• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Aberdeen University Featured Masters Courses
"chemical" AND "biology"×
0 miles

Masters Degrees (Chemical Biology)

We have 207 Masters Degrees (Chemical Biology)

  • "chemical" AND "biology" ×
  • clear all
Showing 1 to 15 of 207
Order by 
Chemical biology is the application of chemical tools and ideas to biological and medical problems. Read more

Chemical biology is the application of chemical tools and ideas to biological and medical problems. This programme is designed to build on an existing knowledge of chemical structure and reactivity to give you a thorough grounding in contemporary chemical biology and drug discovery as well as introducing you to topics from the research frontier.

You’ll be taught by experts from across the Astbury Centre in chemical biology, biophysics and medicinal chemistry using a "problem-based" approach. Visiting lecturers from the pharmaceutical industry will share their expertise in industrially-relevant applications of chemical biology and drug design with you.

Bridging the gap between your undergraduate degree in a core subject, and interdisciplinary research in chemical biology, you’ll develop the skills to solve real-life research problems, benefitting from a multi-million pound investment in fantastic research facilities. Rather than focusing on a single discipline, you’ll learn to use either chemical or biological approaches to tackle the problem in hand.

Accreditation

Royal Society of Chemistry Accreditation

The University of Leeds launched the first taught MSc degree in Chemical Biology in the UK. The course was one of the first two MSc courses in the UK to receive accreditation from the Royal Society of Chemistry; graduates from the programme with an appropriate first degree in chemistry satisfy the academic requirements for the award of Chartered Chemist (CChem) status.

Course content

In the first half of the year you’ll cover a core range of modules designed to build on an existing knowledge of chemical structure and reactivity to give you a thorough understanding of chemical biology and the techniques required for drug design. In the second half of the year you’ll spend the majority of your time working on an interdisciplinary research project which will allow you to work with and gain advice from two supervisors with complementary expertise.

This project will contribute 50% of the mark for your degree. The School will help you to select the project that is right for you, in an area that interests and motivates you. The project will provide you with key research experience to take your career forward. With the core modules behind you, you’ll be ideally positioned to choose an exciting problem to investigate.

The breadth of expertise available at Leeds means that you will be able to combine a wide range of techniques from computational ligand design to synthesis, protein engineering and laser spectroscopy. These techniques might span one of more of the following general areas;

  • Synthesis of biologically active molecules
  • Medicinal chemistry
  • Enzymology and directed evolution
  • Biophysical chemistry
  • Chemical genetics

You’ll receive training in the generic skills that are required for the module, including scientific writing and giving oral presentations. You’ll select your project at the start of the second semester,undertaking a programme of directed reading before writing an initial report. You’ll then spend over four months in your supervisors' research laboratories working alongside PhD students and experienced postdoctoral researchers. During the research project, you’ll have access to the outstanding research facilities in chemical biology that are available in Leeds.

Course structure

Compulsory modules

  • Foundation of Chemical Biology 10 credits
  • Drug Discovery and Development 15 credits
  • Emerging Topics in Chemical Biology 25 credits
  • Extended Laboratory Project for Chemistry-based MSc courses 90 credits

Optional modules

  • Practical Bioinformatics 10 credits
  • Molecular Diagnostics and Drug Delivery 10 credits
  • Advanced Topics in Chemical Biology (40 Credit) 40 credits
  • Advanced Topics in Chemical Biology (30 Credit) 30 credits

For more information on typical modules, read Chemical Biology and Drug Design MSc in the course catalogue

Learning and teaching

You will be taught by experts across the Astbury Centre for Structural Molecular Biology, meaning you’ll learn from both chemists and biologists to gain the skills and knowledge to work in a multidisciplinary environment. You’ll be taught through a series of lectures, small group workshops and practical lab sessions. You will also get involved in student led activities such as literature presentations.

Assessment

The wide range of continual assessment formats will allow you to improve your generic skills, and to hone your ability to solve problems. As part of the continual assessment of modules, you will give a wide range of oral presentations; prepare short articles, essays and research reports; perform computational exercises; and undertake group-based problem solving activities. Your research project will be assessed through your practical work and a written research report.

Career opportunities

On graduation, you’ll be ideally placed to undertake interdisciplinary research in academia and the pharmaceutical or biotechnology industry. You’ll also be in a strong position to pursue a science-related career, such as patent work, scientific publishing or scientific administration.

In addition, this course will leave you well-placed to forge a career at companies working at the interface between chemistry and biology. The pharmaceutical and biotechnology industries are increasingly seeking researchers with a strong interdisciplinary background.

Further study

Many of our graduates have secured positions on Chemical Biology and Medicinal Chemistry PhD programmes in the UK and internationally. The Astbury Centre hosts a wide range of PhD programmes incorporating Chemical Biology and Medicinal Chemistry, offering many opportunities for students graduating from the MSc course. The MSc provides tailored training at the interface between chemistry and the biological sciences, and will enhance your prospects of securing a place on one of these highly competitive postgraduate programmes.

Careers support

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Are you interested in developing new technologies that will help to feed our growing population?. If so, see how our research and training is helping to shape our future. Read more
• Are you interested in developing new technologies that will help to feed our growing population?
• If so, see how our research and training is helping to shape our future...
• Industrial Internships are available on a competitive basis.
• Scholarships for Full or Part contribution towards fees and bursary are available for students who wish to consider either full or part-time option of the course.

The world leading Department of Chemistry (http://www.imperial.ac.uk/chemistry) and Institute of Chemical Biology (http://www.chemicalbiology.ac.uk) at Imperial College London is offering a 1-year multidisciplinary Masters in Research (MRes) in Plant Chemical Biology.
This course will equip you with the skills to tackle problems that lie at the plant/physical science interface on a molecular level. Chemical Biology through physical science innovation will lead to the development of novel technologies, vital to overcome future global challenges such as addressing the food, fuel and fibre needs of our growing population.
Advances in understanding biomolecular processes have often depended on the collaborative efforts of biochemists, chemists and physicists. Students will get training from both academic and industrial leaders in the plant and chemical biology fields. The course will enable students to bridge the gap that can exist between the physical and plant science disciplines because of differences in ‘language’, perspective and methodology. The course consists of an 8-month interdisciplinary research project, specialist lectures, transferable skills courses, interactive workshops, tutorials, journal clubs, and seminars.

Syngenta are the key industrial partner on this course. Joint Syngenta/Imperial research projects (internships) are available on a competitive basis. Students will either be based at Syngenta or at Imperial.

Successful graduates from this course will be ideally placed to undertake PhD studies or apply directly to the agri-science industrial sector.

For more information (including a copy of the course flyer and booklet) on the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences and details on how to apply, please see (http://www.imperial.ac.uk/chemicalbiology/mrescrop).

Visit the MRes in Plant Chemical Biology; Multidisciplinary Research for next Generation Agri-Sciences (Full or Part-time course) page on the Imperial College London web site for more details!

Read less
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology. It draws on the tools and ideas of modern Physical Sciences (e.g. Read more
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology.

It draws on the tools and ideas of modern Physical Sciences (e.g. Chemistry, Mathematics, Physics and Engineering) and applies these to the solution of biological problems at the molecular level.

It is a discipline that is perfectly poised to address the next great challenge in biological science – to understand how gene products are used in and interact with the cellular environment.

The research element provides physical scientists with the ability to bridge disparate fields and gain the confidence to grapple with biomolecular research in a multidisciplinary environment.

Read less
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more
The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

Degree information

The programme provides a thorough foundation in drug design, advanced organic synthesis and molecular modelling, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of two modules from the Wolfson Institute for Biomedical Research (30 credits), one Master's level chemistry module (15 credits) two transferable/research skills modules (30 credits) and the research project (105 credits).

Core modules - students take 30 credits of transferable/research skills and submit a research dissertation (105 credits).
-Transferable/Research Skills
-Research Dissertation

Optional modules - students take 45 credits from the following options:
-Bioinformatics
-Target Identification
-Cheminformatics
-Biological Molecules
-Biophysical Screening
-Fragment Based Drug Design
-Target Selection (Scientific)
-Target Selection (Commercial)
-Principles of Drug Design
-Biological Chemistry
-Stereochemical Control in Asymmetric Synthesis
-Synthesis and Biosynthesis of Natural Products
-Organometallics and Catalysis
-Structural Methods in Modern Chemistry

Dissertation/report
Students will undertake a laboratory-based research project lasting ten months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning
The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Top career destinations for this degree:
-PHD Chemical Biology, University College London (UCL)
-PhD Radiochemistry, University College London (UCL)

Why study this degree at UCL?

This programme is taught in collaboration with the Wolfson Institute of Biomedical Research (WIBR) which brings together scientists and clinicians from both academic and pharmaceutical industry backgrounds. The institute's strength is in its multidisciplinary approach to research, with the goal of identifying novel targets for drug development.

Read less
Penn’s Master of Chemical Sciences is designed for your success. Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. Read more
Penn’s Master of Chemical Sciences is designed for your success
Chemistry professionals are at the forefront of the human quest to solve ever-evolving challenges in agriculture, healthcare and the environment. As new discoveries are made, so are new industries — and new opportunities. Whether you’re currently a chemistry professional or seeking to enter the field, Penn’s rigorous Master of Chemical Sciences (MCS) builds on your level of expertise to prepare you to take advantage of the myriad career possibilities available in the chemical sciences. With a faculty of leading academic researchers and experienced industry consultants, we provide the academic and professional opportunities you need to achieve your unique goals.

The Penn Master of Chemical Sciences connects you with the resources of an Ivy League institution and provides you with theoretical and technical expertise in biological chemistry, inorganic chemistry, organic chemistry, physical chemistry, environmental chemistry and materials. In our various seminar series, you will also regularly hear from chemistry professionals who work in a variety of research and applied settings, allowing you to consider new paths and how best to take advantage of the program itself to prepare for your ideal career.

Preparation for professional success
If you’ve recently graduated from college and have a strong background in chemistry, the Master of Chemical Sciences offers you a exceptional preparation to enter a chemistry profession. In our program, you will gain the skills and confidence to become a competitive candidate for potential employers as you discover and pursue your individual interests within the field of chemistry. Our faculty members bring a wealth of research expertise and industry knowledge to help you define your career direction.

For working professionals in the chemical or pharmaceutical industries, the Master of Chemical Sciences accelerates your career by expanding and refreshing your expertise and enhancing your research experiences. We provide full- and part-time options so you can pursue your education without interrupting your career. You can complete the 10-course program in one and a half to four years, depending on course load.

The culminating element of our curriculum, the capstone project, both tests and defines your program mastery. During the capstone exercise, you will propose and defend a complex project of your choice, that allows you to stake out a new professional niche and demonstrate your abilities to current or prospective employers.

Graduates will pursue fulfilling careers in a variety of cutting-edge jobs across government, education and corporate sectors. As part of the Penn Alumni network, you’ll join a group of professionals that spans the globe and expands your professional horizons.

Courses and Curriculum

The Master of Chemical Sciences degree is designed to give you a well-rounded, mechanistic foundation in a blend of chemistry topics. To that end, the curriculum is structured with a combination of core concentration courses and electives, which allow you to focus on topics best suited to your interests and goals.

As a new student in the Master of Chemical Sciences program, you will meet with your academic advisor to review your previous experiences and your future goals. Based on this discussion, you will create an individualized academic schedule.

The Master of Chemical Sciences requires the minimum completion of 10 course units (c.u.)* as follows:

Pro-Seminar (1 c.u.)
Core concentration courses (4-6 c.u., depending on concentration and advisor recommendations)
Elective courses in Chemistry, such as computational chemistry, environmental chemistry, medicinal chemistry, catalysis and energy (2-4 c.u., depending on concentration and advisor recommendations)
Optional Independent Studies (1 c.u.)
Capstone project (1 c.u.)
Pro-Seminar course (CHEM 599: 1 c.u.)
The Pro-Seminar will review fundamental concepts regarding research design, the scientific method and professional scientific communication. The course will also familiarize students with techniques for searching scientific databases and with the basis of ethical conduct in science.

Concentration courses
The concentration courses allow you to develop specific expertise and also signify your mastery of a field to potential employers.

The number of elective courses you take will depend upon the requirements for your area of concentration, and upon the curriculum that you plan with your academic advisor. These concentration courses allow you to acquire the skills and the critical perspective necessary to master a chemical sciences subdiscipline, and will help prepare you to pursue the final capstone project (below).

You may choose from the following six chemical sciences concentrations:

Biological Chemistry
Inorganic Chemistry
Organic Chemistry
Physical Chemistry
Environmental Chemistry
Materials
Independent Studies
The optional Independent Studies course will be offered each fall and spring semester, giving you an opportunity to participate in one of the research projects being conducted in one of our chemistry laboratories. During the study, you will also learn analytical skills relevant to your capstone research project and career goals. You can participate in the Independent Studies course during your first year in the program as a one-course unit elective course option. (CHEM 910: 1 c.u. maximum)

Capstone project (1 c.u.)

The capstone project is a distinguishing feature of the Master of Chemical Sciences program, blending academic and professional experiences and serving as the culmination of your work in the program. You will develop a project drawing from your learning in and outside of the classroom to demonstrate mastery of an area in the chemical sciences.

The subject of this project is related to your professional concentration and may be selected to complement or further develop a work-related interest. It's an opportunity to showcase your specialization and your unique perspective within the field.

Your capstone component may be a Penn laboratory research project, an off-campus laboratory research project or a literature-based review project. All components will require a completed scientific report. It is expected that the capstone project will take an average of six months to complete. Most students are expected to start at the end of the first academic year in the summer and conclude at the end of fall semester of the second year. Depending on the capstone option selected, students may begin to work on the capstone as early as the spring semester of their first year in the program.

All capstone project proposals must be pre-approved by your concentration advisor, Master of Chemical Sciences Program Director and if applicable, your off-campus project supervisor. If necessary, nondisclosure agreements will be signed by students securing projects with private companies. Additionally, students from private industry may be able to complete a defined capstone project at their current place of employment. All capstone projects culminate in a final written report, to be graded by the student's concentration advisor who is a member of the standing faculty or staff instructor in the Chemistry Department.

*Academic credit is defined by the University of Pennsylvania as a course unit (c.u.). Generally, a 1 c.u. course at Penn is equivalent to a three or four semester hour course elsewhere. In general, the average course offered at Penn is listed as being worth 1 c.u.; courses that include a lecture and a lab are often worth 1.5 c.u.

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology. Read more
The School of Chemistry is a vibrant centre of research in chemistry. We have an international reputation in a wide range of fields from catalysis to anticancer drug design and molecular photonics to nanotechnology.

Research in the School of Chemistry is organised into the following groups:

Medicinal Chemistry and Chemical Biology

Our strength in medicinal chemistry is evident through our track record of successful research. This has included the discovery of drugs that have progressed to clinic. We have core capacity in:
-Anti-cancer drug discovery
-Biomolecular imaging
-Computational chemistry
-Chemical biology

Nanoscience and Materials

Our research develops new methods to synthesise, characterise and improve our understanding of materials. We focus on materials with useful nanoscale properties.

Photonic Materials

Photonic materials refer to systems that respond to stimulation by light. These can range from single molecules to intricate architectures and molecular devices. Many systems focus on:
-Converting sunlight into chemical potential
-The concentration of excitonic energy.

We focus on understanding fundamental principles by using spectroscopic examination.

Structure and Dynamics

Structure underpins the majority of research in chemistry, biology and materials science. The trouble is, the world is dynamic and not static. This means that understanding how structures evolve during a chemical reaction is critical. Our research relates to fundamental and applied research fields over broad time ranges.

Synthesis, Reactivity and Catalysis

This research group combines the expertise of organic and inorganic chemists. Our research aims to advance fundamental knowledge and capabilities in synthesis and reactivity. We focus on the elements s, p, d and f blocks across the periodic table. Through this study we can develop new and improved materials and catalytic processes.

Read less
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. Read more
The chemistry of biological processes is the basis of all life on planet Earth. On this course you will develop an understanding of the processes that are core to biological chemistry. We will explore aspects such as biosynthesis, retrosynthetic analysis, molecular biology and the principles of drug development. We will also look at the applications of biological chemistry in catalysts, synthetic methods and spectroscopy, giving our graduates an edge when looking for employment in academia or industry.

Distinctive features:

• Available on a one year full-time or three year part-time basis.

• Explore real life biological systems as well as applications of biological processes, for example in catalysis.

• Specialise in an area of interest to you with an end of course research project.

• Some overseas academic placements may be available for the research project.

Structure

This course may be taken on a one year full-time or three year part-time basis.

There are two parts to the degree. Part one comprises core and optional taught modules which you will take during the autumn and spring semesters. In these modules we will provide you with an understanding of the biological problems and processes at the interface of chemistry and biology. We will study real life systems and explore aspects such as natural product synthesis, biocatalysis, molecular biology, synthetic biology, enzymology, medicinal chemistry and molecular modelling.

Upon successful completion of part one of the degree you will progress to part two, the summer research project. We will make a range of project options available to you from the field of biological chemistry. For this project you may work with a research group in the School of Chemistry. You may also be able to complete this project with one of our academic partner institutions overseas.

If you are on the one year full-time degree option, you will undertake all modules and your research project in one year.

Core modules:

Structure and Mechanism in Organic Chemistry
Biosynthetic Approach to Natural Products
Biocatalysis I - Modern Approaches to Biocatalysts
Colloquium
Biocatalysis II - Industrial Applications of Biocatalysis
Medicinal Chemistry
Bioinorganic Chemistry
Advanced Techniques in Organic and Biological Chemistry
Key Skills for Postgraduate Chemists
Practical Chemical Biology
Research Project

Optional modules:

Modelling of Biological Macromolecules
Asymmetric Synthesis of Pharmaceuticals and Natural Products
Analytical and Structural Techniques in Chemical Biology
Molecular Modelling

Teaching

The methods of teaching we employ will vary from module to module, as appropriate depending on the subject matter and the method of assessment. We teach using a mixture of lectures, workshops, computational sessions, laboratory practicals and tutorials.

Your research project will be carried out in one of our laboratories under supervision of an academic member of staff with interests in a similar field, unless you choose to complete your project during a placement with one of our academic partner institutions overseas, depending on availability.

Modules relating to computing frequently take place in our computer rooms, while practical work will be undertaken in our laboratories. We frequently invite external academic speakers and industry experts to the School for seminars, which our postgraduate students are encouraged to attend.

Support

All of our students are allocated a personal tutor when they enrol on the course. A personal tutor is there to support you during your studies and can advise you on academic and personal matters that may be affecting you. You should have regular meetings with your personal tutor to ensure that you are fully supported.

You will have access to the Science Library, which holds our collection of chemistry resources, as well as to the other Cardiff University Libraries.

Feedback:

We offer written and oral feedback, depending on the coursework or assessment you have undertaken. You will usually receive your feedback from the module leader. If you have questions regarding your feedback, module leaders are usually happy to give advice and guidance on your progress. We aim to provide you with regular feedback on your work after assessments have been submitted.

Assessment

Taught modules are assessed in a variety of ways depending on the module content and learning outcomes (found in the module descriptions). We use course work, assessed workshops, posters and oral presentations or a combination of these to assess your progress on the course.

Your research project at the end of the course will be assessed through a dissertation, a presentation, and an oral exam.

Career prospects

After completing this course there are usually two career streams open to graduates, research or industry. Within these two fields there are a variety of career options. For example, many of our graduates choose to follow up their MSc and decide to complete a PhD research degree with us. Those who have chosen not to continue in academia or teaching have gone on to a wide range of employment in private industries such as Kimberley-Clark group, Thales group, and Imanova Ltd.

Placements

For the end of course research project we may have some placements available with one of our academic partner institutions overseas. Please enquire early for further details

Read less
This specialisation involves studying the design and synthesis of complex molecular systems, and addressing challenging problems, such as wound healing and drug delivery. Read more

Master's specialisation in Chemistry for Life

This specialisation involves studying the design and synthesis of complex molecular systems, and addressing challenging problems, such as wound healing and drug delivery. At the interface of biology and chemistry you will get a solid foundation in modern synthetic organic chemistry, physical organic chemistry and chemical biology. This multidisciplinary knowledge is essential for industries of the future, where chemistry and the life sciences become more and more intertwined. As a Chemistry for Life Master's student you will obtain the knowledge and skills you need to develop the next generation of medicines.

Programme courses

The Master’s specialisation in Chemistry for Life is taught at the Faculty of Science. It has a course load of 120 EC* (two years). The track consists of:
- 15 EC of compulsory courses
- 15 EC of electives
- Two internships of in total total 90 EC

If you can handle the studyload and want to add another course to personalise your Master’s programme, you are certainly free to do so.

Societal Master's tracks

You can either follow the above-mentioned research Master's specialisation as a whole (2 years), or you can combine the first year of the research track with an additional year of one of three societal Master’s specialisations, namely:
- Science in Society
- Science, Management and Innovation
- Science and Education (in Dutch only)

* European Credit Transfer System (ECTS)
The workload of an academic year is equivalent to 60 European credits (EC), where 1 EC point is 28 hours of study. This system allows you to check whether the courses you have followed in a particular year (along with other activities that earn credits) meet the European requirements.

Proficiency in English

In order to take part in the programme, you need to have fluency in English, both written and spoken. Non-native speakers of English without a Dutch Bachelor’s degree or VWO diploma need one of the following:
- TOEFL score of ≥575 (paper based) or ≥90 (internet based);
- An IELTS score of ≥6.5;
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

Career prospects

Career perpectives of chemical biologists are very broad: our graduates work in the pharmaceutical, biotech and life sciences industries. High tech start-ups are also an option. There are numerous opportunities for PhD positions, including at the national Graduate School in Chemical Biology.
We stimulate our Master's students to develop a critical mind and a problem solving attitude. Some of them will become the next generation of top scientists, all of them will have a job within a few months after graduation:
- 40% become PhD students at a university
- 60% work at a research institute, in the (bio)chemical industry or in one of our spin-off companies
- A small proportion do not work in science but for instance as a policymaker at a governmental organisation.

Our research in this field

Teachers and researchers at Radboud University are very open and approachable for students, and the student-teacher ratio is low. The teachers also introduce you to their research: the knowledge from their lab is your course material. During your internships, you'll get to know them even better, as you'll become member of one of their research groups.

Research

Research internships can be performed at the Institute of Molecules and Materials (IMM), the Radboud Institute of Molecular Life Sciences (RIMLS), or other institutes and companies. Possible research subjects are:
- Drug delivery using nanocapsules
- Developing hydrogels for wound healing
- Designing new responsive biocompatible materials
- Unraveling the structure and function of proteins

See the website http://www.ru.nl/masters/chemistryforlife

Read less
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?. Read more
Do you want to unravel the fundamental processes in living cells? Do you want to understand 'life' at a molecular level? Do you want to explore applications based on basic molecular research?

Molecular Biology and Biotechnology are internationally oriented research and business areas that profit from a strong multidisciplinary knowledge on structural biology, biochemistry, molecular cell biology, genetics, microbiology and systems biology. During this programme, you acquire in-depth knowledge and skills via upperlevel theoretical and practical training. You become highly competent in the field of Molecular Biology and Biotechnology, with excellent perspectives for an independent career in an academic or industrial research environment.

The programme is mainly organized by the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) and is closely related to research institute. Research is fundamental and curiosity-driven and contains specialisation in the following areas:
- Molecular Systems Biology
- Molecular Cell Biology of Complex Biological Processes
- Membrane Proteins
- Structure-function Relationships of Proteins
- Microbial Biotechnology and Biocatalysis
- Chemical and Synthetic Biology

Why in Groningen?

- Connected to research institute GBB, which maintains a strong international reputation and covers the field of systems, chemical, and synthetic biology
- Internationally oriented research and business area
- Excellent MSc students from Molecular Biology & Biotechnology may apply during their first year for the selective Top programme Biomolecular Sciences

Job perspectives

Biomolecular scientists, graduates of the Master's degree programme in Molecular Biology and Biotechnology, can pursue a career in:
- PhD in the areas of Biomolecular Sciences, Life Science, Biochemistry, Biomedical Sciences, and Bio(nano-)technology
- R&D position within Life Sciences Industry
- Scientific Advisor within a company

Read less
This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field. Read more

This one-year programme at the University of Edinburgh will immerse you in the most current developments in chemical engineering, through a combination of taught modules, workshops, a research dissertation, and a number of supporting activities delivered by the key experts in the field.

The programme will develop from fundamental topics, including modern approaches to understanding properties of the systems on a molecular scale and advanced numerical methods, to the actual processes, with a particular emphasis on energy efficiency, to the summer dissertation projects where the acquired skills in various areas are put into practice, in application to actual chemical engineering problems.

Programme structure

The programme develops from compulsory courses, emphasizing modern computational techniques and research methods, to a range of options. It is complemented by a strong management and economics component.

Compulsory Courses

  • Numerical Methods for Chemical Engineers
  • Molecular Thermodynamics
  • Introduction to Research Methods

In addition to the compulsory courses you will take a range of optional courses, please review the "Degree Structure" portion the MSc website listed below to find further information on available courses and course descriptions:

Learning outcomes

  • A working knowledge of modern modelling and simulation approaches to understanding properties of chemical systems at a molecular level.
  • A working knowledge of advanced experimental techniques, such as for example particle image velocimetry, spectroscopy and infra-red thermography, as applied in engineering research and development.
  • Ability to transform a chemical engineering problem into a mathematical representation; broad understanding of the available numerical tools and methods to solve the problem; appreciation of their scope and limitations.
  • An understanding of the basic design approaches to advanced energy efficient separation processes.
  • Ability to transfer and operate engineering principles in application to other fields, such as biology.
  • Proficiency in using modern chemical engineering software, from molecular visualisation to computational fluid dynamics to process engineering.

On completion of the research dissertation, the students will be able to:

  • Plan and execute a significant research project
  • Apply a range of standard and specialised research instruments and techniques of enquiry
  • Identify, conceptualise and define new and abstract problems and issues
  • Develop original and creative responses to problems and issues
  • Critically review, consolidate and extend knowledge, skills practices and thinking in chemical engineering
  • Communicate their research findings, using appropriate methods, to a range of audiences with different levels of knowledge and expertise
  • Place their research in the context of the current societal needs and industrial practice
  • Adhere to rigorous research ethics rules
  • Exercise substantial autonomy and initiative in research activities
  • Take responsibility for independent work
  • Communicate with the public, peers, more senior colleagues and specialists
  • Use a wide range of software to support and present research plans and findings

Career opportunities

Our graduates enjoy diverse career opportunities in oil and gas, pharmaceutical, food and drink, consumer products, banking and consulting industries. Examples of the recent employers of our graduates include BP, P&G, Mondelēz International, Doosan Babcock, Atkins, Safetec, Xodus Group, Diageo, Wood Group, GSK, Gilead Sciences, ExxonMobil, Jacobs, Halliburton, Cavendish Nuclear to name a few. This wide range of potential employers means that our graduates are exceptionally well placed to find rewarding and lucrative careers. According to the Complete University Guide, the chemical engineering programme at the University of Edinburgh is ranked one of the top in the UK in terms of graduates prospects.

Find our more about career opportunities:

The MSc in Advanced Chemical Engineering may also lead to further studies in a PhD programme. With the 94% of our research activity rated as world leading or internationally excellent (according to the most recent Research Excellence Framework 2014), Edinburgh is the UK powerhouse in Engineering. As an MSc student at Edinburgh you will be immersed in a research intensive, multidisciplinary environment and you will have plenty of opportunities to interact with PhD, MSc students and staff from other programmes, institutes and schools.

Find out more about our research:



Read less
Chemistry is the central science enabling a healthy future in a sustainable society. During this master's programme you will learn to take a fundamental approach in finding tailored solutions for complex societal problems in human health and environmental issues. Read more

Chemistry is the central science enabling a healthy future in a sustainable society. During this master's programme you will learn to take a fundamental approach in finding tailored solutions for complex societal problems in human health and environmental issues.

What does this master’s programme entail?

The aim of this two-year programme is to train you as an independent scientist and to develop the necessary skills and proficiency to advance your career. The master’s programme in Chemistry offers you access to cutting edge research. The research is concentrated in two major research areas:

  • Chemical Biology: within this research area you will study fundamental biological and biomedical problems to understand physiological processes at the molecular level and to gather more knowledge on human health and illnesses.
  • Energy & Sustainability: within this research area you will focus on the development of new sources of sustainable energy and the use of storage of energy. For example you will be working on the development of a new generation of catalysts for the production of solar fuels.

Read more about our Chemistry programme.

Why study Chemistry at Leiden University?

  • You can tailor your programme based on your ambitions and interests within the research areas Chemical Biology or Energy & Sustainability.
  • During your programme, you will be part of a multidisciplinary research team of internationally renowned researchers where you will conduct your Master research project.
  • You will receive personal guidance from a mentor of choice, who is a member of one of our international and young research groups.

Find more reasons to choose Chemistry at Leiden University.

Chemistry: the right master’s programme for you?

The programme is open for students with an internationally recognized bachelor’s degree in chemistry or a Bachelor of Science degree with a major in chemistry. Chemistry is the right master’s programme for you if you are interested in fundamental chemistry and applied research. You will be trained for a career in research within or outside academia. You can also choose a specialisation where you combine one year of Chemistry research with one year of training in business, communication or education.

Read more about the entry requirements for Chemistry.



Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Read more
This Masters in Bioinformatics is a new, exciting and innovative programme that has grown out of our well-regarded MRes in Bioinformatics. Bioinformatics is a discipline at the interface between biology and computing and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and display - all of which form a core part of modern biology.

Why this programme

◾Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical-based elective courses in Semester 2 and in a summer research project.
◾You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
◾Bioinformatics and the 'Omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
◾Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
◾The Semester 2 elective courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organizing and implementing appropriate analysis pipelines.
◾You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics; our College has carried out internationally-recognised research in functional genomics and systems biology.
◾The new programme reflects the development and activities of 'Glasgow Polyomics'. Glasgow Polyomics is a world-class facility set up in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
◾In addition, we have several world-renowned research centres at the University, such as the Wellcome Trust Centre for Molecular Parasitology and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
◾You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area: systems biology.

‘Polyomics’ involves the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure
◾Core material - 60 credits, Semester 1, made up of 10, 15 and 20 credit courses.
◾Elective material - 60 credits, Semester 2, students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
◾Project - 60 credits, 14 weeks embedded in a research group over the summer.

Core and optional courses

◾Programming (Java)
◾Database Theory and Application
◾Foundations of Bioinformatics
◾Omics and Systems Approaches in Biology
◾These 4 courses are obligatory for those taking the MSc degree and the PgDip; they are also obligatory for those with no prior programming experience taking the PgCert.
◾60-credit summer research project lasting 14 weeks - this is also obligatory for those taking the MSc programme; normally this will be with one of the research laboratories in Glasgow associated with the programme, but there is also the opportunity to study in suitable laboratories in other parts of the world.

Optional courses include:
◾RNA-seq and next generation transcriptomics
◾Metagenomics
◾Pathogen Polyomics
◾Using Chemical Structure Databases in Drug Discovery for Protein Targets
◾Identification of disease-causing genetic variants
◾A range of more general biology and computing biology courses are also available in semester 2.

Career prospects

Most of our graduates embark on a research career path here in the UK or abroad using the skills they've acquired on our programme - these skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science. A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - e.g. computing biology jobs in biotechnology/biosciences/neuroinformatics/pharma industry. Some of our graduates have entered science-related careers in scientific publishing or education; others have gone into computing-related jobs in non-bioscience industry or the public sector.

Read less
The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. Read more

MSc Biology

The two year MSc Biology concerns understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The biosciences aim to understand living systems and to help preserve biodiversity and our environment and simultaneously produce sufficient healthy and safe food.

Programme summary

Biological issues are at the forefront of the technological progress of modern society. They are central to global concerns about how we effect and are affected by our environment. Understanding the complexity of biological systems, at scales ranging from single molecules to whole ecosystems, provides a unique intellectual challenge. The MSc Biology allows students to get a broad overview of the latest developments in biology, ranging from genes to ecosystems. They learn to critically discuss the newest scientific developments in the biological sciences. Within their area of specialisation, students deepen their knowledge and skills in a certain subject. To prepare for a successful international career, we strongly encourage our students to complete part of their programme requirements abroad.

Specialisations

The MSc Biology offers nine specialisations:

Animal Adaptation and Behavioural Biology
This specialisation focuses mainly on subjects as adaptation, mechanisms involved in these adaptations and behaviour of animals.

Bio-interactions
In this specialisation, you obtain knowledge about interactions between organisms. You learn to understand and interpret interactions on different levels, from molecular to ecosystem level.

Molecular Ecology
In this specialisation, you learn to use molecular techniques to solve ecological questions. You will use, for example, molecular techniques to study the interaction between a virus and a plant.

Conservation and Systems Ecology
This specialisation focuses initially on fundamental processes that play a key role in ecology. You learn to interpret different relations, for example, the relation between chemical (or physical processes) and bioprocesses. Furthermore, you learn to analyse different ecosystems. You can use this knowledge to manage and conserve these ecological systems.

Evolution and Biodiversity
The systematics of biodiversity in an evolutionary perspective is the central focus of this specialisation. Subjects that will be addressed in this specialisation are: evolution, genetics, biosystematic research and taxonomic analysis.

Health and Disease
This specialisation focuses on regulatory mechanisms that have a central role in human and animal health.

Marine Biology
Choosing this specialisation means studying the complexity of the marine ecosystem. Moreover, you learn about the impacts of, for instance, fishery and recreation on this ecosystem or the interaction between different species in this system.

Molecular Development and Gene Regulation
This specialisation focuses on gene regulations and the different developmental mechanisms of organisms.

Plant Adaptation
This specialisation focuses on the adaptations that different plants gained in order to adjust to various conditions. You learn to understand the regulation processes in plants that underlie these adaptations.

Your future career

Many graduates from the MSc Biology study programme enter careers in fundamental and applied research or go on to become PhD students. Some find a position as communication officer, manager or policymaker. Compared with other Dutch universities, many biology graduates from Wageningen University find a position abroad.

Alumna Iris de Winter.
"I work as a PhD student at Wageningen University. In my research, I aim to understand the effect of human disturbance on the parasites prevalence in lemurs. I also look at the potential risks of the transmission of diseases and parasites from lemurs to humans, but also vice versa, from humans (and their livestock and pets) to wild lemur population. I alternate my fieldwork in Madagascar with parasite identification, analyses and writing manuscripts in the Netherlands. With this research, I hope to gain more insight in the factors that increase parasite prevalence in natural systems and hereby to improve the protection of both lemurs and their natural habitat."

Related programmes:
MSc Molecular Life Sciences
MSc Animal Sciences
MSc Plant Sciences
MSc Forest and Nature Conservation
MSc Biotechnology
MSc Plant Biotechnology
MSc Aquaculture and Marine Resource Management
MSc Organic Agriculture.

Read less

Show 10 15 30 per page



Cookie Policy    X