• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Durham University Featured Masters Courses
Swansea University Featured Masters Courses
"chaos"×
0 miles

Masters Degrees (Chaos)

We have 13 Masters Degrees (Chaos)

  • "chaos" ×
  • clear all
Showing 1 to 13 of 13
Order by 
The theoretical application of mathematics to the world of finance allows you to make good, informed decisions in the face of uncertainty. Read more

The theoretical application of mathematics to the world of finance allows you to make good, informed decisions in the face of uncertainty. With the growth and progression of business across the globe, the need for those who can understand quantitative financial methods are becoming increasingly lucrative, sought-after individuals. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting and expanding field.To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with our internationally respected Mathematics department, this comprehensive MSc programme will prepare you for careers in areas that require expert skills in mathematical and financial modelling, computational analysis and business management.

You will gain essential, complementary skills in multiple areas of study such as probability and stochastic analysis, option pricing, risk analysis and extremes, computational methods using MATLAB/C++, financial management and investment analysis. In addition, you will branch into a specialist area of study as you conduct a substantial project in a field of your choosing. The project will allow you to develop your research, computational and modelling skills with support from staff who have extensive experience working in multiple financial services and insurance industries.

Careers

The programme prepares you for a career in financial modelling within financial institutions themselves and within other sectors. It builds upon the success of Exeter’s well-established range of Masters programmes in Finance and related areas, many of whose graduates now hold senior positions in areas such as corporate financial strategy, financial planning, treasury and risk management and international portfolio management.

With the strong links between the College and the Met Office, the course also prepares you for career opportunities within reinsurance and credit risk management, especially in the development of financial models that rely on weather/climate systems.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters.

Compulsory modules

Recent examples of compulsory modules are as follows; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology; Advanced Mathematics Project.

Optional modules

Some recent examples are as follows; Topics in Financial Economics; Investment Analysis 1; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Investment Analysis II; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++; Level 3 Mathematics Modules.



Read less
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. Read more
Quantitative financial methods are one of the fastest growing areas of the present day banking and corporate environments. The solution by Black, Scholes and Merton of the option pricing problem set off a revolution in finance resulting in the introduction of sophisticated mathematical techniques in the financial markets and corporate planning.

To understand, apply and develop these sophisticated methods requires a good understanding of both advanced mathematics and advanced financial theory. By combining the financial expertise in the University of Exeter Business School with expertise in the Mathematical Research Institute of the Mathematics Department at the University, this intensive MSc programme, available over 9 or 12 months, will prepare you for careers in areas such as international banking or international business. For those with a strong mathematical background, and a wish to pursue a finance career, this programme is the ideal introduction to this exciting field.

Programme structure

The taught element of the programme takes place between October and May and is arranged into two 12-week teaching semesters.

Compulsory modules

The compulsory modules can include; Methods for Stochastics and Finance; Analysis and Computation for Finance; Mathematical Theory of Option Pricing; Fundamentals of Financial Management; Research Methodology and Advanced Mathematics Project;

Optional modules

Some examples of the optional modules are as follows; Topics in Financial Economics; Investment Analysis; Banking and Financial Services; Derivatives Pricing; Domestic and International Portfolio Management; Investment Analysis; Financial Modelling; Advanced Corporate Finance; Alternative Investments; Quantitative and Research Techniques; Advanced Econometrics; Dynamical Systems and Chaos; Pattern Recognition; Introduction to C++ and Level 3 Mathematics Modules.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Learning and teaching

Teaching is by lectures, example classes, computer classes, tutorials, set work, project work, reading and self-study. The exact form and number of the lectures and tutorials varies from module to module and is chosen according to the material to be covered.
You will use the computer programming language Matlab and online financial databases such as Bloomberg and Datastream.

Read less
Mathematics is a core scientific subject and an essential basis for a range of other sciences. Read more
Mathematics is a core scientific subject and an essential basis for a range of other sciences. This programme brings together the latest developments in a range of mathematical disciplines to provide you with a thorough grounding in the subject, together with a substantial project that can be used to develop a specialisation.

Internationally leading research supports this programme, with particular research strengths including magnetic fields, interface of algebraic number theory and abstract algebra, climate system dynamics and display-structure on crystalline cohomology.
The programme prepares you for a career in numerous industries or for progression to a PhD for those interested in pursuing a research pathway.

Programme structure

The programme comprises three compulsory taught modules and 90 credits of option modules. The taught component of the programme is completed in June with the project extending over the summer period for submission in September.

Compulsory Modules

The compulsory modules can include; Research in Mathematical Sciences; Advanced Mathematics Project and Analysis and Computation for Finance

Optional Modules

Some examples of the optional modules are as follows;
Logic and Philosophy of Mathematics; Methods for Stochastics and Finance; Mathematical Theory of Option Pricing; Dynamical Systems and Chaos; Fluid Dynamics of Atmospheres and Oceans; Modelling the Weather and Climate; The Climate System; Algebraic Number Theory; Algebraic Curves; Waves, Instabilities and Turbulence; Magnetic Fields and Fluid Flows; Statistical Modelling in Space and Time and Mathematical Modelling in Biology and Medicine.

The modules we outline here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Read less
Western science is dominated by ‘reductionism’ – the idea that natural phenomena can be Stephan Harding, Head of Holistic Science at Schumacher Collegefully explained in terms of their component parts. Read more
Western science is dominated by ‘reductionism’ – the idea that natural phenomena can be Stephan Harding, Head of Holistic Science at Schumacher Collegefully explained in terms of their component parts. Although it is a useful tool in certain circumstances, reductionism as a world view is incomplete and can be dangerous on its own since it suggests that by analysing the ‘mechanical’ workings of nature we can fully predict and manipulate it entirely for our own benefit.

Holistic Science integrates the useful aspects of reductionism and mainstream science by developing a more comprehensive basis for seeing and knowing. At the heart of this is Goethe’s rigorous and systematic way of involving the imagination in an appreciation of nature’s qualities, complexity and intrinsic value. Holistic thinking is stimulated by exercises using phenomenology and in tackling challenges related to physics, earth system science, ecology, evolutionary biology, organisational development and health studies. Since 1998, when the programme was pioneered at Schumacher College, it has developed a coherent methodology of holistic enquiry, providing a rigorous and ethical framework for a mature science.

The MSc takes you into a profound personal transformative learning journey helping you to join a growing group of international alumni contributing positively to ecological, economic and social change.

“Interactive, experiential and participatory learning encourages novel approaches to scientific investigation. Various non-traditional teaching formats, learning experiences and assessments are facilitated. Investigations are holistic in the sense that they are embodied as well as rational/intellectual and often result in different outcomes to traditional styles of research and reporting.”

- Philip Franses, Senior Lecturer of Holistic Science

Programme Overview

Develop an understanding of the pros and cons of using western science as a tool for gaining reliable knowledge about the world.
Learn how contemporary sustainability issues have come about and how we can successfully address them by combining rational and intuitive ways of knowing.
Gain an understanding of the importance of sensing, feeling and intuition for an expanded science.
Learn about a range of cutting edge alternative methodologies which integrate qualitative experience and quantitative measurement.
Develop an understanding of the emergent properties of whole systems through the lenses of chaos, complexity and Gaia theories, and discover how these approaches can help us deal with ecological, social and economic problems.
Understand how Holistic Science is being applied in the worlds of business, economics, health and mainstream science in the creation of a more sustainable world.
Develop a clear understanding of your own rational and emotional states and processes in the study of nature through experiential and reflective group enquiry.

Our Teachers and Guest Contributors Have Included:

Rupert Sheldrake
Patricia Shaw
Satish Kumar
Craig Holdrege
Mike Wride
Shantena Sabbadini
Jules Cashford
Bruce Lipton

Career Opportunities:

Our graduates from around the world have used their skills and knowledge for sustainable change to become eminent and important contributors to many fields, including climate change advocacy, education, scientific research, ecological design, healthcare, green business, protection of indigenous cultures, ecological restoration and sustainable agriculture. Working in in public, private and NGO sectors, many have set up their own projects or organisations.
What Past Participants Have Said:

“What I learnt and experienced from the MSc is that everything is ever changing. Working with the concepts of holistic science I experienced living with complexity and change as a way of life rather than as a stage I had to survive. For me, the gift of holistic science was to learn to appreciate the inherent potential in all situations. This has taught me to more effectively think, act and live with the tension of transitions through multidisciplinary approaches.”
- Anne Solgaard, Green Economy for UNEP/GRID-Arendal

“During my MSc in Holistic Science I learned a comprehensive qualitative approach to science that binds natural and cultural phenomena. It was a unique experience that transformed my own inner way of relating to complex circumstances and empowered me with the tools necessary to develop the way of life I’ve always dreamed of.“
- Sebastian Eslea Burch, founder of Gaia y Sofia

“The MSc certainly opened my eyes to new ways of doing business in a complex world. Both the formal teachings and the tremendous networking potential of the College have helped me in forging a professional life that I feel reflects my ideals.“
- Sophia Van Ruth, co-founder Urban Edibles

Read less
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels. Read more
Our MSc in Mathematical Sciences is a flexible and challenging programme, taught by leading experts in the field. It allows you to develop a wide range of mathematical techniques and gives you a solid foundation to progress to research and employment at the highest levels.

Under the guidance of an academic mentor, you will be offered a choice of units spanning the breadth of mathematics. The programme offers a huge variety of possible combinations of units and themes, allowing you to add units from other schools to create an MSc which matches your interests. Its taught element is followed in June by your chosen research project, which is supervised by an experienced research academic.

The programme gives you the opportunity to increase your understanding of mathematical theory and equips you with fundamental skills in the modelling and analysis of problems. Our graduates are highly sought-after by employers for their strong analytical, communication and organisational skills.

Programme structure

Structure
The MSc in Mathematical Sciences comprises a taught component of 120 credit points (October to May), followed by a 60-credit research project (June to September).

Units
There is an extensive range of possible combinations of units and themes. An academic mentor will advise you on these units and meet regularly with you individually or in small groups throughout the taught component. You are also invited to participate in the wider academic life of the school, including research seminars.

Research project
Research themes include:
-Algebra and Representation Theory
-Applied Probability in Biology and Communications
-Bayesian Modelling and Analysis
-Dynamical systems and Statistical Mechanics
-Ergodic Theory and Dynamical Systems
-Fluid Dynamics
-Geometric Analysis
-Logic and Set Theory
-Material Science
-Monte Carlo Methods
-Nonparametric Regression
-Number Theory
-Probability: Scaling limits and Statistical Physics
-Quantum Information
-Quantum Chaos
-Random Matrix Theory
-Time Series and Finance

Careers

This programme provides you with quantitative research, reasoning and problem solving skills that will be valuable in your future career. Mathematics graduates find employment in finance, accountancy, research, teaching and management.

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ55 Part-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
This is a one year full-time or two or more years part-time taught course. Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Read more

Overview

This is a one year full-time or two or more years part-time taught course.

Course Structure

Students take 60 credits of Mathematical Physics from the level 4 and level 3 modules. Modules include Computational Physics, Quantum Mechanics, Mathematical Methods, Condensed Matter Theory, Astrophysics and Cosmology, Particle Physics, Quantum Information Processing, Chaos and Nonlinear Dynamics, Electromagnetic Theory and Statistical Methods.

Career Options

The course provides a solid foundation in Theoretical Physics/Applied Mathematics for students who wish to pursue careers in science, engineering, commerce and technology. Graduates gain employment in a wide range of occupations including research, teaching, actuary, banking, software development, computational physics and computer modelling/simulation.

How To Apply

Online application only http://www.pac.ie/maynoothuniversity

PAC Code
MHQ54 Full-time

The following information should be forwarded to PAC, 1 Courthouse Square, Galway or uploaded to your online application form:

Certified copies of all official transcripts of results for all non-Maynooth University qualifications listed MUST accompany the application. Failure to do so will delay your application being processed. Non-Maynooth University students are asked to provide two academic references and a copy of birth certificate or valid passport.

Find information on Scholarships here https://www.maynoothuniversity.ie/study-maynooth/postgraduate-studies/fees-funding-scholarships

Read less
Goal of the pro­gramme. Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Read more

Goal of the pro­gramme

Society urgently needs experts with a multidisciplinary education in atmospheric and Earth System sciences. Climate change and issues of air quality and extreme weather are matters of global concern, but which are inadequately understood from the scientific point of view. Not only must further research be done, but industry and business also need environmental specialists with a strong background in natural sciences. As new regulations and European Union directives are adopted in practice, people with knowledge of recent scientific research are required.

Upon graduating from the Programme you will have competence in

  • Applying experimental, computational and statistical methods to obtain and analyse atmospheric and environmental data
  • Knowledge applicable to solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication
  • Making systematic and innovative use of investigation or experimentation to discover new knowledge
  • Reporting results in a clear and logical manner

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The six study lines are as follows:

Aer­o­sol phys­ics

Aerosol particles are tiny liquid or solid particles floating in the air. Aerosol physics is essential for our understanding of air quality, climate change and production of nanomaterials. Aerosol scientists investigate a large variety of phenomena associated with atmospheric aerosol particles and related gas-to-particle conversion using constantly improving experimental, theoretical, model-based and data analysis methods.

Geo­phys­ics of the hy­dro­sphere

Hydrospheric geophysics studies water in all of its forms using physical methods. It includes hydrology, cryology, and physical oceanography. Hydrology includes the study of surface waters such as lakes and rivers, global and local hydrological cycles as well as water resources and geohydrology, the study of groundwater. Cryology focuses on snow and ice phenomena including glacier mass balance and dynamics, sea ice physics, snow cover effects and ground frost. Physical oceanography covers saline water bodies, focusing on describing their dynamics, both large scale circulation and water masses, and local phenomena such as surface waves, upwelling, tides, and ocean acoustics. Scientists study the hydrosphere through field measurements, large and small scale modelling, and formulating mathematical descriptions of the processes. 

Met­eor­o­logy

Meteorology is the physics of the atmosphere. Its best-known application is weather forecasting, but meteorological knowledge is also essential for understanding, predicting and mitigating climate change. Meteorologists study atmospheric phenomena across a wide range of space and time scales using theory, model simulations and observations. The field of meteorology is a forerunner in computing: the development of chaos theory, for example, was triggered by the unexpected behaviour of a meteorological computer model. Meteorology in ATM-MP is further divided into dynamic meteorology and biometeorology. Dynamic meteorology is about large-scale atmospheric dynamics, modelling and observation techniques, whereas biometeorology focuses on interactions between the atmosphere and the underlying surface by combining observations and modelling to study the flows of greenhouse gases and energy with links to biogeochemical cycles, for example.

Biogeo­chem­ical cycles

Biogeochemistry studies the processes involved in cycling of elements in terrestrial and aquatic ecosystems by integrating physics, meteorology, geophysics, chemistry, geology and biology. Besides natural ecosystems, it also studies systems altered by human activity such as forests under different management regimes, drained peatlands, lakes loaded by excess nutrients and urban environments. The most important elements and substances studied are carbon, nitrogen, sulphur, water and phosphorus, which are vital for ecosystem functioning and processes such as photosynthesis. Biogeochemistry often focuses on the interphases of scientific disciplines and by doing so, it also combines different research methods. It treats ecosystems as open entities which are closely connected to the atmosphere and lithosphere. You will thus get versatile training in environmental issues and research techniques. As a graduate of this line you will be an expert in the functioning of ecosystems and the interactions between ecosystems and the atmosphere/hydrosphere/lithosphere in the context of global change. You will have knowledge applicable for solving global challenges such as climate change, air pollution, deforestation and issues related to water resources and eutrophication.

Re­mote sens­ing

Remote sensing allows the collection of information about the atmosphere, oceans and land surfaces. Various techniques are applied for monitoring the state and dynamics of the Earth system from the ground, aircraft or satellites. While Lidar and radar scan from the surface or mounted on aircraft, instruments on polar orbiting or geostationary satellites permit measurements worldwide. In atmospheric sciences remote sensing has found numerous applications such as observations of greenhouse and other trace gases, aerosols, water vapour, clouds and precipitation, as well as surface observations, for example of vegetation, fire activity, snow cover, sea ice and oceanic parameters such as phytoplankton. Synergistic satellite data analysis enables the study of important processes and feedback in the climate system. Remote sensing advances climate research, weather forecasting, air quality studies, aviation safety and the renewable energy industry.

At­mo­spheric chem­istry and ana­lysis

Atmospheric chemistry studies the composition and reactions of the molecules that make up the atmosphere, including atmospheric trace constituents and their role in chemical, geological and biological processes, including human influence. The low concentrations and high reactivity of these trace molecules place stringent requirements on the measurement and modelling methods used to study them. Analytical chemistry is the science of obtaining, processing, and communicating information about the composition and structure of matter and plays an essential role in the development of science. Environmental analysis consists of the most recent procedures for sampling, sample preparation and sample analysis and learning how to choose the best analytical methods for different environmental samples. Physical atmospheric chemistry studies focus on the reaction types and reaction mechanisms occurring in the atmosphere, with emphasis on reaction kinetics, thermodynamics and modelling methods.



Read less
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less
An invitation. A ship is setting sail from England. It’s a very old, very particular kind of ship. It’s the magnificent, creaky timbered, curly roped, burgundy sail kind. Read more

An invitation

A ship is setting sail from England.

It’s a very old, very particular kind of ship.

It’s the magnificent, creaky timbered, curly roped, burgundy sail kind. You’ve seen bigger ships surely, and certainly more streamlined, but this one is hard to get over. It’s the kind that straightens your back and brings a tear to your eye as you shyly lift your gaze to its regal shape. This is the kind of ship that shouldn't exist anymore. 

Standing on the dock in the dusking light, you can hear singing carried over the waves, and excited laughter. Figures are calling to you from the deck, beckoning to you, calling to you in your old names. These are the names no one should know, the ancient names, how can this possibly be happening?

The evening moon is emerging from behind clouds. But let us lean forward, the captain is lifting her lantern: To all scholar-explorers and heretical investigators … there is something pressing to say, something urgent. This is an invitation.

We are setting sail to un-map the world.

Join us for this voyage … the world’s first postgraduate programme in Myth and Ecology – The Mundus Imaginalis.

Background

In a time when every square inch of the globe seems to be neutered, quartered and googled, we intrepids are journeying out to glimpse the Otherworld that is secreted most wonderfully in this one - to peer into the steaming foliage and bright feathered world that still exists underneath the grid - whilst we still can. The hour is late.

This is an Otherworld that wriggles in your fist like the archaic trout of the smoky Thames and disappears (carrying all of Shakespeare in its scales) when we attempt to tell it what-it-is. This right-by-our-side Otherworld causes ink to slide off the page and evaporate when we produce the T-square too avidly.

We set sail to do nothing less ambitious than to court the mysteries: the small and gentle ones, the elaborate and complex gnashing teethed ones, the ones you glimpsed at the edge of your garden when you were little. We set sail to un-map our presumption that we know what the earth is.

When we un-map the world, we start the un-colonising of our own imagination and we move from personal fantasy to an imagination that is bigger than ourselves. We understand that psyches don’t only dwell within, we dwell amidst them, and their imagination help create our reality every day. When we un-map the world it starts to talk back to us, we begin to trail not trap. We start to witness not just thinking about the earth, but thoughts from the earth.

Our travels through the waters of time and place will bring us to people and traditions where the weaving of the human and non-human are at their most permeable, their most acute and most sophisticated. In the end, we will trade our tired maps for the best compass of all, the one that really matters - a truth north - what the Troubadours called ‘the educated heart’. It is time, as the poets say; ‘to think in ways we’ve never thought before’. It is time to trade comfort for shelter.

Make no mistake, study awaits. An un-gridded world reveals not just knowledge but wisdom, an un-mapped world will reveal not chaos but cosmos. With that wisdom, with that cosmos, comes tangible learning and focused application. Be prepared. This will be the most exacting journey. Take not one single step towards the gangplank without knowing that we take no passengers. So, here we stand on the dock. It is night, but the scholar-explorers are preparing to raise anchor. The captain leans forward with her lantern one more time, peers towards us and asks:

“Shall we go?”

Aboard The Ship


This is a residential and immersive postgraduate programme that takes imagination seriously. It is delivered by Schumacher College, and is validated by University of Wales Trinity Saint David and led by mythologist Dr Martin Shaw and anthropologist Dr Carla Stang. Carla brings her knowledge of different cultures, her fieldwork and phenomenological study, Martin brings mythology and two decades of work as a wilderness rites-of-passage guide. As they rove through mythology, anthropology, philosophy and poetics, they will also invite guest teachers on a module by module basis.

This is a year-long programme where you will walk in and out of other centuries. It will be a deep and exacting study of image, cosmology, storytelling, myth and lived experience that reaches out to an earth that is profoundly more than human. From Amazonia to Siberia, from the Hermetic, Troubadour, Sufi and Romantic faiths and traditions, we are journeying out to study cultures that celebrate a world ensouled, alive and radiating intelligence.

The main counterweights of the year will be a progression through western mythologies (many hidden or barely remembered), and the lived philosophy of the Mehinaku people of Amazonia. There will be the study of many other lifeworlds, together with which we will learn how people in different times and places have and do respond to an earthy consciousness of extraordinary wonder, regarding such as both magical and utterly ordinary. Such experiential study is how we will begin to tune our ear.

Cloistered in the beautiful setting of the Dartington estate and upon the wild moors of Devon, England, is the chance to apprentice to subtle and often secret knowledge, the reason being that we are living in a time when many of these secrets need to become public, need to be practiced and need to be lived. In doing so we encounter the wonder of ordinary reality and that far from being a rarefied state available to only a few, we will find that a dynamic relationship to what the neo-platonists called the ‘Anima Mundi’- is our natural state.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X