• Queen Mary University of London Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Arden University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
Middlesex University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Bradford Featured Masters Courses
Bath Spa University Featured Masters Courses
"cfd"×
0 miles

Masters Degrees (Cfd)

  • "cfd" ×
  • clear all
Showing 1 to 15 of 37
Order by 
This diploma programme provides training in both cognitive behaviour therapy (CBT) and Counselling for Depression (CfD). Students on this programme will have placements in NHS funded Improving Access to Psychological Therapy (IAPT) Services. Read more
This diploma programme provides training in both cognitive behaviour therapy (CBT) and Counselling for Depression (CfD). Students on this programme will have placements in NHS funded Improving Access to Psychological Therapy (IAPT) Services.

Degree information

The programme will provide:

-Training in the principles and practice of CfD to meet the competence requirements for practice in CfD as accredited by the British Association of Counselling and Psychotherapy
-Training in the principles and practice of CBT to meet foundation level competence for practice in CBT, which with further supervision could lead to accreditation as a CBT therapist with the British Association of Behavioural and Cognitive Psychotherapists (BABCP)

Students undertake modules to the value of 120 credits.

The programme consists of six core modules.

Core modules
-Counselling for Depression
-Fundamentals of CBT
-CBT for Anxiety - Basic
-CBT for Depression
-CBT for Anxiety - Advanced
-Clinical Portfolio

Teaching and learning
The programme is delivered through a combination of lectures, workshops, skills practice, clinical supervision groups, directed reading and e-learning. In addition to time at UCL, students spend at least a further two days a week in an IAPT service seeing people with common mental health problems in CfD and CBT under supervision. Assessment is through coursework, case reports, audio and video recordings of students’ clinical practice and the presentation of a clinical portfolio.

Careers

This programme will broaden the career options of participants by providing accredited training in Counselling for Depression (through BACP), and a thorough grounding in CBT for treatment of anxiety disorders and depression which with additional supervised CBT practice would enable participants to obtain accreditation as a CBT therapist (through BABCP).

Employability
Completing this Postgraduate Diploma equips people to work as counsellors/therapists in NHS funded IAPT services providing both CfD and CBT as well as in other employment contexts.

Why study this degree at UCL?

UCL is among the principal research and training centres in the UK for mental health and psychological therapies. The Counselling for Depression module is taught by staff from the Metanoia Institute, one of the largest dedicated psychotherapy and counselling training centres in the UK, which developed the CfD national curriculum in collaboration with British Association for Counselling & Psychotherapy (BACP). UCL has close links with all IAPT services in London and many IAPT services outside London, with frequent liaison around provision and delivery of clinical placements and supervision, which is so central to training in counselling and psychological therapies.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field. We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and wind tunnels. This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

The development of skills and advancement of knowledge focus on:
-Dynamic structural and aeroelastic analysis of aerospace vehicles, flight dynamics, stability and control and the implications for the design and construction of aerospace vehicles
-The construction of CFD models and to assess implications of results, the limitations of present techniques and the potential future direction of developments in the CFD and aerodynamics field
-Appreciation of the need for process, product development and quality and reliability issues relevant to the introduction of products in a cost effective and timely manner

Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance.

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

The Far STEM route is for first degrees where statistical analysis was a dominant feature of their analytical studies. Students will spend one to two semesters studying appropriate Level 4/5 modules in the first year then joining the Near STEM cohort (e.g., chemistry or biology).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-CFD Techniques
-Computing for Business and Technology
-Control of Engineering Systems
-Dynamics
-Engineering Application of Mathematics
-Mechanical Experimental Engineering
-Mechanical Science
-Operations Management

Year 2
Core Modules
-Aerodynamics
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-Flight Mechanics
-Individual Masters Project
-Integrated Product Engineering
-Operations Research

Read less
UCLan’s Advanced Certificate in Counselling for Depression offers professional development for counsellors who are already trained in Person-centred or Humanistic approaches and who have significant clinical experience. Read more
UCLan’s Advanced Certificate in Counselling for Depression offers professional development for counsellors who are already trained in Person-centred or Humanistic approaches and who have significant clinical experience. Hence Counselling for Depression (CfD) training intends to both build upon existing knowledge and, more particularly, to align counsellors’ practice with a competence framework which has strong links to research evidence and follows the Curriculum for Counselling for Depression produced by the National IAPT Team. In sum, this course provides you with a thorough grounding in the theory, evidence base and practice of CfD, allowing you to develop your knowledge and competence in psychological clinical assessment and CfD interventions in accordance with national guidelines.

COURSE OUTLINE

CfD is a manualised form of psychological therapy as recommended by NICE (NICE, 20094) for the treatment of depression. It is a form of psychological therapy derived from the Skills for Health humanistic competence framework devised by Roth, Hill and Pilling (2009), which provided the basis for the National Occupational Standards (NOS) for psychological therapists. This modality targets the emotional problems underlying depression along with the intrapersonal processes, such as low self-esteem and excessive self-criticism, which often maintain depressed mood. The therapy aims to help patients contact underlying feelings, make sense of them and reflect on the new meanings which emerge. This, in turn, provides a basis for psychological and behavioural change. You will attend for 7 taught days at the university, complete 80 hours supervised clinical practice, and attend for a minimum of 6 hours of clinical supervision.

ACADEMIC EXPERTISE

We are committed to delivering academic learning of the highest quality, helping you to stretch your mind and fulfil your university ambitions.

LEARNING OUTCOME & AIMS

We aim to create the perfect blend of knowledge, practical experience and relevance to equip UCLan graduates with the confidence and skills they need to get ahead in the world of work.

WORK EXPERIENCE AND INTERNATIONAL OPPORTUNITIES

At UCLan we work with a range of businesses and organisations, many of which provide work experience opportunities and project briefs to enable to you gain real work experience whilst you undertake your postgraduate programme. Your course tutor will advise on opportunities available within your course and the UCLan Careers Team can provide help, advice and guidance on how to apply for them and how to make the most of these opportunities.

GRADUATE CAREERS

The UCLan Careers Team offer ongoing supportive careers advice and guidance throughout your course and after graduation, along with a range of modules, work experience opportunities and events to help you acquire the skills to make you stand out to potential employers in today’s competitive market.

Read less
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. Read more
The aim of the programme is to equip non-engineering graduates with a STEM background to meet the stringent demands of today’s highly competitive industrial environment. On completion of these courses students acquire a broad understanding of Engineering with a focus on aerospace engineering.

The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field. We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and wind tunnels. This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

The development of skills and advancement of knowledge focus on:
-Dynamic structural and aeroelastic analysis of aerospace vehicles, flight dynamics, stability and control and the implications for the design and construction of aerospace vehicles
-The construction of CFD models and to assess implications of results, the limitations of present techniques and the potential future direction of developments in the CFD and aerodynamics field
-Appreciation of the need for process, product development and quality and reliability issues relevant to the introduction of products in a cost effective and timely manner

Critical review of the present knowledge base, its applicability, usage and relevance to enhance product and enterprise performance.

Why choose this course?

This pioneering programme consists of a number of “specialist” Masters awards with an expectation that students will have studied a STEM related discipline to a Bachelor’s level or equivalent, as opposed to a “traditional” masters philosophy aimed at students from an engineering background. The programme offers options with separate entry routes for candidates transitioning from ‘Near STEM’ and ‘Far STEM’ disciplines:

The Near STEM route is for admission of relevant first degree candidates and whose programme would have made extensive use of applied mathematics to design and explain engineering and/or scientific concepts (e.g., physics or maths).

Careers

The successful postgraduates of the programme will acquire the knowledge and understanding, intellectual, practical and transferable skills necessary for the analysis and synthesis of problems in engineering through a combination of experimental, simulation, research methods and case studies. They can expect to gain work in a range of disciplines within a variety of industries from specialist technical roles to positions of management responsibility.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility.
The online StudyNet is accessible 24/7 and allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Year 1
Core Modules
-Aerodynamics
-CFD Analysis for Aerospace Applications
-Control of Engineering Systems
-Dynamics
-Flight Mechanics
-Operations Management
-Operations Research
-Vehicle Aerodynamics and Design

Year 2
Core Modules
-Individual Masters Project

Read less
The MSC in Computational Fluid Dynamics (CFD) is an inherently interdisciplinary branch of science which has an extremely broad spectrum of applications. Read more
The MSC in Computational Fluid Dynamics (CFD) is an inherently interdisciplinary branch of science which has an extremely broad spectrum of applications. Fluid dynamics uses numerical methods and algorithms to solve and analyse problems that involve fluid flows. Sectors such as aviation, space, automotive, medicine and environment are just some industries which have fluid flows in common. This course has been designed to reflect the wide applications of CFD. It covers a broad range of fields from aerospace, turbo machinery, multiphase environmental flows and fluid-structure interaction problems.

Read less
This masters is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. Read more

Summary

This masters is recognised as a world-leading course for those wanting to enter Formula One as aerodynamicists and CFD engineers. It emphasises the fundamentals of aerodynamics and centres on the analysis, computation and measurement of turbulent flows associated with high performance race cars. It suits graduates or qualified individuals from engineering, scientific and mathematical backgrounds wishing to specialise in aerodynamics.

Modules

Compulsory modules: Applications of CFD; Experimental Techniques for Aerodynamics; Race Car Aerodynamics; Race Car Design/GDP; Turbulence: Physics and Modelling; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
This programme will provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and process industries. Read more

This programme will provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and process industries. This programme also prepares graduates for a PhD study.

If you’ve studied chemical engineering before, you’ll develop your knowledge in key areas such as reaction engineering, process modelling and simulation, pharmaceutical formulation, and fuel processing. If your degree is in chemistry or another related science or engineering discipline, you’ll build your knowledge and skills to convert to a specialisation in chemical engineering.

The course has been designed to provide a greater depth of knowledge in aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes and associated manufacturing plants and to provide leadership in innovation, research and development, and technology transfer.

Specialist facilities

Your Research Project module gives you the chance to study in cutting-edge facilities where our researchers are pushing the boundaries of chemical engineering.

We have world-class facilities for carrying out research in manufacturing (including crystallisation), processing and characterising particulate systems for a wide range of technological materials, as well as facilities for nanotechnology and colloid science/technology.

We also have high performance computing facilities and state-of-the-art computer software, including computational fluid dynamics (CFD), for modelling and simulation of a wide range of processes. This will provide a strong background knowledge in industrial process and equipment design and optimisation.

Accreditation

This course is accredited by the Institution of Chemical Engineers (IChemE) under licence from the UK regulator, the Engineering Council. This adheres to the requirements of further learning for Chartered Engineer (CEng) status.

Course content

The path you take through this programme will depend on your background. If your degree is in Chemical Engineering, you’ll take a suite of compulsory modules on advanced topics such as recent advances in chemical engineering, reaction engineering, multi-scale modelling (including CFD), pharmaceutical formulation and fuel processing. If your degree is not in Chemical Engineering, you’ll build the knowledge you need to succeed in this area with modules such as Separation Processes, Reaction Engineering and Chemical Process Technology and Design.

You’ll then complement this with a choice of optional modules, allowing you to gain specialist knowledge in a topic that suits your career plans or personal interests. Different modules will be available to you depending on your background – for example, if your degree is in Chemical Engineering you could study Process Optimisation and Control, while if your degree is in another subject you might want to gain an understanding of energy management.

Every student undertakes a research project that runs throughout the year. You’ll focus on a topic of your choice that fits within one of the School’s research areas and produce an independent study, reflecting the knowledge and skills you’ve acquired. This will enable you to gain experience of planning, executing and reporting a research work of the type you will undertake in an industrial/academic environment.

Want to find out more about your modules?

Take a look at the Chemical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Research Project (MSc) 60 credits

Optional modules

  • Team Design Project 15 credits
  • Chemical Products Design and Development 15 credits
  • Separation Processes 30 credits
  • Chemical Process Technology 15 credits
  • Chemical Reaction Processes 15 credits
  • Batch Process Engineering 15 credits
  • Chemical Engineering Principles 15 credits
  • Multi-Scale Modelling and Simulation 30 credits
  • Pharmaceutical Formulation 15 credits
  • Advanced Reaction Engineering 15 credits
  • Nuclear Operations 15 credits
  • Advances in Chemical Engineering 15 credits
  • Fuel Processing 15 credits
  • Materials Structures and Characterisation 15 credits

For more information on typical modules, read Chemical Engineering MSc in the course catalogue

Learning and teaching

We use a variety of teaching and learning methods including lectures, practicals, tutorials and seminars. Independent study is also an important element of the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including problem sheets, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessments.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in MSc Chemical Engineering have included:

  • Control of heat release and temperature levels in jacketed stirred tank vessels
  • Pool boiling heat transfer of nanofluids
  • Effect of surface wettability and spreading on Nanofluid boiling heat transfer
  • Aspen Plus simulation of CO2 removal by amine absorption from power plant
  • Modelling of CO2 absorption using solvents in spray and packed towers
  • Historical data analysis using artificial neural network modelling
  • Computational modelling of particulate flow
  • Characterisation of sedimentation process in two-phase flow based on continuity theory using impedance tomography
  • Finding a new technique for on-line monitoring of crystallisation process using an electrode probe.

A proportion of projects are formally linked to industry, and may include spending time at the collaborator’s site over the summer

Career opportunities

Career prospects are excellent. There is a wide range of career opportunities in the chemical and allied industries in process engineering, process design and research and development as well as in finance and management.

Graduates have gone on to work in a variety of roles at companies like National Environmental Standards and Regulations Enforcement, the National Centre of Science and Technology Evaluation, Invensys Operations Management, Worley Parsons, Hollister-Stier Laboratories, BOC, ASM Technologies and more. 



Read less
This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Read more

Why take this course?

This course is designed to respond to a growing shortage of workforce in mechanical engineering sectors. It intends to equip our students with relevant and up-to-date knowledge and skills for their engineering competencies and careers. Students have a chance to broaden and deepen their knowledge in wide range of mechanical engineering subjects. This enables our students to undertake an advanced treatment of core mechanical engineering disciplines such as design and critical evaluation of structural integrity, computation fluid dynamics, advanced materials, energy and control systems.

What will I experience?

On this course you can:

Use simulation and modelling application software for virtual design and manufacturing
Utilise our strong links with companies and investigate real industrial problems to enhance your understanding of the profession
Tie in the topic of your individual project with one of our research groups and benefit from the expertise of our actively researching academics

What opportunities might it lead to?

This course has been accredited by the Institution of Mechanical Engineers (IMechE) and Institution of Engineering and Technology (IET), meeting the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). It will provide you with some of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Here are some routes our graduates have pursued:

Design
Research and development
Product manufacture
Project management

Module Details

You will study several key topics that will help equip you to work as a mechanical engineer in a broad spectrum of mechanical engineering business activity management, research, design and development roles. You will also complete a four-month individual project tailored to your individual interests that can take place in our own laboratories or, by agreement, in industry.

Here are the units you will study:

Structural Integrity: Contemporary approaches are applied to the evaluation of mixed mode fracture and fatigue failure. Dynamic plastic responses of structures and the performance of composite structures are evaluated.

Industrial Control Systems: This unit covers mathematical representation of control system models is developed principally using Laplace transforms. System behaviour and simulation is analysed with practical case studies, leading to control system specifications.

Advanced Materials: This unit is designed to deal with a wide range of advanced materials for engineering applications. Teaching will address analytical and numerical methods to assess the strength, stiffness, toughness, non-linearity behaviours, vibration and failures of engineering materials for component and structure design.

Energy Systems: This unit is designed to study the principles and techniques of operation of thermodynamics and combustion systems, as well as the provision and management of energy. The current and future requirements and trends in energy production and consumption are addressed.

Structural Application of Finite Elements: The use of finite element analysis techniques and software applied to structural problems is developed. Modelling with both isotropic and orthotropic materials is investigated, as well as such topics as cracking in dissimilar materials and composite laminates.

Computational Fluid Dynamics: A practical case study analysis approach is used for model formulation and CFD simulation. Fundamental principles are used to appraise the results of CFD analysis of problems with industrial applications.

Individual Project: A strong feature of the course is the individual project, which comprises a third of the course. We encourage students to undertake projects in industrial companies, but we can also use our extensive resources and staff skills to undertake projects within the University.

Programme Assessment

You will be taught through a mixture of lectures, seminars, tutorials (personal and academic), laboratory sessions and project work. The course has a strong practical emphasis with a significant amount of your time spent our laboratories. We pride ourselves on working at the leading-edge of technology and learning practices.

A range of assessment methods encourages a deeper understanding of engineering and allows you to develop your skills. Here’s how we assess your work:

Written examinations
Coursework
Laboratory-based project work
A major individual project/dissertation

Student Destinations

The demand for more highly skilled mechanical engineers is always present and it is generally accepted that there is a current shortage of engineers.

When you graduate from this course you could find employment in a wide range of mechanical engineering-based careers, such as design, research and development and manufacturing. You could work for a large company, in the Armed Forces or in one of the many small companies within this sector. You could even start your own specialist company.

Roles our graduates have taken on include:

Mechanical engineer
Product design engineer
Aerospace engineer
Application engineer

Read less
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. Read more
This is an integrated degree programme that brings together the key generic skills of management and research methods with specific modules focusing on aerodynamics and flight mechanics. This approach will help you to develop your critical thinking skills as a future engineering manager, or technical specialist enabling you effectively to analyse technical and or management issues. The programme aims to:
-Equip you with the theory and the practice of relevant subjects, technologies and analytical tools to provide solutions for aerospace and related manufacturing problems
-Provide a blend of knowledge and application experience through case studies and project work
-Focus on the links between analysis and design and the supporting skills of management
-Provide education and experience which enhances prospects of professional employment within the industry

Why choose this course?

-The School has over 50 years' experience of teaching aerospace, and has established an excellent international reputation in this field
-We offer extensive lab facilities for aerospace engineering students, including a flight simulator, the latest software packages and windtunnels
-This MSc combines analysis and design with management skills to produce highly-employable postgraduates.

Professional Accreditations

Accredited for Chartered Engineer (CEng) status by the Institution of Engineering and Technology (IET) and by the Royal Aeronautical Society (RAeS).

Careers

This programme will help you to develop your critical thinking skills as a future engineering manager or technical specialist as it will enable you to effectively analyse technical and management issues. This blend of technical and managerial content is invaluable in job applications as well as helping to fast-track your career in the industry.

Teaching methods

The School has a reputation for innovation in teaching and learning, where nearly all MSc modules are delivered through a combination of traditional face-to-face teaching and backup tutorial's using the University's StudyNet web based facility. StudyNet allows students to access electronic teaching and learning resources, and conduct electronic discussion's with staff and other students. A heavy emphasis is placed on theory and practice, and the School has a policy of using industrial standard software wherever possible. The School also operate an open access laboratory, and computer policy, that will help students complete coursework and assignments, at a scheduled pace and on time.

Structure

Core Modules
-Aeroelasticity
-CFD Analysis for Aerospace Applications
-CFD Techniques
-Control of Engineering Systems
-FEA & Applications
-Flight Mechanics
-MSc Project
-Operations Management
-Operations Research

Read less
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. Read more
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. This course is designed with an engineering focus that deals with applications, combined with the business element; applicable whether you work for a large organisation or a small to medium-size enterprise.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The programme provides hands-on skills in 3D CAD and solid modelling, FEA and CFD analysis, Polysun and WindPRO simulations using industry-standard software.
-You can undertake a wide range of challenging and interesting sponsored and non-sponsored projects in the specific areas of wind power, solar power, biofuels and fuel-cells-related technologies.
-Excellent career progression and internship with leading renewable companies: around 80% of students who have graduated from this programme have been recruited by the relevant industries as a consultant such as Atkins, Alstom Power, Inditex, Vattenfall, Shell, SGS UK Ltd and many others.
-Completion of this programme would be an ideal progression to PhD level of research studies if you are interested in following an academic or research career in novel areas of renewable energy.

What will you study?

The course provides an in-depth knowledge of renewable energy systems design and development, commercial and technical consultancy and project management within the sustainable engineering environment.

You will gain technical skills in and knowledge of solar power, wind power, biofuel and fuel cell technologies, as well as renewable energy business and management. In addition, you will gain practical skills in up-to-date computer-aided simulation technologies such as Polysun for solar energy applications, WindPRO for wind farm applications and ECLIPSE for biomass applications.

Option modules enable you to specialise in project engineering and management, as well as risk management or engineering design and development. Advanced topics, such as 3D solid modelling, computer-aided product development and simulation, and computational fluid dynamics (CFD) analysis and simulation allow you to gain further practical and theoretical knowledge of analytical software tools used in product design.

Assessment

Coursework, exams, individual project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

If you start this course in January, you will complete the same modules as students who started in September but in a different format – please contact us at for more information.

Core modules
-Biomass and Fuel Cell Renewable Technology
-Solar Power Engineering
-Wind Power Engineering
-Project Dissertation

Option modules (choose one)
-Engineering Projects and Risk Management
-Computational Fluid Dynamics for Engineering Applications
-Computer Integrated Product Development

Read less
This course is designed to provide a high level of engineering and technical expertise in energy conversion processes, combined with the application of practical abilities in management-related issues. Read more
This course is designed to provide a high level of engineering and technical expertise in energy conversion processes, combined with the application of practical abilities in management-related issues. The course puts a strong emphasis on the context of renewable and sustainable energy technologies and the built environment, and combines this with effective management skills, economic appraisal, and an understanding of the current policies and regulations that are applicable at UK, EU and international level.

This course is tailored towards graduates in engineering, science and related disciplines. The strong emphasis on science, technology and engineering is specifically targeted towards subject areas within the context renewable and sustainable technologies and the built environment and uniquely combines this with effective management skills, economic appraisal and an understanding of the current policies and regulations that can be applied within modern industry in the UK, EU and internationally.

Advanced study in engineering-related research methodologies provides invaluable experience either towards further academic
study or industry-based research and development.

Students will develop:
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
the ability to plan and undertake an individual project
interpersonal, communication and professional skills

Students on the course will cover all forms of energy conversion including cooling technologies, renewable energy technologies, combustion & biomass, advanced heat transfer and fuel cell technology. The course also includes practical subjects such as management & UK/EU/International regulations & policy, research methodologies, economic appraisal, CFD and materials science. The introduction of this course coincides with the huge demand for young, highly trained engineers who have strong enthusiasm for sustainability and the environment. This MSc can be used to gain full Chartered Engineer (CEng) status as appropriate.

Previous research projects have included:

a comparision study of solar Photo Voltaic (PV) & wind turbine power generation for domestic application
a feasibility study of PCM impregnated carbon composites
CO2 capture & storage by mineralisation of waste aggregates
simulation of an integrated CHP/ground source heat pump system for a library

This course is fully accredited by the Chartered Institute of Building Services Engineers (CIBSE) and Engineering Council UK (ECUK).

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Read more
This MSc programme offers very relevant modules in highly sought-after engineering and scientific subjects. Computational modelling has become an essential part of industrial product development; the manufacturing sector in particular has been experiencing a significant uptake of computational engineering technologies to increase its competitiveness in the global market. This programme is designed for engineering and science graduates, providing a wide exploration of these new and advanced technologies. Problem based learning facilities the application of the modelling techniques.

Subject guide and modules

The range of modules reflects the nature of engineering modelling and the uses it is put to in engineering and commercial practice.
Core modules:
-Computational Fluid Dynamics and Applications (ME4501)
-Practical Numerical Methods (ME4510)
-CAD Principles and Materials Selection (ME4505)
-Advanced Computer Aided Design (ADVCAD) (ME4518)
-Major Project (PD4000)
-Research Project (PD4001)
-Renewable Energy (ME4504)
-Sustainable Design (PD4005)

Elective Modules:
-Solid Mechanics and Finite Element Analysis (ME3070)
-Strategic Finance (EM4001)
-Project Management (EM4003)
-New Product Development (EM4006)
-Innovation Business Development (PD4008)
-Finite Element Analysis: Theory and Application (ME4502)

Learning, teaching & assessment

The modules in this programme are delivered with lectures and lab-based tutorials giving a good balance between scientific methodologies and hands-on practice.

There is a heavy emphasis on the use of computational engineering methods and this is reflected in the way the programme is delivered and assessed.

Modules are assessed through either course work or exams. The major project is assessed by dissertation; examples of past major projects include development of CFD code, aero and structural dynamics of vehicles and aircraft, and analysis of development of industrial machines.

Personal development

Along with the range of technical skills, the Programme aims to develop self reliance, project management, IT communications and research skills.

You will develop and deliver a major dissertation and the necessary project management processes. You will also make several individual presentations and get chance to hone your interview techniques.

Career prospects

Career prospects for graduates are excellent. The programme puts practical engineering modelling, research and project management skills in to the hands of graduate. This helps career progression in industries where computer-based technology is required including manufacturing, R&D, science, IT, design and academia.

Recent graduates have been employed in a range of jobs including:
-Product development with a manufacturer of domestic heating products
-Computer aided design with a manufacturer of military/surveillance equipment

Professional accreditation

The MSc Mechanical Engineering (Modelling) is accredited by the Institution of Mechanical Engineers (IMechE) for the purpose of meeting the educational requirements of Chartered Engineer (CEng).

Read less
The Aerodynamics and Computation programme looks at the fundamentals of aerodynamics as a subject, focusing on numerical methods and the physics and computation of turbulence. Read more

Summary

The Aerodynamics and Computation programme looks at the fundamentals of aerodynamics as a subject, focusing on numerical methods and the physics and computation of turbulence.
Suitable for those from an engineering, physical sciences or mathematics background who are aiming for advanced specialisation in aerodynamics.

Modules

Compulsory modules: Aerothermodynamics; Advanced Computational Methods I (or Numerical Methods); Applications of CFD; Turbulence: Physics and Modelling; MSc Research Project

Optional modules: further module options are available

Visit our website for further information...



Read less
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. Read more
This course, which is accredited by Royal Aeronautical Society, provides a strategic overview of aerospace engineering and management issues. It will help you to develop a wider perspective and understanding of the challenges facing the aerospace engineering industry, and includes subjects such as entrepreneurship, business, finance, research techniques and green environmental issues.

What will you study?

You will gain a broad understanding of the practical requirements of aerospace engineering, as well as an in-depth knowledge of aerospace stress analysis and advanced materials, alongside computational fluid dynamics (CFD) for aerospace applications. Complementary subjects covered include computer-integrated product development, advanced CAD/CAM plus green engineering and energy efficiency. In addition, the Engineering Research Techniques, Entrepreneurship and Quality Management module will develop your business and management skills. The Aerospace Group Design Project module provides you with the experience of working in a multidisciplinary team within an engineering organisation – with real industrial constraints. You'll get the chance to apply the theory you've learnt to real-world contexts and evaluate methodologies, whilst developing your critical thinking and creativity.
As well as the professional, analytical and management skills necessary for employment, the course will provide you with the transferable skills required in the workplace, such as communication, IT, teamwork, planning, decision making, independent learning ability and problem solving.

Assessment

Coursework and/or exams, industrial project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.
-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Aerospace Applications
-Aerospace Stress Analysis and Advanced Materials
-Aerospace Group Design Project

Option modules (choose one)
-Green Engineering and Energy Efficiency
-Advanced CAD/CAM Systems
-Engineering Projects and Risk Management

Read less
Important. if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course. Read more
Important: if you are an international student requiring a Tier 4 student visa to study in the UK you will also need an ATAS certificate for this course.

Choose Kingston's Mechanical Engineering MSc

This course, accredited by the Institution of Mechanical Engineers, is designed to provide you with the latest technological knowledge and industrial management skills, at an advanced level of study, in specific aspects of mechanical engineering that are in demand from industry. The course also provides you with a strategic overview of engineering and management skills necessary to take on leadership roles in major engineering projects.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-Teaching in many technical modules is backed up by appropriate hands-on experience and workshops, which can be transferred directly to your working environment.
-Academic teaching is complemented by visits from industry experts. You will also have plenty of opportunities to attend relevant technical seminars, both within and outside the University.
-You can tailor your course to enhance your career ambitions through your module choices, whilst the project dissertation gives you the opportunity to choose a field of study in which to establish yourself as a specialist.

What will you study?

This course will provide a broad and in-depth understanding of mechanical design engineering, modern materials application and advanced manufacturing technology. You will employ advanced computer-based mechanical engineering design analysis and problem solving, using cutting-edge technologies such as finite elements analysis (FEA), computational fluid dynamics (CFD) and mechanism design analysis and control. What's more, you will develop the entrepreneurial management and business skills necessary to take on leadership roles in major engineering projects.

The project dissertation challenges you to investigate a theoretical area in depth and solve a real-world problem.

Assessment

Coursework and/or exams, research project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

Core modules
-Engineering Research Techniques, Entrepreneurship and Quality Management
-Computational Fluid Dynamics for Engineering Applications
-Advanced Stress Analysis and Materials
-Engineering Individual Project

Option modules (choose one)
-Advanced CAD/CAM Systems
-Green Engineering and Energy Efficiency
-Mechatronics Design and Automation

Read less

Show 10 15 30 per page



Cookie Policy    X