• Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
Middlesex University Featured Masters Courses
Imperial College London Featured Masters Courses
University of Reading Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Glasgow Featured Masters Courses
"chemical" AND "oceanogra…×
0 miles

Masters Degrees (Chemical Oceanography)

We have 10 Masters Degrees (Chemical Oceanography)

  • "chemical" AND "oceanography" ×
  • clear all
Showing 1 to 10 of 10
Order by 
Summary. This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, mathematics, environmental science, physical geography or related disciplines. Read more

Summary

This degree is designed primarily for students with no previous specialisation in marine science such as graduates with a degree in biological sciences, chemistry or materials science, physics, mathematics, environmental science, physical geography or related disciplines. The programme includes compulsory introductory modules that provide a foundation in interdisciplinary marine science, along with the opportunity to specialise in particular areas through an option of modules, as well as research project experience. To highlight the specialisations possible through the option modules of the programme, we have developed “pathways” of suggested module choices, which include:

– Marine Biology and Ecology

– Physical Oceanography and Climate Dynamics

– Marine Biogeochemistry

– Marine Geology and Geophysics

Students can either follow one of these ‘pathways’, or mix options from different pathways, where the timetable allows, to pursue broader interests.Graduates often pursue careers in the marine environmental sector or undertake PhD research in marine sciences.

Modules

Semester one

Core introductory modules: Biological Oceanography; Chemical Oceanography; Marine Geology; Physical Oceanography Plus: Key Skills and Literature Review

Optional modules: two from: Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Deep-sea Ecology; Geodynamics and Solid Earth Geophysics; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large-scale Ocean Processes; Microfossils, Environment and Time; Zooplankton Ecology and Processes

Semester two

Optional modules: three from: Global Ocean Carbon Cycle, Ocean Acidification and Climate; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Global Ocean Monitoring; Seafloor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus: Key Skills and Literature Review Research project: From June to September, students work full-time on an independent research project that represents one-third of the MSc degree.

Visit our website for further information.



Read less
This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. Read more

Summary

This two-year taught MSc is a joint European programme that provides the opportunity to study in Southampton, Bilbao, Bordeaux and Liege and will develop your ability to make a difference in marine environmental resource management. You will spend a full semester at three out of the four European universities (Southampton, Bilbao, Bordeaux, Liege) and will study in English. Your dissertation can be taken at any of these institutions or at any other MER partner institution worldwide. This experience of mobility, along with the emphasis on environment and resources in the programme, will empower you in the pan-European job and research market.

Modules

Semenster one delivered by the University of Southampton or the University of Bordeaux
Modules offered at Southampton:

Core modules: Contemporary Topics in Marine Science Policy and Law; Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography
Optional modules: Coastal Sediment Dynamics; Marine GeoArchaeology; Microfossils, Environment and Time; Applied and Marine Geophysics; Biogeochemical Cycles in the Earth System; International Maritime and Environment Law; Introductory Remote Sensing of the Oceans; Largescale Ocean Processes; Deep-sea Ecology; Zooplankton Ecology and Processes

Semester two delivered by the University of the Basque Country, Bilbao.

Semester three delivered by the University of Southampton or the University of Liege.
Modules offered at Southampton:

Option modules: four from: Deep-sea Ecology; Zooplankton Ecology and Processes; and any option not taken in the first semester Specialisation in: Biodiversity and Preservation of the Marine Environment and its Resources; Design of Sampling Schemes and Data Analysis in Research Projects; Ecotoxicology; Integrated Assessment of the Quality of the Marine Environment; Sustainable Management of Marine Living Resources; Sustainable Management of Marine Non-living Resources

Visit our website for further information...



Read less
Summary. This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise. Read more

Summary

This programme provides broad knowledge of marine geological and geophysical techniques and advanced training in marine geophysical exploration techniques, mathematical modelling, geodynamics, coastal processes, micropalaeontology or palaeoceanographic expertise.

You will gain hands-on research experience through an advanced project with leading international researchers. The MRes focuses less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one:

Core modules: Contemporary Topics in Ocean and Earth Science; Introduction to Marine Geology; plus one from Introduction to Chemical Oceanography or Introduction to Physical Oceanography

Optional modules: Applied and Marine Geophysics; Basin Analysis; Coastal Sediment Dynamics; Computational Data Analysis for Geophysicists and Ocean Scientists; Geodynamics and Solid Earth Geophysics; Microfossils, Environments and Time

Semester two:

Optional modules: Applied Coastal Sediment Dynamics; Ecological Modelling; Global Climate Cycles; High-resolution Marine Geophysics

Plus research project

Visit our website for further information.



Read less
Summary. You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. Read more

Summary

You will focus on a particular area of oceanography, which may be influenced by the subject area of your first degree, and develop specific knowledge and skills in areas determined by the modules you select and the nature of the research you undertake. The MRes is a research-led programme that differs from the MSc in focusing less on taught modules and more on the research project (about two-thirds of the year).

Modules

Semester one Core modules: Contemporary Topics in Ocean and Earth Science; plus one from: Introduction to Biological Oceanography; Introduction to Chemical Oceanography; Introduction to Marine Geology; Introduction to Physical Oceanography

Optional module: one from: Biogeochemical Cycles in the Earth System; Computational Data Analysis for Geophysicist and Ocean Scientists; Deep-sea Ecology; International Maritime and Environmental Law; Introductory Remote Sensing of the Oceans; Large scale Ocean Processes; Zooplankton Ecology and Processes

Semester two

Optional module: one from: Applied Biogeochemistry and Pollution; Applied Coastal Sediment Dynamics; Climate Dynamics; Ecological Modelling; Environmental Radioactivity and Radiochemistry; Global Climate Cycles; Reproduction in Marine Animals; Sea Floor Exploration and Surveying 2; Structure and Dynamics of Marine Communities; UN Convention on the Law of the Sea

Plus research project

Visit our website for further information...



Read less
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. Read more
Ocean acidification, energy resources, coastal erosion and flooding are just some of the issues that make ocean science such an important component when addressing the world’s most pressing environmental, energy and construction challenges. This course allows you to tailor your study towards employment in a specific sector including oceanographic and environmental research and consultancy, marine renewable energy, marine conservation management, offshore exploration and hydrographic surveying.

You will equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year - study the exploration and sustainable management of marine resources, construction and environmental support. You’ll conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.

Key features

-Gain a sound knowledge base across all areas of ocean science with options to develop specialist skills in marine conservation, oceanography or hydrography.
-Specialise in subjects that most interest you including coastal dynamics, seafloor mapping, physical oceanography, meteorology, remote sensing, offshore exploration, biological oceanography, marine pollution and conservation.
-Equip yourself for a career in hydrographic surveying by choosing the hydrography pathway in the final year (with potential high-level professional FIG/IHO/ICA accreditation) - study the exploration and sustainable management of marine resources, construction and environmental support.
-Conduct a research or consultancy-type project closely linked to one of our marine science research groups or industrial partners, providing an experience of working with established marine scientists and contributing to current work in a wider context.
-Develop your range of practical skills with our own fully-equipped fleet of boats, a new £4.65 million Marine Station used as a base for fieldwork afloat, industry standard oceanographic and surveying equipment and a type-approved ship simulator.
-Option to take the industry-recognised professional diving qualification (HSE Professional SCUBA) alongside your degree, and an optional scientific diving module to provide training and qualification for diving-based research projects and employment (limited places and additional costs apply).
-Experience an overseas field course that's aimed at integrating ocean science knowledge and understanding across the different sub-disciplines.

Course details

Year 1
Your first year, shared across the Marine Science Undergraduate Scheme, introduces the full range of topics within the degree and develops your underpinning scientific knowledge and practical skills. You’ll develop your understanding of the Earth’s oceans and the key physical, chemical, biological processes that occur in these systems. You’ll build practical skills and enhance your ability to analyse, present and interpret scientific data through field-based activities.

Core modules
-OS101 Introduction to Ocean Science
-OS103 Biology and Hydrography of the Ocean
-OS105 Mapping the Marine Environment
-OS102 Physical and Chemical Processes of the Ocean
-OS104 Measuring the Marine Environment

Optional modules
-GEES1002PP Climate Change and Energy
-GEES1003PP Sustainable Futures
-GOV1000PP One Planet? Society and Sustainability
-ENGL405PP Making Waves: Representing the Sea, Then and Now
-GEES1001PP Natural Hazards
-OS106PP Our Ocean Planet
-OS107PP Space Exploration

Year 2
In your second year, the emphasis will be on understanding core aspects of ocean science, including topics in ocean exploration, oceanography and marine conservation, and enhancing your practical and research skills. You’ll participate in a field work module based at our Marine Station, learning how to use industry standard instrumentation and software for measuring a variety of parameters in the coastal zone and you’ll develop a proposal for your final year project. There's also opportunity to apply scientific diving skills gained alongside the degree for suitably qualified individuals.

Core modules
-OS201 Global Ocean Processes
-OS202 Monitoring the Marine Environment
-OS206 Researching the Marine Environment

Optional modules
-OS208 Meteorology
-OS209 Marine Remote Sensing
-OS207 Scientific Diving
-OS203 Seafloor Mapping
-OS204 Waves, Tides and Coastal Dynamics
-OS205 Managing Human Impacts in the Marine Environment

Year 3
You’ll focus on topics with special relevance to your future plans including options across the specialisms offered through the related BSc Marine Science courses. A residential field course allows you to develop a group-based in-situ investigative study. A large part of the year is spent completing a research project, carrying out an in-depth investigation under the guidance of a member of academic staff.

Optional modules
-BPIE338 Ocean Science Placement

Year 4
Pathway options in the final year provide both an opportunity for you to pursue your choice of topic in greater depth and an opportunity to increase the breadth of your study through modules from the applied contemporary offerings of our Marine Science MSc programmes: Applied Marine Science, Marine Renewable Energy and Hydrography. You’ll conduct a research or consultancy-type project closely linked to one of our internationally-leading marine science research groups or industrial partners, providing an experience of working with established marine scientists.

Optional modules
-MAR517 Coastal Erosion and Protection
-MATH523 Modelling Coastal Processes
-MAR520 Hydrography
-MAR522 Survey Project Management
-MAR515 Management of Coastal Environments
-MAR518 Remote Sensing and GIS
-MAR521 Acoustic and Oceanographic Surveying
-MAR507 Economics of the Marine Environment
-MAR523 Digital Mapping
-MAR516 Contemporary Issues in Marine Science
-MAR519 Modelling Marine Processes

Every undergraduate taught course has a detailed programme specification document describing the course aims, the course structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Read more
The School of Earth Sciences has strong international links and the presence of researchers from all over the world makes for an exciting and stimulating environment. Research involves the full breadth of the earth sciences and has benefited from major investment in new laboratories and equipment in the past few years. Important initiatives include experimental and theoretical studies of physical, chemical and biological processes of the Earth.

Please note: If you are applying for this programme, you need to select Geology as the programme choice when completing your online application form.

Research groups

The research programme at Bristol is characterised by an expanding range of exciting subject areas. Research in the School of Earth Sciences encourages interdisciplinary collaboration between its five research groups, which in turn nurtures revolutionary research.

Geochemistry
The Geochemistry group uses fundamental chemical techniques to understand natural processes on a range of temporal and spatial scales. This can be from single atoms on mineral surfaces and the environmental geochemistry of the modern Earth to the large-scale chemical structure of planets and the birth of the solar system. The group has considerable expertise in isotopic measurements, spectroscopy and first-principles calculations.

Geophysics
Geophysics uses physical properties of the solid Earth to measure structure and processes on scales from the single crystal to the entire planet. Members of the Bristol Geophysics group use gravity, seismic and satellite data to image the Earth in a variety of different contexts. These include the Earth's core, mantle and tectonic processes, volcanoes, oil and gas reservoirs and mines.

Palaeobiology
The Palaeobiology group uses the fossil record to study the history of life. Research focuses on major diversifications, mass extinctions, dating the tree of life, phylogenomics and molecular palaeobiology, morphological innovation, biomechanics, and links between evolution and development; the organisms of interest range from foraminifera to dinosaurs.

Petrology
The Petrology group uses a combination of high-pressure and high-temperature experiments, petrology, geochemistry and mineral physics to attack a wide range of problems in the solid Earth - from the core to the surface.

Volcanology
The Volcanology group at Bristol aims to understand the physical processes underlying volcanic phenomena and develop methods of hazard and risk assessment that can be applied to volcanoes worldwide.

Recent case studies and collaborators include the Met Office, Montserrat Volcano Observatory, Eyjafjallajökull, Iceland and INGEOMINAS in Columbia.

Research centres

The School of Earth Sciences is involved in a number of collaborative research groups on an international level. Inter-faculty research centres such as the Biogeochemistry Research Centre and the Cabot Institute involve collaboration across several departments and faculties.

Centre for Environmental and Geophysical Flows
This interdisciplinary research centre brings together expertise from the Schools of Earth Sciences, Geographical Sciences, Mechanical Engineering and Mathematics. This creates diverse research activities and interests, from traffic flow to explosive volcanic flows, meteorology to oceanography.

Biogeochemistry Research Centre
The Biogeochemistry Research Centre involves staff from the Schools of Earth Sciences, Geographical Sciences and Chemistry. The research aims to develop our understanding of the biogeochemistry of modern-day and ancient environments and the way that it is affected by natural processes and the actions of mankind.

Bristol Isotope Group
The Bristol Isotope Group is a world-class research facility for isotope measurements directed at understanding natural processes, from the formation of the solar system, the origin of Earth - its deep structure and atmosphere, through to the evolution of that atmosphere and contemporary climate change.

Interface Analysis Centre
The Interface Analysis Centre specialises in the application of a wide range of analytical techniques and is used by the Schools of Chemistry, Earth Sciences and Physics.

The Cabot Institute
The Cabot Institute carries out fundamental and responsive research on risks and uncertainty in a changing environment. Interests include climate change, natural hazards, food and energy security, resilience and governance, and human impacts on the environment.

Read less
The MER master program provides high quality teaching in general oceanography with a specialization in marine environment (ecology, ecotoxicology… Read more

The MER master program provides high quality teaching in general oceanography with a specialization in marine environment (ecology, ecotoxicology, biochemistry, geochemistry, sedimentology, paleo-oceanography) and living or non-living marine resources. The MER program benefits from a consortium of four EU universities (Bilbao - Spain, Bordeaux-France, Southampton-UK and Liège-Belgium) and a worldwide network of associated partners.

Program structure

The MER master program is organized according to three teaching semesters (Semester 1-3: coursework) plus a research master thesis (Semester 4) carried out via an internship at any partner research institution worldwide. Mobility is mandatory and three different mobility opportunities are proposed for the coursework:

  • Bordeaux/Bilbao/Southampton.
  • Bordeaux/Bilbao/Liège.
  • Southampton/Bilbao/Liège.

Coursework is organized according to six mandatory and optional modules (total: 90 ECTS).

Module 1 to 6: Content

  • Module 1 /Fundamental: Ocean Science
  • Module 2 / Framework: Global Ocean Environment
  • Module 3 / Scientific Challenges and Opportunities: Marine Environment Protection and Resources Exploitation
  • Module 4 / Socio-Economic Commitment: Marine Environment and Resources Management
  • Module 5 / Data Analysis: Interpretation of Environmental Data
  • Module 6 / Discovery: Research in MER

The MSc thesis research (Module 6) is carried out during Semester 4 (30 ECTS) at any Marine Research Institute worldwide.

Strengths of this Master program

  • Successful MER students acquire a high degree of personal and scientific maturity, due to the wide range of topics taught in the domains of oceanography and marine resource management.
  • Students learn to prove strong mobility, autonomy and the capacity to adapt to different cultural and administrative conditions in the different countries involved.
  • At least three major European academic systems are experienced, and practice in applications for funding etc. at an international level is largely acquired.
  • Having studied in (at least 3) different countries and followed all the lectures and practical workshops in the English language, MER students have excellent profiles for starting positions in a scientific career in an international context.

After this Master program?

Successful completion of this program will prepare students for a leadership role in various marine sectors such as conservation and environmental management, fisheries, nongovernmental organizations and all levels of government positions from local to global. Students benefit from a worldwide network of partner institutions.

From the start (2007), the MER program has trained more than 100 students. More than 50% of graduates continue with a PhD. Other graduates integrate public or private organizations in their field of expertise.



Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
This Course is Open for 2016-17 entry. Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Read more
This Course is Open for 2016-17 entry.

Royal Holloway is one of the leading international centres for petroleum geoscience training and research. Our MSc Petroleum Geoscience course was established in 1985 and, with over 600 graduates from 32 countries, it is recognised around the world as one of the premier training courses for people starting out on careers in the hydrocarbon industry.

Our excellent links with the international oil industry, combined with high quality teaching and research facilities make the Royal Holloway MSc an ideal option if you are a recent graduate looking for a focused, vocational training course, or if you are an early career professional wishing to enhance your career development.

You can choose between several course modules to specialise your training in topics focussing on basin evolution or structural analysis and tectonics.

You will be joining a department where the Research Excellence Framework (REF) reported that 94% of research has been classified as 4* world leading and 3* internationally excellent in terms of originality, significance and rigour. By this criterion, Earth Sciences is 2nd place among UK universities. You will become part of a vibrant international graduate school, fully integrated into the research culture of the department.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscpetroleumgeoscience.aspx

Why choose this course?

- There is a huge demand for well qualified petroleum geoscientists. Companies worldwide are facing up to the challenge of replacing an ageing workforce with young graduates who can apply their knowledge and quickly learn from more experienced colleagues.

- We are one of the world leaders in the field of petroleum geoscience. Our MSc is recognised as a premier training course that will provide you with the practical and technical skills required to meet the challenges facing the hydrocarbon industry.

- You will develop the ability to integrate geological and geophysical data, and to apply your knowledge on a variety of scales, so that you can address a range of questions; from understanding the distribution of hydrocarbons in sedimentary basins, to quantifying the complex structural, stratigraphic and sedimentological architecture of individual reservoirs.

- We have excellent links with the international oil industry, including an Advisory Board with representatives from 14 multinational companies, which ensures that our teaching is up-to-date, relevant and will prepare you for a career in the industry.

- An MSc in Petroleum Geoscience from Royal Holloway also provides you with the geological and transferable skills to work in other Earth Science-related fields, and prepares you for further postgraduate study.

- This is a flexible course, allowing you study full-time, part-time or through distance learning. If you opt to study part-time you will have also have the option of studying through sandwich mode (complete terms in separate years).

- Field work in the UK and Spain is an important part of the programme and is fully integrated with the course units.

- The Department receives a number of studentships from industry sponsors and from the Research Council which are available to UK and EU applicants. Everyone who applies for a place on this course is automatically considered for these studentships, and no further application is required.

Department research and industry highlights

Our research follows four main themes:

- Geodynamics and Sedimentary Systems
The interaction between tectonic, volcanic and sedimentary processes to generate surface and sub-surface architectures. With a diverse range of expertise, researchers integrate geophysics, structural geology, sedimentology and modelling to improve our understanding of a wide range of geodynamic settings. Our interests range from the evolution of rift systems and passive margins to the tectonics of mountain belts and include an emphasis on sediment dynamics in all settings. Much of the research in this theme is funded by industry.

- Physics & Chemistry of Earth Processes
Quantitative characterization of Physical and Chemical processes within the Earth. This group plays a role in many research activities across the department and helps to ensure a rigorous academic approach. Research applications in geochemistry stem from development of world-class geochemical techniques in radiogenic (Sr-Nd-Pb-Hf-U-Th) and stable (C,H,O,N,S) isotopes, based on strategic partnerships with instrument manufacturers. In geophysics we have extensive expertise in both exploration geophysics and global geophysics. However, the group's main contribution extends well outside the traditional scope of geophysics and geochemistry into areas such as sedimentology, tectonics, palaeontology, oceans and atmospheres, the link between magmatism and tectonics, and the nature of the shallow mantle. In addition to making wide use of geochemical and geophysical data, we have developed a wide variety of forward and inverse modelling techniques (mathematical, numerical and laboratory-analogue).

- Global Environmental Change
Key transitions in Earth history including modern global change. A wide range of proxies and finger-printing techniques are employed to focus on issues of global change such as methane as a greenhouse gas, coastal and estuarine dynamics, modern and ancient sedimentary processes, Phanerozoic environmental change and associated biotic responses, the biogeochemistry of Archaean ecosystems and evolution of life through geologic time. In addition, we pioneer new research on the impact of ice sheet contamination and associated chemistry on climate change.

- Natural Hazards
Integrating several strands of current research within the department, this newly developing theme investigates a range of natural hazards, including intraplate earthquakes, subduction zones, volcanoes, landslides and associated tsunami, as well as environmental hazards. It utilises field studies, remote sensing data, numerical modelling, geophysical data from sites around the globe.

On completion of the course graduates will have:

- an understanding of the processes that control the structural and stratigraphic architecture of sedimentary basins

- an understanding of petroleum systems and the controls on the distribution of hydrocarbons and other fluids in sedimentary basins

- an understanding of the properties of hydrocarbon reservoirs, and the implications of this for hydrocarbon production and field development

- the ability to use seismic, well log, core and remotely sensed data to evaluate sedimentary basins, hydrocarbon prospects and hydrocarbon fields.

Assessment

The taught course units are assessed by a combination of written exams and course work. Each of the six units comprises 10% of the total assessment for the MSc course. The remaining 40% of the assessment comes from the Independent Research Project.

Employability & career opportunities

Our graduates are highly employable; 92% remain in petroleum geosciences and related fields after graduation – approximately 75% entering the industry and 20% continuing in research (mainly as PhD students).

Graduates find employment in a wide range of companies, from multinationals (such as Shell, BP, Statoil, BG, Centrica, GDF-Suez), large independents (e.g. Tullow, Hess), small independent companies (e.g. Volantis), and a wide range of consultancy companies (e.g. Fugro-Roberston, RPS, Equipoise, IHS, Midland Valley)

How to apply

Applications for entry to our campus based full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X