• Leeds Beckett University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Birmingham Featured Masters Courses
Cardiff University Featured Masters Courses
University of Kent Featured Masters Courses
Cardiff University Featured Masters Courses
Loughborough University Featured Masters Courses
"cheese"×
0 miles

Masters Degrees (Cheese)

  • "cheese" ×
  • clear all
Showing 1 to 3 of 3
Order by 
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

Enhance your knowledge and skills in biosciences with an emphasis on biotechnology and increase your competitiveness in the job market. Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by:
-Cell biology
-Molecular biology
-Bioinformatics
-Structural biology.

It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering. Important biotechnological advances including:
-The production of therapeutic proteins using cloned DNA, for example insulin and clotting factors.
-The application of stem cells to treat human disease.
-The enhancement of crop yields and plants with increased nutritional value.
-Herbicide and insect resistant plants.
-Production of recombinant antibodies for the treatment of disease.
-Edible vaccines, in the form of modified plants.
-Development of biosensors for the detection of biological and inorganic analytes.

You gain:
-Up-to-date knowledge of the cellular and molecular basis of biological processes.
-An advanced understanding of DNA technology and molecular biotechnology.
-Knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases.
-Practical skills applicable in a range of bioscience laboratories.
-The transferable and research skills to enable you to continue developing your knowledge and improving your employment potential.

The course is led by internationally recognised academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by a personal tutor.

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biotechnology

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies. Recombinant proteins are also found throughout everyday life from washing powders to cheese as well as many industrial applications.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The Diploma and Certificate are shorter. Starts September and January.

The masters (MSc) award is achieved by successfully completing 180 credits. The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules
-Cell biology (15 credits)
-Biotechnology (15 credits)
-Plant biotechnology (15 credits)
-Molecular biology (15 credits)
-Applied biomedical techniques (15 credits)
-Professional development (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options (choose one from)
-Human genomics and proteomics (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)

Assessment
Assessment methods include written examinations and coursework including: problem-solving exercises; case studies; reports from practical work; in-depth critical analysis; oral presentations. Research project assessment includes a written report and viva.

Read less
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Read more
UCC has a history of nearly a century of teaching and research in the food sciences and is amongst Europe’s largest multidisciplinary education and research institutions with world-class academics working in all aspects of the food area. Our first-rate facilities include extensive and well-equipped laboratories and a large pilot plant with excellent dairy, meat and bakery facilities in addition to a modern pilot-scale brewery.

Course Details

The MSc (Food Science) is a full-time taught postgraduate programme running for 12 months from the date of first registration.

Format

Modules will be chosen with the approval of the Programme Board depending on the student's background.

Part 1 - Taught modules

Students take 60 credits as follows:

- Core Modules -

Students take 15 credits:

PG6001 STEPS - Scientific Training for Enhanced Postgraduate Studies (5 credits)
FS6101 Library Project in Food Science (10 credits)

- Elective Modules -

Student take 45 credits from the following:

FE6101 Food Business: Markets and Policy (5 credits)
FS6105 Material Science for Food Systems (5 credits)
FS6106 Advanced Topics in Dairy Biochemistry (5 credits)
FS6107 Advances in the Science of Muscle Foods (5 credits)
FS6108 Advances in Food Formulation Science and Technology (5 credits)
FS6103 Novel Processing Technologies and Ingredients (5 credits)
FS6120 Cheese and Fermented Dairy Products (5 credits)
FS6121 Meat Science and Technology (5 credits)
MB6114 Hygienic Production of Food (5 credits)
NT6102 Human Nutrition and Health (5 credits)
NT6108 Sensory Analysis in Nutrition Research (5 credits)

Depending on background of the student, the Programme Board may decide to replace some of the above modules to a maximum of 15 credits from:

FS3602 Chemistry of Food Proteins (5 credits)
FS3605 Macromolecules and Rheology (5 credits)
FS4603 Advanced Analytical Methods (5 credits)
FS4606 Cereals and Related Beverages (5 credits)
FS4014 Food Product Development and Innovation (5 credits)
MB4611 Microbial Food Safety (5 credits)

Students who pass Part 1 and achieve a minimum aggregate of 55% are eligible to progress to Part 2. Students who pass Part 1 but who fail to meet the minimum progression standards, or who choose to exit the programme, will be conferred with the Postgraduate Diploma in Food Science.

Part 2

FS6102 Dissertation in Food Science (30 credits)

Assessment

The taught modules of this course are assessed by examination in Winter, Spring and Summer. The research aspect is assessed on the quality of a substantial written dissertation.

Careers

On completing this course, you will be able to:

- conduct original research in food science
- demonstrate an understanding of scientific literature
- apply critical thinking and problem-solving skills in food science
- explain the techniques used in food research, in both principle and practice
- communicate effectively with the food industry and with society at large
- show a comprehensive understanding of current food consumer and food industry trends

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The programme focuses on the interface between chemistry, biology and medicine, with engineering as a common working tool. It provides students with competencies on how to use engineering principles in the analysis and manipulation of biological systems to solve problems across a spectrum of important applications. Read more

Programme aim

The programme focuses on the interface between chemistry, biology and medicine, with engineering as a common working tool. It provides students with competencies on how to use engineering principles in the analysis and manipulation of biological systems to solve problems across a spectrum of important applications.

The programme thus covers the broad base of knowledge from genetics to process engineering provided by expertise from the Departments of Biology and Biology Engineering, Chemistry and Chemical Engineering and Applied Physics, at Chalmers, and the units of Chemistry and Molecular Biology and Biochemistry, at the University of Gothenburg.

Why apply

In recent decades, gene modification has revolutionized the biotechnology industry, giving rise to countless new products and improving established processes. However, biotechnology as practiced today is much more than recombinant DNA technology, cellular biology, microbiology and biochemistry.

It also embraces process design, engineering, modelling and control.

The practical applications of biotechnology include age-old techniques such as brewing, fermentation and cheese making, all of which are still important today. The introduction of new techniques based on fundamental biological research has resulted in major advances. Microorganisms and cells (or parts thereof) are utilized to produce valuable products, and new medicines are products of biotechnology.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X