• Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Cass Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
FindA University Ltd Featured Masters Courses
"chaos"×
0 miles

Masters Degrees (Chaos)

  • "chaos" ×
  • clear all
Showing 1 to 13 of 13
Order by 
* Ranked within the UK top 10 Business Schools according to The Times and The Sunday Times Good University Guide 2015 and The Complete University Guide 2016. Read more
* Ranked within the UK top 10 Business Schools according to The Times and The Sunday Times Good University Guide 2015 and The Complete University Guide 2016

* EQUIS accredited placing us in the top 1% of business schools globally

* Connections with an extensive and diverse range of businesses including Canon, Thomson Reuters, Lloyds Banking Group, IBM, Coca Cola and the Met Office

* Our teaching is research-led – you will study with internationally respected academics who are experts in their fields
We have partnerships with over 40 overseas universities or business schools and this figure is growing all the time

Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. The solution by Black, Scholes and Merton of the option pricing problem set off a revolution in finance resulting in the introduction of sophisticated mathematical techniques in the financial markets and corporate planning.

To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with expertise in the Mathematical Research Institute of the Mathematics Department at the University, this intensive MSc programme will prepare you for careers in areas such as international banking or international business. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting field.

Careers

The programme prepares you for a career in financial modelling within financial institutions themselves and within other sectors. It builds upon the success of Exeter’s well-established range of Masters programmes in Finance and related areas, many of whose graduates now hold senior positions in areas such as corporate financial strategy, financial planning, treasury and risk management and international portfolio management.
With the strong links between the College and the Met Office, the course also prepares you for career opportunities within reinsurance and credit risk management, especially in the development of financial models that rely on weather/climate systems.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters. The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Compulsory modules

Recent examples of compulsory modules are as follows; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology and Advanced Mathematics Project.

Optional modules

Some recent examples are as follows; Topics in Financial Economics; Investment Analysis; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++ and Level 3 Mathematics Modules

Read less
Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area. Read more

Theoretical Physics

Theoretical physics is an international and highly competitive field. For several decades, Utrecht University's Institute for Theoretical Physics has been on the forefront of research in this area.

This programme serves as a gateway to understanding the fascinating world of physics, ranging from the unimaginably small scales of elementary particles to the vast dimensions of our universe.

The central goal of the Theoretical Physics programme is to obtain a detailed understanding of the collective behaviour of many particle systems from a fully microscopic point of view. In most physical systems, microscopic details determine the properties observed. Our condensed matter theorists and statistical physicists develop and apply methods for explaining and predicting these connections.

Examples include density functional theory, renormalisation-group theory and the scaling theory of critical phenomena. Dynamical properties are studied using such methods as kinetic theory and the theory of stochastic processes. These theories can be quantum mechanical, including theories of the quantum Hall effect, superconductivity, Bose-Einstein condensation, quantum magnetism and quantum computing. More classical are relationships between chaos and transport, nucleation phenomena, polymer dynamics and phase structure and dynamics of colloids.

Read less
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. Read more
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. The solution by Black, Scholes and Merton of the option pricing problem set off a revolution in finance resulting in the introduction of sophisticated mathematical techniques in the financial markets and corporate planning.

To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with expertise in the Mathematical Research Institute of the Mathematics Department at the University, this intensive MSc programme, available over 9 or 12 months, will prepare you for careers in areas such as international banking or international business. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting field.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters.

Compulsory modules

The compulsory modules can include; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology and Advanced Mathematics Project;

Optional modules

Some examples of the optional modules are as follows; Topics in Financial Economics; Investment Analysis; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Investment Analysis; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++ and Level 3 Mathematics Modules.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Learning and teaching

Teaching is by lectures, example classes, computer classes, tutorials, set work, project work, reading and self-study. The exact form and number of the lectures and tutorials varies from module to module and is chosen according to the material to be covered.
You will use the computer programming language Matlab and online financial databases such as Bloomberg and Datastream.

Read less
Mathematics is a core scientific subject and an essential basis for a range of other sciences. Read more
Mathematics is a core scientific subject and an essential basis for a range of other sciences. This programme brings together the latest developments in a range of mathematical disciplines to provide you with a thorough grounding in the subject, together with a substantial project that can be used to develop a specialisation.

Internationally leading research supports this programme, with particular research strengths including magnetic fields, interface of algebraic number theory and abstract algebra, climate system dynamics and display-structure on crystalline cohomology.
The programme prepares you for a career in numerous industries or for progression to a PhD for those interested in pursuing a research pathway.

Programme structure

The programme comprises three compulsory taught modules and 90 credits of option modules. The taught component of the programme is completed in June with the project extending over the summer period for submission in September.

Compulsory Modules

The compulsory modules can include; Research in Mathematical Sciences; Advanced Mathematics Project and Analysis and Computation for Finance

Optional Modules

Some examples of the optional modules are as follows;
Logic and Philosophy of Mathematics; Methods for Stochastics and Finance; Mathematical Theory of Option Pricing; Dynamical Systems and Chaos; Fluid Dynamics of Atmospheres and Oceans; Modelling the Weather and Climate; The Climate System; Algebraic Number Theory; Algebraic Curves; Waves, Instabilities and Turbulence; Magnetic Fields and Fluid Flows; Statistical Modelling in Space and Time and Mathematical Modelling in Biology and Medicine.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
Western science is dominated by ‘reductionism’ – the idea that natural phenomena can be Stephan Harding, Head of Holistic Science at Schumacher Collegefully explained in terms of their component parts. Read more
Western science is dominated by ‘reductionism’ – the idea that natural phenomena can be Stephan Harding, Head of Holistic Science at Schumacher Collegefully explained in terms of their component parts. Although it is a useful tool in certain circumstances, reductionism as a world view is incomplete and can be dangerous on its own since it suggests that by analysing the ‘mechanical’ workings of nature we can fully predict and manipulate it entirely for our own benefit.

Holistic Science integrates the useful aspects of reductionism and mainstream science by developing a more comprehensive basis for seeing and knowing. At the heart of this is Goethe’s rigorous and systematic way of involving the imagination in an appreciation of nature’s qualities, complexity and intrinsic value. Holistic thinking is stimulated by exercises using phenomenology and in tackling challenges related to physics, earth system science, ecology, evolutionary biology, organisational development and health studies. Since 1998, when the programme was pioneered at Schumacher College, it has developed a coherent methodology of holistic enquiry, providing a rigorous and ethical framework for a mature science.

The MSc takes you into a profound personal transformative learning journey helping you to join a growing group of international alumni contributing positively to ecological, economic and social change.

“Interactive, experiential and participatory learning encourages novel approaches to scientific investigation. Various non-traditional teaching formats, learning experiences and assessments are facilitated. Investigations are holistic in the sense that they are embodied as well as rational/intellectual and often result in different outcomes to traditional styles of research and reporting.”

- Philip Franses, Senior Lecturer of Holistic Science

Programme Overview

Develop an understanding of the pros and cons of using western science as a tool for gaining reliable knowledge about the world.
Learn how contemporary sustainability issues have come about and how we can successfully address them by combining rational and intuitive ways of knowing.
Gain an understanding of the importance of sensing, feeling and intuition for an expanded science.
Learn about a range of cutting edge alternative methodologies which integrate qualitative experience and quantitative measurement.
Develop an understanding of the emergent properties of whole systems through the lenses of chaos, complexity and Gaia theories, and discover how these approaches can help us deal with ecological, social and economic problems.
Understand how Holistic Science is being applied in the worlds of business, economics, health and mainstream science in the creation of a more sustainable world.
Develop a clear understanding of your own rational and emotional states and processes in the study of nature through experiential and reflective group enquiry.

Our Teachers and Guest Contributors Have Included:

Rupert Sheldrake
Patricia Shaw
Satish Kumar
Craig Holdrege
Mike Wride
Shantena Sabbadini
Jules Cashford
Bruce Lipton

Career Opportunities:

Our graduates from around the world have used their skills and knowledge for sustainable change to become eminent and important contributors to many fields, including climate change advocacy, education, scientific research, ecological design, healthcare, green business, protection of indigenous cultures, ecological restoration and sustainable agriculture. Working in in public, private and NGO sectors, many have set up their own projects or organisations.
What Past Participants Have Said:

“What I learnt and experienced from the MSc is that everything is ever changing. Working with the concepts of holistic science I experienced living with complexity and change as a way of life rather than as a stage I had to survive. For me, the gift of holistic science was to learn to appreciate the inherent potential in all situations. This has taught me to more effectively think, act and live with the tension of transitions through multidisciplinary approaches.”
- Anne Solgaard, Green Economy for UNEP/GRID-Arendal

“During my MSc in Holistic Science I learned a comprehensive qualitative approach to science that binds natural and cultural phenomena. It was a unique experience that transformed my own inner way of relating to complex circumstances and empowered me with the tools necessary to develop the way of life I’ve always dreamed of.“
- Sebastian Eslea Burch, founder of Gaia y Sofia

“The MSc certainly opened my eyes to new ways of doing business in a complex world. Both the formal teachings and the tremendous networking potential of the College have helped me in forging a professional life that I feel reflects my ideals.“
- Sophia Van Ruth, co-founder Urban Edibles

Read less
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels. Read more
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels.

Under the guidance of an academic mentor, you will be offered a choice of units spanning the breadth of mathematics. The programme offers a huge variety of possible combinations of units and themes, allowing you to add units from other schools to create an MSc which matches your interests. Its taught element is followed in June by your chosen research project, which is supervised by an experienced research academic.

The programme gives you the opportunity to increase your understanding of mathematical theory and equips you with fundamental skills in the modelling and analysis of problems. Our graduates are highly sought-after by employers for their strong analytical, communication and organisational skills.

Programme structure

Structure
The MSc in Mathematical Sciences comprises a taught component of 120 credit points (October to May), followed by a 60-credit research project (June to September).

Units
There is an extensive range of possible combinations of units and themes. An academic mentor will advise you on these units and meet regularly with you individually or in small groups throughout the taught component. You are also invited to participate in the wider academic life of the school, including research seminars.

Research project
Research themes include:
-Algebra and Representation Theory
-Applied Probability in Biology and Communications
-Bayesian Modelling and Analysis
-Dynamical systems and Statistical Mechanics
-Ergodic Theory and Dynamical Systems
-Fluid Dynamics
-Geometric Analysis
-Logic and Set Theory
-Material Science
-Monte Carlo Methods
-Nonparametric Regression
-Number Theory
-Probability: Scaling limits and Statistical Physics
-Quantum Information
-Quantum Chaos
-Random Matrix Theory
-Time Series and Finance

Careers

This programme provides you with quantitative research, reasoning and problem solving skills that will be valuable in your future career. Mathematics graduates find employment in finance, accountancy, research, teaching and management.

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ55 Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ54 Full-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Read more
Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in:
-Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data.
-Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.
-Making systematic and innovative use of investigation or experimentation to discover new knowledge.
-Reporting results in a clear and logical manner.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The six study lines are as follows:
Aerosol Physics
Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods. As a graduate of this line you will be an expert in the most recent theoretical concepts, measurement techniques and computational methods applied in aerosol research.

Geophysics of the Hydrosphere
Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes.

Meteorology
Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example. As a graduate of the meteorology line, you will be an expert in atmospheric phenomena who can produce valuable new information and share your knowledge.

Biogeochemical Cycles
Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Remote Sensing
Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry. As a graduate of the remote sensing line you will have broad expertise in the operational principles of remote sensing instruments as well as methods of data collection, analysis and interpretation.

Atmospheric Chemistry and Analysis
Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods. As a graduate of this line you will have understanding of the chemical processes of the atmosphere and the latest environmental analytical methods, so you will have vital skills for environmental research.

Programme Structure

The basic degree in the Programme is the Master of Science (MSc). The scope of the degree is 120 credits (ECTS). As a prerequisite you will need to have a relevant Bachelor’s degree. The possible major subjects are Physics, Meteorology, Geophysics, Chemistry, and Forest Ecology. The programme is designed to be completed in two years. Studies in ATM-MP consist of various courses and project work: lecture courses, seminars, laboratory work and intensive courses.

Your first year of studies will consist mainly of lecture courses. During the second year, you must also participate in the seminar course and give a presentation yourself. There is also a project course, which may contain laboratory work, data analysis, or theoretical or model studies. You will have to prepare a short, written report of the project. There are also several summer and winter schools as well as field courses for students in the Programme. Many of the courses take place at the Hyytiälä Forestry Field Station in Southern Finland. The intensive courses typically last 5–12 days and include a concise daily programme with lectures, exercises and group work.

Career Prospects

There is a global need for experts with multidisciplinary education in atmospheric and environmental issues. Governmental environmental agencies need people who are able to interpret new scientific results as a basis for future legislation. Industry, transportation and businesses need to be able to adapt to new regulations.

As a Master of Science graduating from the Programme you will have a strong background of working with environmental issues. You will have the ability to find innovative solutions to complex problems in the field of environmental sciences, climate change and weather forecasting. Graduates of the Programme have found employment in Meteorological Institutes and Environmental Administration in Finland and other countries, companies manufacturing instrumentation for atmospheric and environmental measurements and analysis, and consultancy companies. The Master's degree in ATM-MP also gives you a good background if you intend to proceed to doctoral level studies.

Internationalization

The Programme offers an international study environment with more than 30% of the students and teaching staff coming from abroad.

The ATM-MP is part of a Nordic Nordplus network in Atmosphere-Biosphere Studies, which gives you good opportunities to take courses currently in fourteen Nordic and Baltic universities. There are also several Erasmus agreements with European universities. The PanEurasian Experiment (PEEX) project provides you with opportunities to carry out part of your studies especially in China and Russia.

Research Focus

All the units teaching in the Programme belong to the National Centre of Excellence (FCoE) in Atmospheric Science – From Molecular and Biological processes to the Global Climate (ATM), which is a multidisciplinary team of the Departments of Physics, Forest Sciences and Chemistry at the University of Helsinki, the Department of Applied Physics at the University of Eastern Finland (Kuopio) and the Finnish Meteorological Institute.

The main objective of FCoE ATM is to quantify the feedbacks between the atmosphere and biosphere in a changing climate. The main focus of the research is on investigating the following topics:
1. Understanding the climatic feedbacks and forcing mechanisms related to aerosols, clouds, precipitation and biogeochemical cycles.
2. Developing, refining and utilising the newest measurement and modelling techniques, from quantum chemistry to observations and models of global earth systems.
3. Creating a comprehensive understanding of the role of atmospheric clusters and aerosol particles in regional and global biogeochemical cycles of water, carbon, sulphur, nitrogen and their linkages to atmospheric chemistry.
4. Integrating the results in the context of understanding regional and global Earth systems.

In addition to the research focus of FCoE, current research in hydrospheric geophysics at Helsinki University has an emphasis on cryology, with a focus on the effect of aerosols on Indian glaciers, the impact of climate change on the Arctic environment, the dynamics of the Austfonna ice cap in Svalbard, and the winter season in the coastal zone of the Baltic Sea.

Read less
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X