• Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University of Warwick Featured Masters Courses
University of Dundee Featured Masters Courses
University College Cork Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
"cell" AND "signalling"×
0 miles

Masters Degrees (Cell Signalling)

We have 42 Masters Degrees (Cell Signalling)

  • "cell" AND "signalling" ×
  • clear all
Showing 1 to 15 of 42
Order by 
Programme Description. The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. Read more

Programme Description

The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. The course provides a springboard into a career that involves a working knowledge of scientific research in academia and industry.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of cell signalling in health and disease. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of cell signalling in health and disease under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Cell Signalling in Health and Disease MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology. Read more
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology.

Why study Cancer Biology at Dundee?

The MRes Cancer Biology is a research-centred taught Masters programme providing a focused training in molecular cancer research. It covers both the fundamental and translational science of carcinogenesis, cancer biology, diagnosis and therapy.

The programme delivers outstanding research-focused teaching from internationally-renowned scientists and clinicians.

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities. In 2009 the university became the first Scottish university to be awarded Cancer Centre status by the CRUK.

What's so good about studying Cancer Biology at Dundee?

The MRes Cancer Biology has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

Areas of particular strength at the University of Dundee are in surgical oncology for breast and colon cancer, radiation biology and clinical oncology, skin cancer and pharmacogenomics. Areas of strength in basic cancer biology are DNA replication, chromosome biology and the cell cycle, cell signalling and targets for drug discovery.

Teaching and Assessment

This course is taught by staff based in the College of Medicine, Dentistry and Nursing and the School of Life Sciences.

The MRes will be taught full-time over one year (September to August).

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

The MRes degree course is taught full-time over three semesters.

The first semester provides in-depth teaching and directed study on the molecular biology of cancer, and covers:

Basic cell and molecular biology, and introduction to cancer biology
Cell proliferation, cell signalling and cancer
Cancer cell biology
Carcinogenesis, cancer treatment and prevention
Specific training in research methodology and critical analysis

Students will also be required to take part in a journal club to further develop their critical review skills.

In semesters two and three students will be individually guided to focus on a specific cancer research topic which will be the subject of a literature review and associated laboratory research project. The research project is based in laboratories with state-of-the-art facilities, and under the leadership of world-class researchers.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Places on the course are limited, so early applications are strongly encouraged.
Apply early to avoid disappointment.
Follow us on Twitter to keep up with news from the MRes Cancer Biology @Mrescancerbiol

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
This course enables you to study cutting edge molecular methods employed for the understanding of molecular mechanisms of diseases and for their diagnosis and treatment. Read more

This course enables you to study cutting edge molecular methods employed for the understanding of molecular mechanisms of diseases and for their diagnosis and treatment. Your studies will be underpinned by essential knowledge in genetics, cell signalling and molecular medicine.

You will be offered the flexibility to select option modules that reflect your own interest in molecular biology and these will be combined with core modules and an independent research project. The course is suitable for newly qualified graduates, those employed in related work and those with medical qualifications.

Course structure

The following modules are indicative of what you will study on this course.

Core modules

Optional module

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).



Read less
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. Read more
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. You will be guided from the origins of this field through to its application (and potential applications) in treating human disease, covering the latest tools and technologies available for study in this area. Programme content is delivered by researchers active in the field, ensuring that the latest breakthroughs are communicated.

Using a creative distance-learning model, the programme delivers lectures, online discussions and assessments over the internet. This offers you more flexibility than traditional campus-based courses as you can study in your own environment. You will only be required to visit Bristol for your formal examinations at the end of the academic year. This distance-learning model, together with a part-time study option, makes the programme particularly appealing to those students who wish to combine full-time employment with study.

Programme structure

Core units
-Introduction to Stem Cells and Regeneration
-Neurodegeneration and Ophthalmic Disorders
-Molecular Tools in Stem Cells and Regeneration
-Peripheral Neuropathy and Spine
-Cell Signalling
-Biomaterials and their Use in the Skeletal System
-Stem Cells in Cardiac Systems
-Research Project/Dissertation

Careers

The programme can open up a number of different career opportunities. It can be used as a pathway to further studies (eg PhD) which in turn could lead to a research or academic career in the field. It can also open up opportunities in private industry, for example:
-Biotechnology sector research/sales
-Stem cell business development
-Stem cell banking
-Stem cell patents
-Stem cell clinical translation
-Charity research development
-Pharmaceutical industry
-Stem cell regulatory bodies

Read less
The Transplantation MRes enables you to experience an internationally competitive research area, predominantly in academia but also potentially in industry. Read more

The Transplantation MRes enables you to experience an internationally competitive research area, predominantly in academia but also potentially in industry. The MRes can be taken either as a stand-alone qualification or provide an entry route onto a PhD or MD.

The course is designed for graduates with a BSc in the life sciences and is also suitable for graduates from other science disciplines and intercalating and fully qualified MBBS or BDS students.

What you'll learn

There is a taught component with subject-specific content in the area of Transplantation. Subject-based modules provide a broad exposure to diverse aspects of transplantation, from clinical concepts to cutting edge scientific development. There will be a unique opportunity to gain insights into the speciality of transplantation sciences in the context of transplantation of haematopoietic stem cells, corneal/limbal stem cells and a variety of solid organs.

The modules aim to:

  • provide sound understanding of the scientific basis underlying the therapeutic benefits and adverse effects of clinical transplants
  • highlight the research areas where applications of immunology and cell biology can improve transplant outcome and patient wellbeing
  • provide a view of bench to bedside translational links between scientific research and clinical practice

The course emphasises the clinical practice driven research, which prepares students for a future career in either medical practice or broad biomedical research. 

Main topics covered include:

  • transplantation immunology related to cellular and molecular basis of allogeneic immune responses, tolerance, immunosuppression
  • the genetic and molecular basis of HLA system, non-HLA immunogenetics, histocompatibility, impact of HLA matching in choice of donor and transplant outcome
  • transplantation pathology related to graft-versus-host disease following haematopoietic stem cell transplant, rejection following solid organ transplant, tissue damage and loss of graft function
  • manipulation of haematopoietic stem cells for clinical use
  • development of novel therapeutic strategies to aid improvement of clinical transplant outcome

It has the flexibility for you to develop your own bespoke course by choosing additional, complementary modules from a wide selection. You will also undertake training in general research principles and other professional and key skills.

Your project

The research project comprises the major element of the course. This project will involve 24 weeks’ carrying out research in the area of transplantation under the supervision of an expert academic researcher in the field.

Our MRes courses

Transplantation MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
STUDY CELL-TO-CELL SIGNALLING IN DEVELOPMENT AND DISEASE. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Join our programme and combine research in oncology, molecular developmental biology and genetics. Read more

STUDY CELL-TO-CELL SIGNALLING IN DEVELOPMENT AND DISEASE

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Join our programme and combine research in oncology, molecular developmental biology and genetics. Discover the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

CONTRIBUTE TO A BETTER UNDERSTANDING OF DISEASE TREATMENT AND PREVENTION

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions.

Become an expert on molecular and cellular aspects of development and disease and create a better understanding of processes underlying cancer and developmental biology. Use techniques and applications of post-genomic research, including single cell and next generation sequencing, proteomics, metabolomics and advanced microscopy techniques.

WHY YOU SHOULD STUDY CANCER, STEM CELLS AND DEVELOPMENTAL BIOLOGY AT UTRECHT UNIVERSITY

  • Study with a unique emphasis on developmental biology, a process with many connections to cancer
  • Carry out two extensive research projects at renowned research groups
  • Collaborate with national and international research institutes, and gain valuable experience at partner institutions all around the world
  • Take courses, seminars and masterclasses led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills
  • Focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine


Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. Read more
The number of industries requiring highly skilled graduates in the biological and biomolecular sciences is rapidly expanding and remains based on the principle that employable graduates should possess a range of key skills. The MSc in Biological and Biomolecular Science by Negotiated Learning will afford students the flexibility to broaden their understanding of biological and biomolecular science against a backdrop of learning core technical, methodological and innovation skills relevant to the industry and academia.
Several innovative specialisations are available from a carefully chosen range of modules from the relevant disciplines within the UCD School of Biomolecular & Biomedical Science and the UCD School of Biology and Environmental Science. These provide students with an exciting prospect of studying and researching in the interdisciplinary fields of genetics, cell biology, biochemistry, molecular biology, microbiology and biodata analysis. This diverse offering aims to enhance and develop a student’s current knowledge and skill base using a wide range of taught components and applied research skills. Guidance from expert faculty is provided to tailor a programme that will meet the anticipated requirements of the student’s objectives and career goals.

Key Fact

This MSc in Biological and Biomolecular Science is the first of its kind offered in Ireland by Negotiated Learning. This offers students a unique opportunity to combine skills and learning from several related disciplines with guidance from expert faculty staff, and to deepen their knowledge in one of our specialisations.

Course Content and Structure

The course is divided into the following:
•Core Laboratory Research Skills (30 credits) – including techniques such as RT-PCR, western blotting and imaging studies.
•Core Professional Taught Skills Modules (20 credits) – including career development, quantitative tools, science writing and communication skills.
•Optional Taught modules (40 credits) – involves selecting one of the following specialisations and selecting specific modules within
these that meet the student’s learning objectives.

The Specialisations Available:
• Genetics and Cell Biology: investigates cellular signalling, architecture, imaging, trafficking and transport, genetic basis of disease, model organisms, epigenetics, etc.
• Microbiology and Infection Biology: investigates mechanisms of pathogenic micro-organisms, host response to infection, immunopathologies, host-pathogen interactions, development of diagnostics, applied microbiology, etc.
• Biochemistry and Synthetic Biology: investigates metabolism and disease, protein-protein interactions, cell signalling, protein structure and analysis.

Career Opportunities

This programme will enable you to choose from a wide range of careers and areas of postgraduate study. This multi-disciplinary course provides a solid grounding for careers in industry, health and research, such as Quality Assurance, Quality Control, Microbiology, Process control, Technical Transfer, Research and Development, and Regulatory Affairs, Scientific Editor or Writer, Lab Technician or Analyst roles.

An academic staff member will advise you on a specialisation and module choices based on the opportunities you hope to unlock.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O'Brien Centre for Science.

Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of toxicology. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

The subject-based modules give a broad understanding in toxicology, from basic concepts and molecular mechanisms to a review of target organ toxicities, pre-clinical and clinical pharmaceutical toxicology testing. They provide a broad overview of toxicology as it is applied in the pharmaceutical industries.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of toxicology under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Toxicology MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of translational medicine and therapeutics. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Subject-based modules in translational medicine and therapeutics provide the opportunity to learn about the development and evaluation of new medicines and to develop skills in translational research relating to therapeutics. Teaching and supervision is provided by both university-based academics and experts from the pharmaceutical industry.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of translational medicine and therapeutics under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Translational Medicine and Therapeutics MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research. Read more

This research-based course has a taught component that is the same as an MSc. It provides a springboard into a career that involves a working knowledge of scientific research.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

What you'll learn

The taught component of the course includes subject-specific content in the area of neuromuscular diseases. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your project

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of neuromuscular diseases under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Our MRes courses

Neuromuscular Diseases MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
Our research-focused MSc Developmental Biology course will give you extensive hands-on experience of conducting research into how fertilised eggs turn into complex multicellular organisms. Read more

Our research-focused MSc Developmental Biology course will give you extensive hands-on experience of conducting research into how fertilised eggs turn into complex multicellular organisms.

You will learn through an interactive approach involving seminars, workshops and small group tutorials rather than traditional lectures.

You will also undertake placements in the labs of leading researchers working on a range of model organisms and diverse areas of developmental biology.

Examples of developmental biology research at Manchester include:

  • studies of gene expression and cell signalling in model organisms, such as Drosophila, Xenopus and mice, which are illuminating the mechanisms by which different cell types and tissues arise during development. Findings obtained from these studies serve as general principles relating to human development;
  • exploring how misregulation of developmental mechanisms leads to human diseases, eg cancer, using various models;
  • research into the mechanisms regulating stem cell maintenance and differentiation to harness the therapeutic potential of stem cells;
  • looking at the healing process to improve wound repair and the longer-term regeneration of organs.

Special features

Extensive research experience

Gain significant laboratory experience through placements with leading developmental biology researchers.

Teaching and learning

We use a range of teaching and learning methods, including tutorials, workshops, seminars and research placements.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

We will assess your progress using:

  • written reports on your research projects and tutorials
  • oral presentations
  • written assignments
  • posters
  • multiple choice exams
  • critical assessment of literature
  • online statistics exercises.

Course unit details

The course starts in September and runs for 12 months. You require 180 credits to complete the course, of which:

  • 135 credits are from research projects
  • 45 credits are from transferable skills units.

Research projects

Your projects each run for 18 weeks starting in October and April.

  • Research Placement 1 (65 credits)
  • Research Placement 2 (70 credits)

Transferable skills

45 credits are achieved through completion of activities that develop your transferable skills in essential areas such as experimental design, statistics, bioethics (included in the tutorial and workshop unit) and science communication. Experimental Design and Statistics runs at the start of the year to prepare you for your research projects. Elements of the other units run throughout the year alongside your research projects.

  • Experimental Design and Statistics (15 credits)
  • Tutorial and Workshop (15 credits)
  • Science Communication (15 credits)

Disclaimer: Our units teach the current trends in life sciences. Consequently, details of our units may vary over time. The University therefore reserves the right to make such alterations to units as are found to be necessary. Before accepting your offer of a course, it is essential that you are aware of the current terms on which the offer is based. This includes the units available to you. If in doubt, please contact us.

Facilities

You will be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates acquire a vast array of subject-specific and transferable skills, as well as extensive laboratory research experience.

The University has a strong record of placing students in PhD programmes at Manchester and other universities, and several of our graduates have pursued research careers in industry.



Read less

Show 10 15 30 per page



Cookie Policy    X