• University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
University of Bedfordshire Featured Masters Courses
University College London Featured Masters Courses
University of Cambridge Featured Masters Courses
Teesside University Featured Masters Courses
"chemical" AND "processin…×
0 miles

Masters Degrees (Chemical Processing)

We have 151 Masters Degrees (Chemical Processing)

  • "chemical" AND "processing" ×
  • clear all
Showing 1 to 15 of 151
Order by 
Chemical Processing is one of the themes in our Engineering Faculty's multidisciplinary postgraduate training package in sustainable engineering. Read more

Why this course?

Chemical Processing is one of the themes in our Engineering Faculty's multidisciplinary postgraduate training package in sustainable engineering

The course is open to full-time and part-time students wanting to take up careers in industry. It’s also open to industrial staff seeking continuing professional development

Study mode and duration:
- MSc:12 months full-time; 24 months part-time
- PgDip: 9 months full-time; 21 months part-time

See the website https://www.strath.ac.uk/courses/postgraduatetaught/sustainableengineeringchemicalprocessing/

You’ll study

The MSc requires you to take eight taught modules. You'll take four in chemical & process engineering, two in sustainability/environmental and two in multidisciplinary skills.

Successful completion of six modules leads to the award of a Postgraduate Certificate.

- Group project
You’ll work with a group of students from different pathways of the Sustainable Engineering programme. You’ll produce sustainable solutions to real-life industry problems. This project will include site visits, field trips and progress reports to industry partners.
Successful completion of eight modules and the group project leads to the award of a Postgraduate Diploma.

- Individual project
An individual research project is offered where you'll be working with our highly talented team of leading researchers on chemical engineering issues of the future.
MSc students will study a selected topic in depth and submit a thesis.
Successful completion of eight modules, the group project and an individual project leads to the award of an MSc.

Facilities

We have state-of-the-art research laboratories housing a comprehensive suite of experimental facilities. These range from light scattering to spectroscopy to adsorption measurements to high pressure viscometry.

The department also specialises in advanced computational modelling. This is looking at materials and processes on all scales from the atomic to the macroscopic.

You'll have access to the department's own dedicated computer suite which is installed with industry standard software..

Accreditation

The programme meets accreditation requirements for the Institute of Chemical Engineers which would allow graduates to apply for chartered engineer status.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

Teaching methods include:
- lectures
- discussions
- group work
- debating
- computer- aided learning

All classes are delivered over a twelve week period.

The Emerging Technologies module makes extensive use of external speakers who are leading practitioners in their field.

The Safety Management Practices module gives you exposure to best industry practice and our course is one of a few MSc programmes to offer this amount of required industrial training.

Careers

Graduates from this course are welcome in a wide variety of petrochemical, oil & gas, energy and environmental companies. They're also eligible to PhD places in the department and across the engineering faculty.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
This is a Postgraduate courses offered within the Faculty of Engineering Sustainable Engineering Programme with a common overall structure of interdisciplinary modules from a choice of 3 modules in Project Management, Ecological and Environmental Impact, Information Management,Finance or Risk Management. Read more
This is a Postgraduate courses offered within the Faculty of Engineering Sustainable Engineering Programme with a common overall structure of interdisciplinary modules from a choice of 3 modules in Project Management, Ecological and Environmental Impact, Information Management,Finance or Risk Management.
In addition students take 4 themed modules in advanced chemical engineering from a list of Clean Processing, Process Design, Modelling and Simulation, Safety and Environment, Advanced Separations, Multi-Phase Processing.

Students also complete a Group Project generally industrially based and an individual Research Project

APPLY: https://kara.mis.strath.ac.uk/pgadmissions/control/welcome

Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Chemical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation

Biochemical engineering

Biomanufacturing

Engineering applications of nanotechnology

Bioengineering, biomedical engineering

Cell and tissue engineering

Colloid science and engineering

Desalination

Pharmaceutical engineering

Polymer engineering

Rheology

Separation processes

Transport processes

Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.



Read less
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. Read more

Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. The MSc in Chemical Process Engineering at UCL is specifically designed to facilitate this collaboration and provides graduates from a variety of engineering and science disciplines with the advanced training required to enter the chemical or biochemical industries.

About this degree

The MSc in Chemical Process Engineering aims to provide students with a solid academic background in a broad range of Chemical Engineering topics and advanced skills in problem-solving necessary for a successful career in the sector.

For 2017/18, the MSc in Chemical Process Engineering programme consists of seven modules selected from a list of available modules.

From 2018/19, the programme will be split into three different routes with different compulsory and optional modules. The routes are:

  • Advanced Chemical Engineering Route (accredited by the IChemE)
  • Design Route (accredited by the IChemE)
  • Research Route

Apart from this, the programme remains unchanged.

Dissertation/report

All students undertake either a research project or a design project, which culminates in a project report and an oral examination.

Teaching and learning

The programme is delivered through a combination of lecture-based courses, individual and group activities, assessed coursework and tutorial sessions. Advanced design or research projects are provided to extend knowledge and understanding of the topics studied and to encourage critical thinking. Creativity and innovation is encouraged on the demonstration of sound judgement and assumptions. Assessment is mainly through examinations, coursework and reports.

Further information on modules and degree structure is available on the department website: Chemical Process Engineering MSc

Careers

Upon completion, our graduates can expect to play a major role in developing the technologies that make available most of the things that we use in everyday life and provide the expertise and technology to enhance our health and standard of living. These activities may involve the development of new materials, food processing, water treatment, pharmaceuticals, transport and energy resources as well as being at the frontline, addressing present environmental issues such as climate change.

Typical destinations of recent graduates include: Amec Process and Energy, British Petroleum, Royal Dutch Shell, National Grid, Health & Safety Executive. Career profiles of some of our recent MSc graduates are available on our website.

Employability

Students gain in-depth knowledge of core chemical engineering subjects and of the advanced use of computers in process design, operation and management. They receive thorough training in hazard identification, quantification and mitigation, as well as in risk management and loss prevention, and also learn how to design advanced energy systems, with emphasis on sustainability, energy efficiency and the use of renewable energy sources. Students learn how to make decisions under uncertain scenarios and with limited available data and receive training on how to plan, conduct and manage a complex (design or research) project.

Why study this degree at UCL?

UCL Chemical Engineering, situated in the heart of London, is one of the top-rated departments in the UK, being internationally renowned for its outstanding research.

The programme is the first of its kind in the UK and is accredited by the Institution of Chemical Engineers (IChemE) as meeting IChemE's requirements for Further Learning to Master's Level. This recognition will fulfil an important academic qualification for MSc graduates with suitable first degrees in eventually becoming Corporate Members of IChemE.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemical Engineering

90% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field. Read more

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component, culminating in a research project leading to a masters thesis.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

Optional Courses

Students must select one of the following courses during semester one:

  • Chemical Reaction Engineering
  • Fire Science and Fire Dynamics
  • Process Safety
  • Computational Fluid Dynamics
  • Group Design Project (Power Station with Carbon Capture and Storage)

Plus, five or six courses (depending on the weighting of the course) from the options listed below in semester two:

  • Adsorption
  • Separation Processes
  • Membrane Separation Processes
  • Batchwise and Semibatch Processing
  • Oil and Gas Systems Engineering
  • Polymer Science and Engineering
  • Supply Chain Management
  • Modern Economic Issues in Industry
  • Technology and Innovation Management
  • Nanotechnology
  • Engineering in Medicine
  • Nanomaterials in Chemical and Biomedical Engineering

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find out more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:



Read less
Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. As well as dealing with chemical… Read more

Modern chemical engineering is a vast subject extending far beyond its traditional roots in oil and gas processing. As well as dealing with chemical reactors, distillation and the numerous processes that take place in a chemical or petrochemical plant, there is an increasing need for chemical engineers able to design and develop formulated products and to have knowledge of biotechnology and environmental issues.

  • If you already have a first degree in chemical engineering you can study the discipline in greater depth as well as learning about broader issues through the choice of elective subjects.
  • If you are already working in industry or are planning to work in a particular area, then this course can be tailored to focus on issues related to those of direct concern to you.

Who will benefit from the course?

  • Those who already have a background in chemical engineering but who wish to obtain a higher level qualification from a top-ranking British university.
  • Those who wish to enhance their career prospects in a chemical industry.

What are the benefits to students?

  • Our graduates get great jobs and chemical engineers are the highest paid professionals in the engineering field
  • Courses are designed to meet the needs of employers and you develop many skills for a successful career - design, problem solving, numeracy, analysis, communication and teamwork
  • The University of Manchester has an excellent international reputation and a qualification from us will significantly increase your chances of getting a job anywhere in the world
  • Specialist subjects are all taught by experts in the field
  • Entry requirements are flexible - relevant experience is considered alongside your formal qualifications

Teaching and learning

We use modern, innovative teaching and learning methods which have proved extremely successful and are enjoyed by our students. Much of the source materials and study aids are available through Blackboard (the University's web learning package) which has the advantage of enabling you to carry out much of your study when and where you want. You take part in face-to-face lectures, seminars and laboratory classes.

The Dissertation Project forms a major part of the MSc course and provides useful practice in carrying out academic research and writing in an area that you are interested in. You have the opportunity to study a chosen topic in depth - you can choose one of the challenging topical projects available through the University or if you are employed can base your project on an aspect of your current job or employer's business.

The course helps you to develop valuable transferable skills such as report writing, data analysis and presentation skills - these are all invaluable for your career development. 

Coursework and assessment

Assessment is a combination of examinations and written coursework assignments. For the MSc a major part of the assessment is through an in-depth project which is written up as a formal dissertation report.

Course unit details

The amount of effort required by a student is measured in credits.  An MSc requires the completion of 180 credits.

Typical Course Units

A full list of current units is available here .

Please note that some restrictions may apply due to timetable conflicts/class sizes.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

For those with a chemical engineering background, a masters level qualification in Advanced Chemical Engineering from a top UK University will provide a boost to your career prospects.

The National Signposts to Employability Survey 2000 (Performance Indicator Project) found that employers preferred to employ University of Manchester engineering graduates above any others.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).



Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals. Read more

Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals.

You will develop practical, laboratory-based skills, combined with expertise in computing and simulation. You will be guided by internationally renowned experts in areas such as nanotechnology, carbon capture and storage, minerals and materials, natural gas processing, and solvent extraction. You will have the opportunity to complete an industry project in conjunction with a relevant industry partner.

The Master of Engineering (Chemical) will lead to a formal qualification in chemical engineering.

CAREER OUTCOMES

Chemical Engineering Career Pathways [PDF]

Career opportunities in chemical engineering are extensive and exist in petrochemical, minerals processing, mining, chemical manufacturing, natural gas, explosives and fertiliser production and environmental consulting.

Our graduates are employed in a diverse range of industries, for companies including: ExxonMobil, BP, PETRONAS, Schlumberger, Nyrstar, BHP Billiton, Rio Tinto, Worley Parsons, ThyssenKrupp, WSP Parsons Brinckerhoff, Wood Group PSN, GHD, AECOM, Mars and Unilever.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.

Master of Engineering (Chemical) is also accredited by IChemE (Institution of Chemical Engineers). This accreditation has worldwide recognition.



Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals. Read more

Chemical engineers invent, design and implement industrial-scale processes through which raw materials are converted into products that we rely on every day, such as fuel, plastics, food additives, fertilisers, paper and pharmaceuticals.

You will develop practical, laboratory-based skills, combined with expertise in computing and simulation. You will be guided by internationally renowned experts in areas such as nanotechnology, carbon capture and storage, minerals and materials, natural gas processing, and solvent extraction. You will have the opportunity to complete an industry project in conjunction with a relevant industry partner.

The Master of Engineering (Chemical) will lead to a formal qualification in chemical engineering.

MASTER OF ENGINEERING (WITH BUSINESS)

The Master of Engineering (with Business) is designed to provide students with a formal qualification in engineering at the masters level, with a business specialisation that recognises the need for engineers to understand the management and workings of modern professional organisations.

Students who undertake the Master of Engineering (with Business) replace five advanced technical electives with five business subjects that have been tailored specifically for engineering students and co-developed with Melbourne Business School.

Graduates will have a grounding in financial, marketing and economic principles enabling them to work efficiently in any organisation, as well as the ability to apply the technical knowledge, creativity and team work skills learnt in their engineering training. This combination of knowledge and skills will be a powerful asset in the workplace.

Key features

  • Combine a technical specialisation with exposure to the business and management skills that can help fast-track your career.
  • Benefit from subjects co-developed by Melbourne Business School and tailored specifically for engineering students.
  • Tight integration of subjects ensures that you understand the business side of engineering applications.
  • Be empowered with strong technical skills, as well as the business skills to understand how organisations work.

CAREER OUTCOMES

Chemical Engineering Career Pathways [PDF]

Career opportunities in chemical engineering are extensive and exist in petrochemical, minerals processing, mining, chemical manufacturing, natural gas, explosives and fertiliser production and environmental consulting.

Our graduates are employed in a diverse range of industries, for companies including: ExxonMobil, BP, PETRONAS, Schlumberger, Nyrstar, BHP Billiton, Rio Tinto, Worley Parsons, ThyssenKrupp, WSP Parsons Brinckerhoff, Wood Group PSN, GHD, AECOM, Mars and Unilever.

PROFESSIONAL ACCREDITATION

This Master of Engineering (with Business) degree is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
What is the Master in Chemical Engineering Technology all about?. This master's programme includes a variety of disciplines. Read more

What is the Master in Chemical Engineering Technology all about?

This master's programme includes a variety of disciplines. In addition to fundamental chemical-scientific course units, the curriculum includes the fields of socio-economics (company management, economics) and chemical technology (engineering, separation techniques, chemical process technology, industrial process technology, surface chemistry, environmental technology, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

In the Sustainable Process and Materials Engineering option emphasis is placed on reliable technology that meets today's needs without jeopardising the welfare of future generations. This implies that materials and energy must be used efficiently, taking into account their impact on the environment. Thus, on the one hand this option is aimed at sustainable designing, development, and manufacturing of products and systems, and on the other it is aimed at development, properties, characterisation, production and processing of (new) materials.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

 This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to chemistry. This programme offers a broad academic training in chemistry and chemical (processing) technology, in which a clear emphasis is placed on chemical analysis in production, quality management and research.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

The chemical sector (petrochemical, synthetic, pharmaceutical, etc.) offers a broad and fascinating field of work. On completion of this master's programme, you are equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments. You can also set up applied research and design activities on a self-employed basis.



Read less
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals. Read more
Chemical engineering now extends beyond its traditional roots in oil and gas processing. In this course you will learn about the aspects of chemical engineering that deal with the design and development of formulated products such as food and pharmaceuticals.

This programme comprises 12 short-course taught modules (six core and six optional) and a research project carried out with one of the department's research teams (MSc only).The programme has options in Food Processing, Pharmaceutical Technology and Business Studies.

Programme content:

Core modules

Multidisciplinary core modules cover the fundamental science and engineering underpinning the design of sophisticated formulated products. Depending upon your academic background, you will begin by studying the fundamental principles of either chemical engineering or the relevant biological science.

Further core modules deal with topics such as:

Modern molecular biology
Advanced techniques for material characterisation
Interfacial physics and chemistry
Structured fluids
Molecular delivery
Optional modules

A wide range of optional modules enables you to gain specific knowledge relating to food and/or pharmaceutical product development. You may also choose to study business and management modules, or develop mathematical modelling skills.

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The food and drink sector is the largest manufacturing sector in the UK delivering 18% of the UK's total output by value. Read more

The food and drink sector is the largest manufacturing sector in the UK delivering 18% of the UK's total output by value. Tasked by government and the Food and Drink Federation with achieving 20% growth in productivity by 2020, the industry is developing innovative solutions to increase productivity, reduce waste and energy usage, and introducing more efficient manufacturing to reduce costs and drive competitive advantage.

Course details

This course is suitable if you are a recent graduate or in employment and wanting to qualify to MSc level. The blended learning approach means that employers looking to upskill and retain their best employees can do so with minimum time off work. There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Food Processing Engineering – one year full time
  • MSc Food Processing Engineering – two years part time
  • MSc Food Processing Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year Master’s degree with Advanced Practice enhances your qualification by adding to the one-year Master’s programme an internship, research or study abroad experience.

The MSc Food Processing Engineering (with Advanced Practice) course offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This two-year programme is an opportunity to enhance your qualification by spending one semester completing a vocational internship, research internship or by studying abroad. Although we can’t guarantee an internship, we can provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge. Alternatively, a research internship develops your research and academic skills as you work as part of a research team in an academic setting – ideal if you are interested in a career in research or academia. A third option is to study abroad in an academic exchange with one of our partner universities. This option does incur additional costs such as travel and accommodation. You must also take responsibility for ensuring you have the appropriate visa to study outside the UK, where relevant.

Teesside University is highly praised for its links with local and national industries and businesses such as Marlow Foods (Quorn), SK Chilled Foods and Sainsbury’s. The University is committed to integrating with industry in the Tees Valley and has a record of producing employment-ready problem solvers and innovators. This postgraduate programme embeds key transferable skills, visits to industry and talks from industrial speakers relevant to the food and drink industries.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Food Chemistry Composition and Analysis
  • Food Manufacturing Engineering
  • Food Product Design and Manufacturing Process Development
  • Food Safety Engineering and Management
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

The transition to postgraduate level study can be challenging – support with making this transition is an important element of this course.

You are supported during your induction and in the module Food Product Design and Manufacturing Processes. This support helps you understand the requirements of academic study at postgraduate level, enhancing your skills in academic writing and referencing, and developing the skills necessary to operate professionally, safely and ethically in planning and implementing a master’s level research project.

By including work-based problem-solving projects and case study exercises, this course emphasises real-world working. Theory and knowledge is blended in the context of business, allowing you to develop the skills employers are seeking to set you on a successful career path. Blended learning provides a rich and varied learning experience, and additional flexibility if you are in employment. 

On campus you have access to a dedicated food product development laboratory and a pilot-scale processing equipment facility, allowing you to gain valuable hands-on experience of food processing and product development. Fully equipped microbiological and chemical analysis laboratories enable you to undertake a series

How you are assessed

You are assessed on your subject knowledge, independent thought and new skills through formative and summative assessment. 

Assessment may include

  • exams
  • oral presentations
  • technical interviews
  • technical reports
  • laboratory reports
  • literature surveys, evaluations and summaries
  • dissertation or thesis.

You are presented with an assessment schedule with details of your submission deadlines for summative assessments.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Career opportunities

Food and drink manufacturing is vital to the UK economy. It is the single largest manufacturing sector in the UK, employing 15% of the entire manufacturing workforce. Food and drink manufacturing companies make up 7% of all manufacturing businesses, and they buy two thirds of all the UK’s agricultural produce. The industry generates 18% of total manufacturing turnover. 

To meet the demands of this dynamic sector, the food industry needs to recruit more than 49,000 new skilled professionals and managers by 2022, which is great news for the next generation of talent wanting to study toward a rewarding career in a dynamic and highly innovative sector (The National Skills Academy for Food & Drink). 

Graduates can seek jobs in many areas in the food sector including

  • food analysis
  • new product development
  • quality management and food safety management
  • food production management
  • technical management.

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course.



Read less
Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. Read more
Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

Selected modules from our taught programmes can be combined with an extended research project to obtain an MRes degree. This is a strongly research-orientated qualification and provides excellent training for further research in industry or academia.

Programme content:

Taught modules support the development of both research and transferable skills. All students take a set of compulsory modules and a selection of optional modules of their choice (subject to timetabling) in addition to their research project

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less

Show 10 15 30 per page



Cookie Policy    X