• Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"cell" AND "signalling"×
0 miles

Masters Degrees (Cell Signalling)

We have 41 Masters Degrees (Cell Signalling)

  • "cell" AND "signalling" ×
  • clear all
Showing 1 to 15 of 41
Order by 
The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. Read more

Programme Description

The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. The course provides a springboard into a career that involves a working knowledge of scientific research in academia and industry.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of cell signalling in health and disease. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of cell signalling in health and disease under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Cell Signalling in Health and Disease MRes is closely linked to a suite of MRes courses that you may also be interested in:
•Ageing and Health MRes
•Animal Behaviour MRes
•Biotechnology and Business Enterprise MRes
•Cancer MRes
•Cardiovascular Science in Health and Disease MRes
•Diabetes MRes
•Epidemiology MRes
•Evolution and Human Behaviour MRes
•Medical Genetics MRes
•Medical Molecular Biosciences MRes
•Mitochondrial Biology and Medicine MRes
•Molecular Microbiology MRes
•Musculoskeletal Ageing (CIMA) MRes
•Neuromuscular Diseases MRes
•Neuroscience MRes
•Stem Cells and Regenerative Medicine MRes
•Systems Biology MRes
•Toxicology MRes
•Translational Medicine and Therapeutics MRes
•Transplantation MRes

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.

Modules, Fees and How to Apply

Full information in our Prospectus online.

Read less
This course enables you to study cutting edge molecular methods employed for the understanding of molecular mechanisms of diseases and for their diagnosis and treatment. Read more
This course enables you to study cutting edge molecular methods employed for the understanding of molecular mechanisms of diseases and for their diagnosis and treatment. Your studies will be underpinned by essential knowledge in genetics, cell signalling and molecular medicine.

You will be offered the flexibility to select option modules that reflect your own interest in molecular biology and these will be combined with core modules and an independent research project. The course is suitable for newly qualified graduates, those employed in related work and those with medical qualifications.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-MOLECULAR AND CELLULAR THERAPEUTICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-PRINCIPLES OF MOLECULAR MEDICINE
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Optional module
-CELL SIGNALLING AND GENETICS
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-MOLECULAR BIOINFORMATICS
-SYSTEMS BIOLOGY

Associated careers

You will develop a range of course-specific and transferable skills that will enhance your employment prospects, career progression and research opportunities in the UK and/ or overseas. It is anticipated that a significant number of graduates will go on to pursue a career in research after registering for a higher degree. Others will seek employment in healthcare laboratories, industry, research laboratories, government laboratories or academia in the UK or worldwide. One of the strengths of this degree is the mixture of backgrounds/ experience and career aspirations of the students recruited.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology. Read more
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology.

Why study Cancer Biology at Dundee?

The MRes Cancer Biology is a research-centred taught Masters programme providing a focused training in molecular cancer research. It covers both the fundamental and translational science of carcinogenesis, cancer biology, diagnosis and therapy.

The programme delivers outstanding research-focused teaching from internationally-renowned scientists and clinicians.

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities. In 2009 the university became the first Scottish university to be awarded Cancer Centre status by the CRUK.

What's so good about studying Cancer Biology at Dundee?

The MRes Cancer Biology has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

Areas of particular strength at the University of Dundee are in surgical oncology for breast and colon cancer, radiation biology and clinical oncology, skin cancer and pharmacogenomics. Areas of strength in basic cancer biology are DNA replication, chromosome biology and the cell cycle, cell signalling and targets for drug discovery.

Teaching and Assessment

This course is taught by staff based in the College of Medicine, Dentistry and Nursing and the School of Life Sciences.

The MRes will be taught full-time over one year (September to August).

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

The MRes degree course is taught full-time over three semesters.

The first semester provides in-depth teaching and directed study on the molecular biology of cancer, and covers:

Basic cell and molecular biology, and introduction to cancer biology
Cell proliferation, cell signalling and cancer
Cancer cell biology
Carcinogenesis, cancer treatment and prevention
Specific training in research methodology and critical analysis

Students will also be required to take part in a journal club to further develop their critical review skills.

In semesters two and three students will be individually guided to focus on a specific cancer research topic which will be the subject of a literature review and associated laboratory research project. The research project is based in laboratories with state-of-the-art facilities, and under the leadership of world-class researchers.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Places on the course are limited, so early applications are strongly encouraged.
Apply early to avoid disappointment.
Follow us on Twitter to keep up with news from the MRes Cancer Biology @Mrescancerbiol

Read less
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology. Read more
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology.

This MRes has been designed to enhance knowledge of recent advancements in cellular and molecular biology, as well as to develop subject-specific practical and analytical skills. In addition, you will gain experience of undertaking an extended period of research (6-7 months), which will aid your career progression as a molecular bio-scientist.

The programme will involve undertaking two core 20 credit taught modules, followed by an extended period of laboratory research, and submission of a Research report and review, 140 credits.

Why Study Cell and Molecular Biology Pathway with us?

Our lecturers range from enthusiastic early career academics through to internationally acknowledged senior researchers. We are actively involved in undertaking innovative research projects using ‘cutting-edge’ approaches, within the field of molecular and cellular life sciences.

Some of our current projects are listed below:
- Environmental toxicology
- Protection against the ageing
- Calcium signalling
- Biochemistry & pharmacology of intracellular Ca2+ transporters
- Stem cells
- Tissue regeneration
- Pathology of bone disease
- Progression of kidney and bladder cancers
- Novel drug delivery systems via nanoparticles and cell penetrating peptides
- Molecular basis of cancer development
- Novel approaches to cancer therapies
- Molecular immunology
- Development of analytical approaches to detect biomarkers of disease

What will I learn?

The MRes will involve undertaking two core 20 credit taught modules which consists of a mixture of lectures, workshops and practical classes in:
- Advances in Cell and Molecular Biology (BI7144)
- Skills for Molecular and Cellular Bioscientists (BI7145)

Followed by an extended period of laboratory research (140 credits) in an area that allies with the interests of our academic staff.

How will I be taught?

The two taught modules will each comprise of a series of lectures, small group discussion sessions, workshops and practical classes. Nominally each taught module has about 30-40 of contact hours associated with them. The rest of the time allocated for these modules will be for further reading, coursework preparation and revision.

The remainder of the programme will comprise of the 6 to 7 month research project which will involve regular meetings and guidance with your research supervisor. This is followed by the preparation of two reports.

How will I be assessed?

The research dissertation will be assessed by the production of a research report in the format of a scientific paper and a research review (80%).

The taught modules will be assessed by the production of practical and theoretical reports and class tests (20%).

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
This course allows you to plan your own taught programme to match your interests and experience by selecting modules from a diverse range of option modules from a diverse range offered by the biosciences masters course in the in the Faculty of Science and Technology, with the advice of the Course Leader. Read more
This course allows you to plan your own taught programme to match your interests and experience by selecting modules from a diverse range of option modules from a diverse range offered by the biosciences masters course in the in the Faculty of Science and Technology, with the advice of the Course Leader. For example, you could combine modules on microbiology and molecular biology or those on haematology and clinical chemistry.

Alternatively, you can combine basic science with study of the communication or commercialisation of science. We also offer the opportunity to consider the increasing role of automation in diagnostic laboratories. Those studying part time are free to develop their module choices as they progress.

Whatever the combination, you will be able to expand your understanding of human diseases, their investigation and therapy, and develop your competence in the design and execution of a laboratory-based project.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-POSTGRADUATE PROJECT
-POSTGRADUATE RESEARCH METHODS

Option modules
-ADVANCED CANCER BIOLOGY
-ADVANCES IN CELLULAR PATHOLOGY
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-CELLULAR HAEMATOLOGY
-CLINICAL ASPECTS OF MICROBIAL PHYSIOLOGY AND CHEMOTHERAPY
-CLINICAL ENDOCRINOLOGY AND METABOLISM
-COMMUNICATING SCIENCE
-CONCEPTS AND PRINCIPLES OF HUMAN NUTRITION
-DIAGNOSTIC CELLULAR PATHOLOGY
-DIAGNOSTIC CLINICAL BIOCHEMISTRY
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-INFECTIOUS DISEASES AND PUBLIC HEALTH
-MOLECULAR AND CELLULAR THERAPEUTICS
-MOLECULAR BIOINFORMATICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-PRINCIPLES OF MOLECULAR MEDICINE
-PRINCIPLES OF PHARMACOLOGY AND DRUG DISCOVERY
-REGENERATIVE MEDICINE
-SCIENCE, TECHNOLOGY AND COMMERCIALISATION
-SYSTEMS BIOLOGY

Associated careers

You will develop a range of transferable skills that will enhance your employment prospects and your research opportunities in the UK or overseas. This course has a diverse intake pf both full and part-time home/EU students range from recent graduates top those working in diagnostic laboratories who wish to gain additional qualification while our international students often have experience in biomedical science laboratories and following completion of their studies will return to their home countries pursue promotion or research opportunities.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS). However students interested in gaining professional registration should consider our Applied Biomedical Science MSc.

Read less
This course will enable you to enhance your knowledge and understanding of modern cellular pathology through a range of option modules. Read more
This course will enable you to enhance your knowledge and understanding of modern cellular pathology through a range of option modules. In addition, the core modules in cellular pathology are designed to deliver a comprehensive overview of contemporary technical practice in the context of service delivery to the pathologist for diagnostic practice, or for the scientist engaged in cell and tissue-based research.

Our specialist cellular pathology modules are supported by the online use of interactive digital microscopy, for example in pathology case studies, to illustrate the applications of a range of visualisation methods in cellular pathology. Practical experience in research design and methodology is gained through the laboratory-based research project.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCES IN CELLULAR PATHOLOGY
-DIAGNOSTIC CELLULAR PATHOLOGY
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-MOLECULAR AND CELLULAR THERAPEUTICS
-PRINCIPLES OF MOLECULAR MEDICINE
-SYSTEMS BIOLOGY

Associated careers

As a graduate of this course you will possess a range of transferable skills that will enhance your employment prospects and your research opportunities in the UK or overseas. For those biomedical scientists (or international equivalents) undertaking continuing professional development, this course will enhance your knowledge base in your chosen specialist discipline and open up the potential for career advancement or moves towards involvement in research and development.

Successful completion of the course will enhance the career prospects of graduates for entering PhD programmes; you may also find employment in hospital laboratories, academia, research institutes, or in the pharmaceutical and related industries.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
This course will focus on the physiology and pathology of blood and its use as a diagnostic and therapeutic tool. A variety of areas of molecular and cellular bioscience will be covered with an emphasis on new technologies and developments in Haematology and related disciplines such as Transfusion Science. Read more
This course will focus on the physiology and pathology of blood and its use as a diagnostic and therapeutic tool. A variety of areas of molecular and cellular bioscience will be covered with an emphasis on new technologies and developments in Haematology and related disciplines such as Transfusion Science. You will expand your knowledge of the basic science and analytical techniques relating to Haematology and gain an up-to-date understanding of the application of Haematology in bioscience / pharmaceutical research, as well as in diagnostic and therapeutic medicine.

There will be an emphasis in the course on development of critical analysis skills in the assessment of scientific literature and laboratory data. In addition you will have the opportunity to design and execute your own research project. The course team is supported by visiting lecturers who are practising scientists in the field, which helps ensure that taught material is current and relevant.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CELLULAR HAEMATOLOGY
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-ADVANCED CANCER BIOLOGY
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-MOLECULAR AND CELLULAR THERAPEUTICS
-PRINCIPLES OF MOLECULAR MEDICINE

Associated careers

As well as gaining specialist knowledge in Haematology and related disciplines, you will develop a range of transferable skills that will enhance your employment prospects and research opportunities in the UK or overseas. The course is taken by both UK and international students, preferably (but not necessarily) with relevant work experience. It is relevant to career pathways in diagnostic haematology, immunology and transfusion laboratories, research institutions and pharmaceutical companies.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. Read more
This course aims to provide you with the skills and knowledge of theory and practice that will enable you to work as a professional capable of making important contributions in the field of clinical biochemistry. The course aims to further enhance your knowledge of clinical biochemistry, to engage you with contemporary issues and debates within the discipline, and to develop your critical and analytical skills.

The taught programme contains specific modules in Clinical Biochemistry, such as endocrinology and metabolism and diagnostic clinical biochemistry, which you can apply to diagnostic biomedicine, as well as offering you a choice of modules related to molecular diagnostics or haematology.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CLINICAL ENDOCRINOLOGY AND METABOLISM
-DIAGNOSTIC CLINICAL BIOCHEMISTRY
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-AUTOMATION IN BIOMEDICAL SCIENCES
-CELL SIGNALLING AND GENETICS
-CELLULAR HAEMATOLOGY
-COMMUNICATING SCIENCE
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-IMMUNOPATHOLOGY
-PRINCIPLES OF MOLECULAR MEDICINE

Associated careers

The course has been designed to provide professionals with a broad range of transferable skills in clinical biomedical sciences, with particular reference to possessing the ability to critically discuss and evaluate concepts, analytical techniques, current research and advanced scholarship in Clinical Biochemistry.

Successful completion of the course will enhance the career prospects of graduates for entering Ph.D programmes; you may find employment in hospital laboratories, academia, research institutes, as well as in the pharmaceutical and related industries.

Professional recognition

The course is accredited by the Institute of Biomedical science (IBMS).

Read less
The course will allow you to expand your understanding of immunology, immunopathology and immunotherapy, to further develop skills in analytical approaches to immunodiagnosis and molecular therapeutics, as well as enhance your competence in the design and execution of a laboratory based project. Read more
The course will allow you to expand your understanding of immunology, immunopathology and immunotherapy, to further develop skills in analytical approaches to immunodiagnosis and molecular therapeutics, as well as enhance your competence in the design and execution of a laboratory based project. You will be able to take a proactive role in research, development, evaluation and implementation of current immunological techniques while perceiving the subject in the broader perspective of health care and scientific progress.

The scope of the modules included will ensure a breadth of knowledge appropriate for the scientific and professional needs of practising immunologists, at the same time making use of your knowledge and experience. This course is designed so that you can plan your own taught programme to match your interests and experience by combining core and optional modules with emphasis on therapeutics, diagnostics, haematology or public health.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-CELL SIGNALLING AND GENETICS
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-POSTGRADUATE RESEARCH METHODS
-POSTGRADUATE PROJECT

Option modules
-ADVANCED CANCER BIOLOGY
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOHAEMATOLOGY AND HAEMOSTASIS
-INFECTIOUS DISEASES AND PUBLIC HEALTH
-MOLECULAR AND CELLULAR THERAPEUTICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-PRINCIPLES OF MOLECULAR MEDICINE
-SYSTEMS BIOLOGY

Associated careers

The course has been designed to provide professionals with a broad range of skills in immunology, immunopathology and immunotherapy. Successful completion of the course will enhance your career prospects in education, in PhD programmes, in academia, research institutes, as well as in pharmaceutical and related industries. UK part-time students are normally employed in hospital or NHSBT laboratories or in research establishments.

You will develop a range of transferable skills that will enhance your employment prospects and research opportunities in the UK or overseas. As an international student with experience in biomedical sciences, following completion of their studies, you will be able to return to your home country to pursue research opportunities or promotion, seek employment as research technician, biomedical scientist, scientific or medical technical officer or research assistant. You may also seek jobs in industry, research or healthcare or apply for further training (biomedical or clinical scientist routes).

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. Read more
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. You will be guided from the origins of this field through to its application (and potential applications) in treating human disease, covering the latest tools and technologies available for study in this area. Programme content is delivered by researchers active in the field, ensuring that the latest breakthroughs are communicated.

Using a creative distance-learning model, the programme delivers lectures, online discussions and assessments over the internet. This offers you more flexibility than traditional campus-based courses as you can study in your own environment. You will only be required to visit Bristol for your formal examinations at the end of the academic year. This distance-learning model, together with a part-time study option, makes the programme particularly appealing to those students who wish to combine full-time employment with study.

Programme structure

Core units
-Introduction to Stem Cells and Regeneration
-Neurodegeneration and Ophthalmic Disorders
-Molecular Tools in Stem Cells and Regeneration
-Peripheral Neuropathy and Spine
-Cell Signalling
-Biomaterials and their Use in the Skeletal System
-Stem Cells in Cardiac Systems
-Research Project/Dissertation

Careers

The programme can open up a number of different career opportunities. It can be used as a pathway to further studies (eg PhD) which in turn could lead to a research or academic career in the field. It can also open up opportunities in private industry, for example:
-Biotechnology sector research/sales
-Stem cell business development
-Stem cell banking
-Stem cell patents
-Stem cell clinical translation
-Charity research development
-Pharmaceutical industry
-Stem cell regulatory bodies

Read less
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field. Read more
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field.

Degree information

The overall aim of the programme is for students to develop an advanced understanding of the development, structure and function of biological systems, together with an understanding of the mechanisms underlying normal function and dysfunction at molecular, cellular and systems levels. Students will acquire and put into practice the research methods skills necessary to investigate mechanisms and develop knowledge in this field.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits) optional 15 and 30-credit modules available in the Biosciences Division (to a total of 90 credits) and a research dissertation (60 credits).

Core modules
-The Practice of Science

Optional modules - optional modules include:
-Advances in the Neurosciences
-Physiology in Health and Disease
-Advances in Human Genetics
-Cancer and Personalised Medicines
-Cell Signalling
-Neurodegenerative Diseases
-Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of up to 10,000 words.

Teaching and learning
Taught modules are delivered through a combination of lectures, tutorials, practical exercises, computer simulation, data analysis exercises and self-directed learning. Assessment is through coursework (including projects, reports and presentations), unseen written examination, dissertation and oral presentation.

Careers

The Biomedical Sciences MSc provides opportunities for students to develop and broaden their knowledge and research skills and better prepare for future employment or specialist postgraduate research.

Top career destinations for this degree:
-PhD in Biomedical Science, McGill University
-PhD in Biomedical Sciences, University of Oxford
-PhD in Gene Discovery, Queen Mary, University of London (QMUL)
-Healthcare Assistant, Ealing Hospital (NHS)
-Trainee Biomedical Scientist, Epsom and St Helier University Hospitals NHS Trust

Employability
Biomedical Sciences MSc graduates significantly enhance their employability by developing their subject-specific knowledge in the field of biomedical science and their analytical and research skills. Students gain an appreciation of how important biomedical science is to global healthcare and can approach international employers with confidence. In addition, the programme enhances student presentational and key skills enabling students to compete effectively in the job market.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biological and biomedical science.

The Division of Biosciences is in a unique position to offer tuition, research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of biosciences research.

You will have the advantages of studying in a multi-faculty university with a long tradition of excellence, situated at the heart of one of the world's greatest cities.

Read less
Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans. Read more
Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans.

The Biomedical Sciences (Cancer Biology) MSc programme has been devised to provide knowledge of key aspects of this increasingly important disease area.

You will become familiar with the genetic and cellular changes occurring in both solid and blood-borne cancers, the current and emerging technological approaches for diagnosis of the disease and the effect on pertinent cellular changes on patient prognosis. Studies on populations and the influence of genotypic variation will ensure that you are qualified to make sense of cancer statistics.

You are able to tailor your programme by selecting from a menu of option modules and pursuing a research project in an area ranging from molecular through to cellular or tissue-based aspects of cancer.

During the course you will join our thriving research environment and will have access to excellent laboratory facilities within the Faculty. On successful completion of the course you will be equipped to take forward your career with an in-depth knowledge of this increasingly common disease area.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED CANCER BIOLOGY
-CELL SIGNALLING AND GENETICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE PROJECT
-POSTGRADUATE RESEARCH METHODS

Option modules
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-MOLECULAR AND CELLULAR THERAPEUTICS
-SYSTEMS BIOLOGY

Associated careers

After graduation, you will be equipped with the skills and knowledge to pursue a range of cancer-focused careers including appointments in diagnostic laboratories, academic, biotechnological and pharmaceutical research.

As a graduate of this course, you will be ideally placed to play an essential role in both diagnosis and improved care of cancer patients. Opportunities are also available to pursue a career in clinical trials and in areas such as data analysis and public health.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
The programme provides intensive training in the neurosciences as they relate to the physiologic function and behaviour of the organism. Read more
The programme provides intensive training in the neurosciences as they relate to the physiologic function and behaviour of the organism. It builds on the broad research strengths of recognised scientists, particularly in basic and clinical neuroscience, molecular and cell biology, neuroendocrinology, behaviour, neurodegeneration and psychopharmacology. Guest lecturers from other universities bring their specialist and advanced knowledge to the programme.

Throughout the programme, basic principles will be taught and illustrated in the context of various brain diseases, including psychiatric and neurodegenerative disorders. A practical and a research project will give you valuable experience in experimental neuroscience. Importantly, tutorials and presentations will also help to develop your communication skills.

This programme is organised by the School of Clinical Sciences and is housed in the state-of-the-art Dorothy Hodgkin Building with dedicated MSc facilities.

The MSc will be of interest to those with a medical training who want to diversify into research, and to science graduates who wish to develop their knowledge and skills before embarking on a doctoral research programme. While part-time study is available, this needs to be discussed with the programme director.

Programme structure

-Foundations of Neuroscience
-Cell Signalling
-Gene Expression in the Brain
-Neuroendocrinology
-Neurodegeneration: Symptoms, Molecular Mechanisms and Therapies
-Integrative Molecular Neuroscience
-Research Project

Careers

The MSc in Molecular Neuroscience can open up a number of different career paths. Many graduates of the programme have secured PhD studentships here in the UK or in other parts of the world, including the US, Australia and Germany. This often leads to a career in research or academia (eg as a research assistant or research associate, teaching fellow, lecturer).

Other graduates have gone on to a career in industry, scientific writing or clinical trial co-ordination. Some graduates have gone into medicine studies after completing the course. Staff are available to discuss prospective career pathways with students who undertake the programme.

Read less

Show 10 15 30 per page



Cookie Policy    X