experienced. The course seeks to raise your ability to understand the influence of human activities on ecological system including the relationship between hazard and risk. You will be able to study the environmental and technological issues in the management and control of air, soil and water pollution. In addition, you will learn how to collect representative samples of air, soil and water for environmental monitoring. Hands on experience on the use of various analytical techniques and the use of various statistical analyses for data quality assessment (DQA) are also provided.

Accreditation

The MSc in Environmental Science: Pollution and Monitoring is accredited by the Institution of Environmental Sciences (IES) and the Chartered Institution of Water and Environmental Management (CIWEM). This entitles students to free student membership of the IES and CIWEM.

Scholarships

For our September intake we have 2 specific scholarship schemes available: the Queen's Anniversary Prize Scholarships provide 6 x £3000 fee waiver scholarships to our best applicants (no additional application is required for these); and the £4000 Water Conservators Bursary is awarded to one student who writes the essay on water and the environment (some years we split the scholarship between 2 exceptional applicants). Brunel Univeristy London also has some scholarship schemes available for applicants to any MSc programme.

Designed to suit your needs

This MSc course can be taken in part-time (from 1 day a week for 2 years) or full-time (from 2 days a week for 1 years) mode. Students can start in September or January.

Employability

Our alumni have gone on to work in key public and private sector organisations as well as more entrepreneurial pursuits. Employability is a major focus within the university with support for transferable skills, CV and application writing, interview skills and opportunities for internships and work placements.

Course modules

Compulsory modular blocks
- Environmental Monitoring (30 credits)
- Integrated Pollution (30 credits)
- Research and Critical Skills in Environmental Science (15 credits)
- Dissertation (60 credits)


Optional modular blocks
Students normally choose 2 modules from Group A and 1 module from Group B. (If desired, students are also able to choose “1 module from Group A and 2 modules from Group B” or “3 modules from Group A and no modules from Group B” but must understand that this unbalances the 2 terms: 45:75 or 75:45 credits as opposed to 60:60.)

Group A (pick 2)
- Environmental Hazards and Risk (15 credits)
- Environmental Management (15 credits)
- Environment, Health and Societies (15 credits)
- Climate Change: Science and Impacts (15 credits)
- Essentials in Ecotoxicology (15 credits)
- Chemical Regulation and Legislation in the EU (15 credits)
- Biosphere (15 credits)
- Environmental Modelling (15 credits)

Group B (pick 1)
- Sustainable Development in Practice (15 credits)
- Current Practice in Chemical Risk Assessment (15 credits)
- Clean Technology (15 credits)
- Environmental Law (15 credits)
- Climate Change Mitigation and Adaptation (15 credits)
- GIS and Data Analysis (15 credits)

Dissertation (60 credits)

Read less
This market-leading Master's course in Environmental Management addresses the management principles necessary for the successful implementation of sound environmental management practice and legal processes involved in environmental control at a range of scales. Read more
This market-leading Master's course in Environmental Management addresses the management principles necessary for the successful implementation of sound environmental management practice and legal processes involved in environmental control at a range of scales.

The course develops understanding of environmental processes and applies this to both the legal framework and management decision-making activities. The course seeks to raise your ability to understand and analyse environmental problems at Master's level, in order to develop solutions.

You will be presented with the tools needed for environmental management, including project management, life cycle analysis, accounting and reporting, environmental reviews and audits. The course includes the processes and legislative approaches related to the reduction of emissions to air, land and water, and the effects of pollution together with the legislative framework in which they are set.

Accreditation

The MSc in Environmental Science: Legislation and Management is accredited by the Institution of Environmental Sciences (IES) and the Chartered Institution of Water and Environmental Management (CIWEM). This entitles students to free student membership of the IES and CIWEM.

Scholarships

For our September intake we have 2 specific scholarship schemes available: the Queen's Anniversary Prize Scholarships provide 6 x £3000 fee waiver scholarships to our best applicants (no additional application is required for these); and the £4000 Water Conservators Bursary is awarded to one student who writes the essay on water and the environment (some years we split the scholarship between 2 exceptional applicants). Brunel Univeristy London also has some scholarship schemes available for applicants to any MSc programme.

Designed to suit your needs

This MSc course can be taken in part-time (from 1 day a week for 2 years) or full-time (from 2 days a week for 1 years) mode. Students can start in September or January.

Employability

Our alumni have gone on to work in key public and private sector organisations as well as more entrepreneurial pursuits. Employability is a major focus within the university with support for transferable skills, CV and application writing, interview skills and opportunities for internships and work placements.

Course modules

Compulsory modular blocks

- Environmental Law (15 credits)
- Environmental Hazards and Risk (15 credits)
- Environmental Management (15 credits)
- Sustainable Development in Practice (15 credits)
- Biosphere (15 credits)
- Research and Critical Skills in Environmental Science (15 credits)
- Dissertation (60 credits)

Optional modular blocks
Students normally choose 1 module from Group A and 1 module from Group B. (If desired, students are also able to choose “no modules from Group A and 2 modules from Group B” or “2 modules from Group A and no modules from Group B” but must understand that this unbalances the 2 terms: 45:75 or 75:45 credits as opposed to 60:60.)

Group A (pick 1)
- Environment, Health and Societies
- Climate Change: Science and Impacts
- Chemical Regulation and Legislation in the EU
- Environmental Modelling

Group B (pick 1)
- Current Practice in Chemical Risk Assessment
- Clean Technology
- Climate Change Mitigation and Adaptation
- GIS and Data Analysis

Dissertation (60 credits)

Read less
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. Read more
One of the most rapidly developing areas of toxicology is the use of molecular, cell biology and omics to identify adverse outcome pathways (AOPs) and to develop a mechanistic understanding of chemical toxicity at the cellular and molecular level. This is not only of fundamental interest (i.e., understanding the mechanism of action) but it also relates to an increased need for a mechanistic component in chemical risk assessment and development of high throughput screens for chemical toxicity.

The MRes in Molecular Mechanistic Toxicology is a one-year full-time programme that provides students with a research-orientated training in a lively, highly interactive teaching and research environment.

Programme content

The programme is coordinated by the School of Biosciences, which is recognised internationally as a major centre for both teaching and research in Toxicology. Molecular Toxicology is a major component of the School of Biosciences research activities along with interactions with other departments including Chemistry and the Medical School.

Specific areas of active research include:

- Mechanisms of cell toxicity
- Development of novel DNA binding chemicals
- Cellular proliferation and differentiation
- Environmental genomics and metabolomics
- Molecular biomarkers of genotoxicity, oxidative stress and cellular responses
- Role of environmental and genetic factors in disease
- Learning and teaching

Two five-week taught modules are held in Semester 1 in conjunction with the taught MSc in Toxicology programme. Training in generic and laboratory research skills is also an important element of the programme. The programme also includes a six-month research project, which provides students with an opportunity for further advanced research training and hands-on experience of molecular and cellular biology techniques embedded in a research laboratory. Research projects can take place either in academic or industrial institutions.

About the School of Biosciences

As one of the top biosciences departments in the UK, our research covers the entire spectrum of cutting-edge biosciences. We are home to the Institute of Microbiology and Infection and part of the University’s Systems Science for Health initiative.
Our research focuses on a number of important themes that run through modern biological and biochemical research: Biosystems and Environmental Change; Microbiology and Infection; Molecules, Cells, Signalling and Health; and Plant Science.
Our postgraduate students join a diverse international community of staff and students. For students on research degrees, the annual Biosciences Graduate Research Symposium, organised by PhD students, is an example of an event where the whole School comes together to talk about science.
We have extensive high-technology facilities in areas such as functional genomics, proteomics and metabolomics, including a world-class Advanced Mass Spectrometry Facility. Our cutting-edge facilities extend to protein structure determination and analysis, confocal microscopy, drug discovery, horticulture, structural biology and optical imaging. The £8 million Phenome Centre Birmingham is a large metabolic phenotyping facility led by internationally recognised metabolomics and clinical experts at the University of Birmingham, in collaboration with Birmingham Health Partners.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less

Show 10 15 30 per page



Cookie Policy    X