• Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Reading Featured Masters Courses
Coventry University Featured Masters Courses
Barcelona Technology school Featured Masters Courses
Swansea University Featured Masters Courses
"chaos" AND "theory"×
0 miles

Masters Degrees (Chaos Theory)

We have 10 Masters Degrees (Chaos Theory)

  • "chaos" AND "theory" ×
  • clear all
Showing 1 to 10 of 10
Order by 
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels. Read more
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels.

Under the guidance of an academic mentor, you will be offered a choice of units spanning the breadth of mathematics. The programme offers a huge variety of possible combinations of units and themes, allowing you to add units from other schools to create an MSc which matches your interests. Its taught element is followed in June by your chosen research project, which is supervised by an experienced research academic.

The programme gives you the opportunity to increase your understanding of mathematical theory and equips you with fundamental skills in the modelling and analysis of problems. Our graduates are highly sought-after by employers for their strong analytical, communication and organisational skills.

Programme structure

Structure
The MSc in Mathematical Sciences comprises a taught component of 120 credit points (October to May), followed by a 60-credit research project (June to September).

Units
There is an extensive range of possible combinations of units and themes. An academic mentor will advise you on these units and meet regularly with you individually or in small groups throughout the taught component. You are also invited to participate in the wider academic life of the school, including research seminars.

Research project
Research themes include:
-Algebra and Representation Theory
-Applied Probability in Biology and Communications
-Bayesian Modelling and Analysis
-Dynamical systems and Statistical Mechanics
-Ergodic Theory and Dynamical Systems
-Fluid Dynamics
-Geometric Analysis
-Logic and Set Theory
-Material Science
-Monte Carlo Methods
-Nonparametric Regression
-Number Theory
-Probability: Scaling limits and Statistical Physics
-Quantum Information
-Quantum Chaos
-Random Matrix Theory
-Time Series and Finance

Careers

This programme provides you with quantitative research, reasoning and problem solving skills that will be valuable in your future career. Mathematics graduates find employment in finance, accountancy, research, teaching and management.

Read less
Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area. Read more

Theoretical Physics

Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area.

This programme serves as a gateway to understanding the fascinating world of physics, ranging from the unimaginably small scales of elementary particles to the vast dimensions of our universe.

The central goal of the Theoretical Physics programme is to obtain a detailed understanding of the collective behaviour of many particle systems from a fully microscopic point of view. In most physical systems, microscopic details determine the properties observed. Our condensed matter theorists and statistical physicists develop and apply methods for explaining and predicting these connections.

Examples include density functional theory, renormalisation-group theory and the scaling theory of critical phenomena. Dynamical properties are studied using such methods as kinetic theory and the theory of stochastic processes. These theories can be quantum mechanical, including theories of the quantum Hall effect, superconductivity, Bose-Einstein condensation, quantum magnetism and quantum computing. More classical are relationships between chaos and transport, nucleation phenomena, polymer dynamics and phase structure and dynamics of colloids.

Read less
Mathematics is a core scientific subject and an essential basis for a range of other sciences. Read more
Mathematics is a core scientific subject and an essential basis for a range of other sciences. This programme brings together the latest developments in a range of mathematical disciplines to provide you with a thorough grounding in the subject, together with a substantial project that can be used to develop a specialisation.

Internationally leading research supports this programme, with particular research strengths including magnetic fields, interface of algebraic number theory and abstract algebra, climate system dynamics and display-structure on crystalline cohomology.
The programme prepares you for a career in numerous industries or for progression to a PhD for those interested in pursuing a research pathway.

Programme structure

The programme comprises three compulsory taught modules and 90 credits of option modules. The taught component of the programme is completed in June with the project extending over the summer period for submission in September.

Compulsory Modules

The compulsory modules can include; Research in Mathematical Sciences; Advanced Mathematics Project and Analysis and Computation for Finance

Optional Modules

Some examples of the optional modules are as follows;
Logic and Philosophy of Mathematics; Methods for Stochastics and Finance; Mathematical Theory of Option Pricing; Dynamical Systems and Chaos; Fluid Dynamics of Atmospheres and Oceans; Modelling the Weather and Climate; The Climate System; Algebraic Number Theory; Algebraic Curves; Waves, Instabilities and Turbulence; Magnetic Fields and Fluid Flows; Statistical Modelling in Space and Time and Mathematical Modelling in Biology and Medicine.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
The theoretical application of mathematics to the world of finance allows you to make good, informed decisions in the face of uncertainty. Read more

The theoretical application of mathematics to the world of finance allows you to make good, informed decisions in the face of uncertainty. With the growth and progression of business across the globe, the need for those who can understand quantitative financial methods are becoming increasingly lucrative, sought-after individuals. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting and expanding field.To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with our internationally respected Mathematics department, this comprehensive MSc programme will prepare you for careers in areas that require expert skills in mathematical and financial modelling, computational analysis and business management.

You will gain essential, complementary skills in multiple areas of study such as probability and stochastic analysis, option pricing, risk analysis and extremes, computational methods using MATLAB/C++, financial management and investment analysis. In addition, you will branch into a specialist area of study as you conduct a substantial project in a field of your choosing. The project will allow you to develop your research, computational and modelling skills with support from staff who have extensive experience working in multiple financial services and insurance industries.

Careers

The programme prepares you for a career in financial modelling within financial institutions themselves and within other sectors. It builds upon the success of Exeter’s well-established range of Masters programmes in Finance and related areas, many of whose graduates now hold senior positions in areas such as corporate financial strategy, financial planning, treasury and risk management and international portfolio management.

With the strong links between the College and the Met Office, the course also prepares you for career opportunities within reinsurance and credit risk management, especially in the development of financial models that rely on weather/climate systems.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters.

Compulsory modules

Recent examples of compulsory modules are as follows; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology; Advanced Mathematics Project.

Optional modules

Some recent examples are as follows; Topics in Financial Economics; Investment Analysis 1; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Investment Analysis II; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++; Level 3 Mathematics Modules.



Read less
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. Read more
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. The solution by Black, Scholes and Merton of the option pricing problem set off a revolution in finance resulting in the introduction of sophisticated mathematical techniques in the financial markets and corporate planning.

To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with expertise in the Mathematical Research Institute of the Mathematics Department at the University, this intensive MSc programme, available over 9 or 12 months, will prepare you for careers in areas such as international banking or international business. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting field.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters.

Compulsory modules

The compulsory modules can include; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology and Advanced Mathematics Project;

Optional modules

Some examples of the optional modules are as follows; Topics in Financial Economics; Investment Analysis; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Investment Analysis; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++ and Level 3 Mathematics Modules.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Learning and teaching

Teaching is by lectures, example classes, computer classes, tutorials, set work, project work, reading and self-study. The exact form and number of the lectures and tutorials varies from module to module and is chosen according to the material to be covered.
You will use the computer programming language Matlab and online financial databases such as Bloomberg and Datastream.

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ55 Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ54 Full-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X