• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of York Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Leeds Featured Masters Courses
Cardiff University Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
"chemical" AND "process"×
0 miles

Masters Degrees (Chemical Process)

  • "chemical" AND "process" ×
  • clear all
Showing 1 to 15 of 181
Order by 
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. Read more
Process engineering often involves close collaboration between engineers and scientists from a variety of disciplines. The Chemical Process Engineering MSc at UCL is specifically designed to facilitate this collaboration and provides graduates from a variety of engineering and science disciplines with the advanced training necessary to enter the chemical or biochemical industries.

Degree information

The programme covers core chemical engineering subjects alongside a wide range of options. Students choose either a research or an advanced design project. The advanced design project option is aimed at students who have not undertaken a design project during their undergraduate degree and eventually seek to become Chartered Engineers.

Students undertake modules to the value of 180 credits.

The programme consists of six optional modules (90 credits) and a project (90 credits).

Optional modules 1 (15 credits each) - students must choose three optional modules from the list below (45 credits in total).
-Advanced Process Engineering
-Advanced Safety and Loss Prevention
-Chemical Reaction Engineering II
-Electrochemical Engineering and Power Sources
-Energy Systems and Sustainability
-Fluid-Particle Systems
-Molecular Thermodynamics
-Nature Inspired Chemical Engineering
-Process Systems Modelling and Design (students taking this module must have passed the equivalent of Process Dynamics and Control in their first degree)
-Process Dynamics & Control
-Separation Processes
-Transport Phenomena II

Optional modules 2 (15 credits each) - students must choose three optional modules from the list below (45 credits in total).
-Advanced Bioreactor Engineering
-Environmental Systems
-Mastering Entrepreneurship
-Project Management
-Water and Wastewater Treatment

Research project/design project
All MSc students undertake either a Research Project (90 credits) or an Advanced Design Project (90 credits) that culminates in a project report and oral examination. Students who have already passed a Design Project module in their first degree cannot select the Advanced Design Project module.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Invited lectures delivered by industrialists provide a professional and social context. Assessment is through written papers, coursework, a report on the research or design project and an oral examination.

Careers

Upon completion, our graduates can expect to play a major role in developing the technologies that make available most of the things that we use in everyday life and provide the expertise and technology to enhance our health and standard of living. These activities may involve the development of new materials, food processing, water treatment, pharmaceuticals, transport and energy resources as well as being at the frontline, addressing present environmental issues such as climate change.

Typical destinations of recent graduates include: Amec Process and Energy, British Petroleum, Royal Dutch Shell, National Grid, Health & Safety Executive. Career profiles of some of our recent MSc graduates are available on our website.

Top career destinations for this degree:
-Project Engineer, Global Energy
-Process Engineer, Nigerian National Petroleum Corporation
-Process Engineer, Petrofac
-Project Control Administrator, Mott MacDonald
-Project Engineer, Kinetics Process Systems Pte Ltd

Employability
Students gain in-depth knowledge of core chemical engineering subjects and of the advanced use of computers in process design, operation and management. They receive thorough training in hazard identification, quantification and mitigation, as well as in risk management and loss prevention, and also learn how to design advanced energy systems, with emphasis on sustainability, energy efficiency and the use of renewable energy sources. Students learn how to make decisions under uncertain scenarios and with limited available data and receive training on how to plan, conduct and manage a complex (design or research) project.

Why study this degree at UCL?

UCL Chemical Engineering, situated in the heart of London, is one of the top-rated departments in the UK, being internationally renowned for its outstanding research.

The programme is the first of its kind in the UK and is accredited by the Institution of Chemical Engineers (IChemE) as meeting IChemE's requirements for Further Learning to Master's Level. This recognition will fulfil an important academic qualification for MSc graduates with suitable first degrees in eventually becoming Corporate Members of IChemE.

Read less
Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs. Read more

Mission and goals

Chemical engineering and chemical engineers provide the leading-edge solutions to the society’s needs: we need efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they involve chemical processes. Chemical engineers are the "engineers of chemistry": by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Career opportunities

The Master of Science programme in Chemical Engineering completes the basic preparation of the bachelor chemical engineer and provide guided paths towards high-level professional profiles which are employed in various industrial sectors including the chemical, pharmaceutical, food, biological and automotive industry; energy production and management; transformation and process industries; engineering companies designing, developing and implementing processes and plant; research centres and industrial laboratories; technical structures in Public Administration; environmental and safety consultancy firms.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Chemical_Engineering_01.pdf
Chemical engineering provides the leading-edge solutions to the society’s needs: we require clean energy sources, efficient and clean technologies for energy transformation, technologically advanced materials, better medicines, efficient food production techniques, a clean environment, a better utilization of the natural resources. Chemical Engineering plays a pivotal role because all these challenges have a common denominator: they are based on chemical processes. Chemical engineers are the “engineers of chemistry”: by making use of chemistry, physics and mathematics they describe the chemical processes from the molecular level (chemical bond) to the macroscale (chemical plant), and design, operate, and control all processes that produce and/or transform materials and energy. The Master of Science programme in Chemical Engineering provides guided paths towards high-level professional profiles which find employment in various industrial sectors. The programme is taught in English.

Subjects

The Chemical Engineering programme includes mandatory courses on Chemical reaction engineering and applied chemical kinetics; Advanced calculus; Industrial organic chemistry; Unit operations of chemical plants; Mechanics of solids and structures; Applied mechanics. Other courses can be selected by the students on many subjects related to e.g. chemical plants and unit operations, safety, process design, catalysis, material science, numerical methods, environmental protection, food production, energy, biomaterials, etc.. A proper selection of the eligible courses will lead to specializations in Process engineering, Project engineering or Product engineering.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/chemical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This part-time modular programme is mainly for industry-based students from the UK and overseas whose focus is on process technology, management, business and IT. Read more

Why this course?

This part-time modular programme is mainly for industry-based students from the UK and overseas whose focus is on process technology, management, business and IT.

The course is accredited by the Institution of Chemical Engineers (IChemE), an international body of Chemical Engineers operating in countries such as the UK, Australia, New Zealand, Singapore, and more. Graduates can fulfil the Master’s degree requirement for gaining chartership and becoming a Chartered Engineer (CEng).

This course uses a project and work-based approach. It operates mainly by distance learning to allow you to spend the minimum time off-the-job. The programme meets the development needs of graduates from a range of engineering, technology and science disciplines, for example:
- Chemical Engineers
- Mechanical Engineers
- Control Engineers
- Chemists

It’s relevant to a broad range of type and size of company throughout the chemical and process sectors.

For graduates in disciplines other than chemical engineering, a wide range of chemical engineering bridging modules are available and can be studied as part of an agreed programme prior to starting the MSc.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/processtechnologymanagement/

You'll study

The MSc Chemical Technology & Management and the MSc Process Technology & Management are delivered in parallel. Both courses have some of the same core classes. Some of the classes relate to business/management and IT and some are technical classes of mutual interest.

The course format is a three year, modular course with a major final year project completed in your place of work. A two year postgraduate diploma option and one year postgraduate certificate are also available.

You can tailor the degree to your own requirements by selecting classes from the areas of:
- Process Technology
- Chemical Technology
- Business/IT

The Process Technology modules address two major priority areas for the process industries:
- The design, optimisation, control and operation of safe, clean, economically viable processes
- A deeper understanding of principles in complex areas, such as reactors, multi-phase mixtures and advanced separation processes

- How many classes do you need to complete?
The MSc requires 12 taught classes and a work-based project (equivalent to six modules). The diploma requires 12 classes and the certificate six classes.
For graduates in disciplines other than chemical engineering, foundation or bridging modules in chemical engineering are available.

- Final project
You’ll normally take on this project in your own workplace allowing you to make practical use of the concepts learned throughout the course. The project is the main focus of year 3 of the course. An academic supervisor with experience in your chosen project field will help you with the academic requirements of the project. The management and eventual conclusion of the project will be driven by you.

Facilities

In the department of Chemical & Process Engineering we've state-of-the-art research laboratories that opened in 2008. They include a comprehensive suite of experimental facilities including:
- light scattering
- spectroscopy
- adsorption measurements
- high pressure viscometry

Distance learning students are able to access to the University library online services, borrow online books and download academic papers and journals. You'll be able to access the University of Strathclyde library which holds 1,200,700 electronic books, 239 databases and over 105,000 e-journals that can be used 24 hours a day from any suitably enabled computer. The library also offers a postal service for distance learning students.

Course awards

Teaching staff in the department regularly receive nominations in the annual University-wide Teaching Excellence Awards, voted for by Strathclyde’s students. Staff have also been in receipt of external awards from organisations such as the IChemE and the Royal Academy of Engineering.

Additional information

This programme is only available on a part-time basis. If you want to cover the same scope of subjects on a full-time basis you should apply for the MSc Advanced Chemical & Process Engineering or MSc Sustainable Engineering: Chemical Processing.

Learning & teaching

The course is based on printed lecture notes and material delivered from the University’s Virtual Learning Environment (VLE), ‘myplace’. GoToWebinar is used for live tutorial sessions.

Lecturers provide support through:
- online tutorials
- forums
- email
- telephone
- face to face on campus tutorials

Engineering modules are run by staff in the Chemical and Process Engineering department and specialists from industry.

Distance learning students are also welcome to attend full time lectures and tutorials and access on campus facilities if they are in the Glasgow area either temporarily or as a local resident.

- Guest lectures
There are a number guest lectures from experts across several industries.

Careers

Whether you're planning to progress your career into management, redevelop yourself as an engineer or move into a new industry – a Masters degree will expand your career opportunities. As you choose your own modules, the MSc Process Technology and Management allows flexible and adaptable learning, so that you can plan your degree to you own career aspirations. Relevant industries that graduates work in include oil and gas, food and drink, pharmaceutical, water treatment and many more.

In addition, this MSc will provide you with a means to validate your skills and competency to employers – but also to the engineering council (specifically IChemE) opening up new prospects with charterships and further development.

- Where are they now?
100% of our graduates are in work or further study.*

Job titles include:
Manufacturing Co-ordinator
Operations Director
Process Chemist
Process Engineer
Production Chemist
Senior Research Engineer

Employers include:
Bristol-Myers Squibb
Commonwealth Scientific and Industrial Research Organisation (CSIRO)
DSM Nutritional Products Ltd
H2Oil & Gas Ltd
Infineum UK Ltd
Simon Carves Engineering

*Based on the results of the national Destinations of Leavers from Higher Education Survey (2010/11 and 2011/12).

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. Read more

Why this course?

This course is mainly for engineering students from the UK and overseas who want to develop careers in the oil, gas, process and chemical industries. The course has a strong project-based approach and is relevant to the recruitment needs of a wide range of employers.

It meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Our course is one of the few MSc programmes to offer the module Safety Management Practices. It offers exposure to best industry practice and much required industrial training.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/advancedchemicalprocessengineering/

You’ll study

This is a modular course. To gain the Postgraduate Certificate you need to pass six modules.

The Diploma requires eight taught modules and a group project.

The MSc requires eight taught modules, a group design project and an individual research project. You'll work with our talented team of researchers on chemical engineering issues of the future.

The key areas of the programme are:
Chemical & Process Engineering:
- process design principles
- safety management practices
- energy systems
- colloid engineering
- multi-phase processing
- petroleum engineering
- environmental control technologies
- process safety design
- emerging technologies
- programming & optimisation

Multidisciplinary Skills:
- project management
- risk management
- information management
- understanding financial information

If you want to study the same scope of subjects but be part a sustainable engineering programme, you should apply for the MSc Sustainable Engineering: Chemical Processing pathway.

You’ll work on an individual research project with our highly talented team of leading researchers on chemical engineering issues of the future.

Facilities

We're one of the largest chemical engineering departments in the country.
We have new state-of-the-art research laboratories. These include experimental facilities for light scattering, spectroscopy, adsorption measurements and high pressure viscometry.
You'll have access to the department's own dedicated computer suite which is installed with industry standard software.

Accreditation

The course meets accreditation requirements for the Institute of Chemical Engineers allowing graduates to apply for chartered engineer status.

Guest lecturers

In the Emerging Technologies modules you’ll benefit from external speakers who are leading practitioners in their field.

Learning & teaching

All classes are delivered over a twelve week period.
The Emerging Technologies module makes extensive use of external speakers who are leading practitioners in their field.
The Safety Management Practices module offers exposure to best industry practice and is one of a few MSc programmes to offer much required industrial training.

Assessment

Assessment is through a balanced work load of class based assessment, individual and group based projects and exams.

Careers

There is growing demand for high-calibre graduates who can develop and apply advanced process technologies in chemical and process industries.

Some students may be eligible to apply for PhD places in the department and across the Engineering faculty.

How much will I earn?

- The average graduate starting salary for a chemical engineer is £28,000*.
- The average salary for chemical engineers with experience is £53,000*.
- Chartered chemical engineers can earn £70,000* plus.

*Information is intended only as a guide.

Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
The MSc program in Chemical and Biomolecular Engineering offers advanced levels of chemical and biomolecular engineering courses so that the graduates can become confident and competent chemical engineers at a senior level or as leaders. Read more
The MSc program in Chemical and Biomolecular Engineering offers advanced levels of chemical and biomolecular engineering courses so that the graduates can become confident and competent chemical engineers at a senior level or as leaders.

Program Objectives

This Master of Science (MSc) program in Chemical and Biomolecular Engineering (CBME) is designed for students who wish to acquire an in-depth understanding of a particular area of chemical and biomolecular engineering while strengthening their overall knowledge at an advanced level.

The Master of Science (MSc) program in Chemical and Biomolecular Engineering (CBME) program provides students with updated knowledge on products development, process and energy integration, waste minimization and treatment, material sciences, biomolecular science, and biochemical processes. This is a unique Master of Science (MSc) program that covers knowledge in areas of bioengineering / environment / nanotechnology, which are the three focal areas of HKUST.

The program not only offers advanced chemical and biomolecular engineering courses beyond undergraduate-level for students but also enables students to take several electives from other related programs.

Curriculum

Students of the Master of Science (MSc) program in Chemical and Biomolecular Engineering (CBME) are required to complete at least 30 credits of coursework, with at least 12 credits of foundation courses and 6 credits of elective courses. Students shall take 10 3-credit taught courses or 8 to 9 taught courses plus one independent MSc project offered from the program. Each course except CBME 6980 listed below carries 3 credits. CBME 6980 carries 3 or 6 credits. Subject to the approval of the Program Director, students may take a maximum of 9 credits of non-CBME postgraduate courses as partial fulfillment of the program requirements.

Regular attendance of courses is expected. Courses of the Master of Science (MSc) program in Chemical and Biomolecular Engineering (CBME) are assessed according to the grading scheme used for postgraduate courses. Students in the program must complete the program with a graduation grade average (GGA) of 2.850 (of a 4-point scale) or above as required for all postgraduate students at HKUST. If a student Master of Science (MSc) program in Chemical and Biomolecular Engineering (CBME) fails to meet the graduation grade average requirement, the student is required to repeat or substitute the course(s) at a per credit fee.

Foundation Courses
-CBME 5110 Theory and Practice in Heterogeneous Catalysis
-CBME 5200 Applied Mathematical Methods in Chemical Engineering
-CBME 5210 Advanced Separation Processes
-CBME 5300 Advanced Chemical Engineering Thermodynamics
-CBME 5400 Advanced Transport Phenomena
-CBME 5520 Characterization of Polymers
-CBME 5550 Polymer Physics and Advanced Applications
-CBME 5610 Advanced Biochemical Engineering
-CBME 5780 Environmental Management, Auditing, Licensing and Impacts
-CBME 5820 Energy, Environment and Sustainable Development
-CBME 5830 Electrochemical Energy Technologies
-CBME 5840 Nanomaterials for Chemical Engineering Applications

Elective Courses
-CBME 5320 Water Quality and Assessment
-CBME 5510 Processing of Polymers and Polymer Composites
-CBME 5750 Process Safety Management and Risk Analysis
-CBME 5760 Advanced Physico-Chemical Treatment Processes
-CBME 5810 Energy Integration and Optimization
-CBME 5860 Chemical Product Engineering
-CBME 6000 Special Topics
-CBME 6980 Independent Project

Courses are offered subject to needs and availability.

Facilities

Students can enjoy library support, computer support, sports facilities, and email account at no extra cost. Upon graduation, students could also apply for related alumni services.

Read less
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment. Read more
The modern society relies on the work of Chemical Engineers who develop and design the processes that make the useful products for the society by efficient use and management of resources including water and energy while controlling health and safety procedures and protecting the environment.

Chemical Engineering provides essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way. Chemical Engineers understand how to alter the chemical, biochemical or physical state of a substance, to create everything from health care products (face creams, shampoo, perfume, drugs) to food (dairy products, cereals, agro-chemicals) and water (desalination for freshwater) to energy (petroleum to nuclear fuels).

Your study at MSc level at Bradford will be a foundation for life aimed at developing a deep understanding of advanced technical principles, analytical tools, and competence in their application together with a wide range of management, personal and professional skills. The course will provide you with essential tools based on the concept of sustainability and low carbon footprint for changing raw materials into useful products in a safe and cost effective way.

Why Bradford?

Flexibility of career path – Choice of three routes:
-Chemical Engineering - advanced chemical engineering and process technology skills for exciting and challenging careers in chemical and process industries
-Petroleum Engineering -matches the needs in different areas of oil and gas production and in medium/small operating and consulting companies
-Polymer Engineering - design and operation of processes to engineer materials with advanced properties leading to careers in diverse manufacturing sectors

Research Strengths - Internationally acclaimed research activities in the following areas:
-Chemical and Petrochemical Engineering
-Polymers
-Energy
-Water
-Pharmaceutical engineering
-Coating and advanced materials engineering

Rankings

Top Five: Chemical Engineering at the University of Bradford is ranked 5th in the UK in the Guardian University League Table 2017/

[[Modules
MSc Chemical & Petroleum Engineering (Chemical Engineering Background)
-Desalination Technology
-Materials & Manufacturing Processes
-Transport Phenomena
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

MSc Chemical & Petroleum Engineering (non-Chemical Engineering Background)
-Desalination Technology
-Transport Phenomena
-Chemical Engineering Practice
-Material & Manufacturing Processes
-Design Optimisation
-Computational Fluid Dynamics
-Upstream Production & Refinery Operations
-Research Skills
-Food & Pharmaceutical Processes Engineering
-Polymer Engineering
-Risk Management
-Engineering Computational Methods
-MSc Project

Career support and prospects

The University is committed to helping students develop and enhance employability and this is an integral part of many programmes. Specialist support is available throughout the course from Career and Employability Services including help to find part-time work while studying, placements, vacation work and graduate vacancies. Students are encouraged to access this support at an early stage and to use the extensive resources on the Careers website.

Discussing options with specialist advisers helps to clarify plans through exploring options and refining skills of job-hunting. In most of our programmes there is direct input by Career Development Advisers into the curriculum or through specially arranged workshops.

Read less
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship. Read more
The Advanced Chemical Engineering with Information Technology and Management programme addresses recent developments in the global chemical industry by focusing on advancements of information technology and business management skills, including entrepreneurship.

It builds on the Department’s established strengths in computer modelling, process systems engineering, reaction engineering, numerical modelling, computational fluid dynamics, finite element modelling, process control and development of software for process technologies.

Teaching is augmented by staff from other departments and has an emphasis on design activities.

The programme aims to provide in-depth understanding of the IT skills required for advanced chemical processes and raise students’ awareness of the basic concepts of entrepreneurship, planning a new business, marketing, risk, and financial management and exit strategy.

Core study areas include process systems engineering and applied IT practice, research and communication, modelling and analysis of chemical engineering systems and a research project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Programme modules

Core Modules
Semester 1:
- Process Systems Engineering and Applied IT Practice
- Research and Communication

Semester 2:
- Advanced Computational Methods for Modelling and Analysis of Chemical Engineering Systems

Semester 1 and 2:
- MSc Project

Optional Modules (select three)
Semester 1:
- Chemical Product Design
- Filtration
- Downstream Processing
- Colloid Engineering and Nano-science
- Hazard Identification and Risk Assessment

Semester 2:
- Mixing of Fluids and Particles

Optional Management Modules (select two)
Semester 1:
- Enterprise Technology

Semester 2:
- Entrepreneurship and Small Business Planning
- Strategic Management for Construction

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-chem-eng-it-management/

Read less
This course offers students a grounding in modelling, simulation and optimisation for the process industries, while helping them to strengthen their understanding of chemical engineering. Read more
This course offers students a grounding in modelling, simulation and optimisation for the process industries, while helping them to strengthen their understanding of chemical engineering. Students take a minimum of four systems engineering modules, six "free" modules (up to two management courses), follow the professional skills workshops and join the Process Systems Engineering research focus area for a year-long research project. This course is ideal for students wishing to become fluent in the use of techniques and tools for computer-aided decision-making.

The programme aims to:
• produce graduates equipped to pursue careers in Process Systems Engineering, in industry, the public sector and non-governmental organisations, or to enter Ph.D. programmes;
• provide the basis for the understanding of the development and key achievements of the major areas of Process Systems Engineering and in Chemical Engineering topics of interest;
• develop an understanding of how this knowledge may be applied in practice in an economic and environmentally friendly fashion;
• foster the acquisition and implementation of broad research and analytical skills both general and related to Process Systems Engineering;
• attract highly motivated students, both from within the UK and from overseas;
• develop new areas of teaching in response to the advance of scholarship and the needs of vocational training;
• offer students with industrial experience the possibility to gain a deeper fundamental grounding.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation
Biochemical engineering
Biomanufacturing
Engineering applications of nanotechnology
Bioengineering, biomedical engineering
Cell and tissue engineering
Colloid science and engineering
Desalination
Pharmaceutical engineering
Polymer engineering
Rheology
Separation processes
Transport processes
Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

Read less
The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. Read more

Course Overview

The Applied Process Control MSc/PGDip will qualify you to manage the challenges of modern process control and process automation technology. It will provide you with advanced understanding of the principles of chemical engineering, and process control and automation methodologies.

Control Engineers apply engineering principles to design, build, and manage sophisticated computer-based instrumentation and control systems in the manufacturing industries. This sector depends on process control and automation technology to maintain a competitive edge.

Through this course you will understand the fundamental principles of chemical engineering and key aspects of: mathematics, statistics, information technology, process control and automation methodologies.

The interdisciplinary nature of this course qualifies you to manage the challenges of modern process control technology.

Engineers with training in these areas are in demand and enjoy a wide range of careers in the chemical and process industries.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/applied-process-control-msc-pgdip/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/applied-process-control-msc-pgdip/#howtoapply

Read less
The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. Read more

Course overview

The MPhil and PhD programmes in Chemical Engineering attract students from diverse disciplinary backgrounds such as statistics, maths, electrical engineering, chemistry and physics. You may work on multidisciplinary research projects in collaboration with colleagues across the University or from external organisations.

Research Areas

MPhil and PhD supervision is normally available in the following areas:

Advanced materials:
Every article, instrument, machine or device we use depends for its success upon materials, design and effective production. We work on a wide range of materials topics including: new material development; optimising of materials processing; testing and evaluation at component scale and at high spatial resolution; modelling; failure analysis.

Much of our work relates to materials and processes for renewable energy generation, energy efficiency, carbon capture and storage. We also use biological and bio-inspired processes to develop new functional materials.

Electrochemical engineering science:
Electrochemical Engineering Science (EES) arose out of the pioneering fuel cell research at Newcastle in the 1960s. We are continuing this research on new catalyst and membrane materials, optimising electrode structures and developing meaningful fuel cell test procedures.

We are investigating electrochemical methods for surface structuring, probing and testing at the micron and nanoscale. More recently, we have been using electrochemical analysis to understand cellular and microbial catalysis and processes.

Process intensification:
Process intensification is the philosophy that processes can often be made smaller, more efficient and safer using new process technologies and techniques, resulting in order of magnitude reductions in the size of process equipment. This leads to substantial capital cost savings and often a reduction in running costs.

Process modelling and optimisation:
Our goal is to attain better insight into process behaviour to achieve improved process and product design and operational performance. The complexity of the challenge arises from the presence of physiochemical interactions, multiple unit operations and multi-scale effects.

Underpinning our activity is the need for improved process and product characterisation through the development and application of process analytical techniques, hybrid statistical and empirical modeling and high throughput technologies for chemical synthesis.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/chemical-engineering-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/chemical-engineering-mphil-phd/#howtoapply

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice. Read more
The Advanced Process Engineering programme advances students’ knowledge in process engineering by focusing on an in-depth understanding of the fundamentals of key chemical and industrial processes and on their application and translation to practice.

You will encounter the latest technologies available to the process industries and will be exposed to a broad range of crucial operations. Hands-on exposure is our key to success.

The programme uses credit accumulation and offers advanced modules covering a broad range of modern process engineering, technical and management topics.

Core study areas include applied engineering practice, downstream processing, research and communication, applied heterogeneous catalysis and a research project.

The research project is conducted over two semesters and involves individual students working closely with a member of the academic staff on a topic of current interest. Recent examples, include water purification by advanced oxidation processes, affinity separation of metals, pesticides and organics from drinking water, biodiesel processing and liquid mixing in pharmaceutical reactors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Programme modules

Compulsory Modules
Semester 1:
- Applied Engineering Practice
- Downstream Processing
- Research and Communication

Semester 2:
- Applied Heterogeneous Catalysis

Semester 1 and 2:
- MSc Project

Optional Modules (select four)
Semester 1:
- Chemical Product Design
- Colloid Engineering and Nano-science
- Filtration
- Hazard Identification and Risk Management

Semester 2:
- Mixing of Fluids and Particles
- Advanced Computational Methods for Modelling

Careers and further study

Our graduates go on to work with companies such as 3M, GE Water, GL Noble Denton, GSK, Kraft Food, Tata Steel Group, Petroplus, Shell, Pharmaceutical World and Unilever. Some students further their studies by enrolling on a PhD programme.

Why choose chemical engineering at Loughborough?

The Department of Chemical Engineering at Loughborough University is a highly active, research intensive community comprising 21 full time academic staff, in addition to research students, postdoctoral research fellows and visitors, drawn from all over the world.

Our research impacts on current industrial and societal needs spanning, for example, the commercial production of stem cells, disinfection of hospital wards, novel drug delivery methods, advanced water treatment and continuous manufacturing of pharmaceutical products.

- Facilities
The Department has excellent quality laboratories and services for both bench and pilot scale work, complemented by first-rate computational and IT resources, and supported by mechanical and electronic workshops.

- Research
The Department has a strong and growing research programme with world-class research activities and facilities. Given the multidisciplinary nature of our research we work closely with other University departments across the campus as well as other institutions. The Departments research is divided into six key areas of interdisciplinary research and sharing of expertise amongst groups within the Department is commonplace.

- Career Prospects
The Department has close working relationships with AstraZeneca, BP, British Sugar, Carlsberg, E.ON, Exxon, GlaxoSmithKline, PepsiCo and Unilever to name but a few of the global organisations we work with and employ our graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/chemical/advanced-process-engineering/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X