• University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Bedfordshire Featured Masters Courses
FindA University Ltd Featured Masters Courses
Teesside University Featured Masters Courses
"cell" AND "imaging"×
0 miles

Masters Degrees (Cell Imaging)

We have 74 Masters Degrees (Cell Imaging)

  • "cell" AND "imaging" ×
  • clear all
Showing 1 to 15 of 74
Order by 
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine. Read more
This exciting, two year MSc programme is concerned with a wide range of biomedical imaging and sensing science and technology. Biomedical Imaging and Sensing is, in a broad sense, a set of competencies from engineering and sciences to support future quantitative biology and personalised medicine.

It will provide you with theoretical and practical knowledge to develop methods and systems for disease understanding, diagnosis, prognosis and therapeutics where imaging and sensing play a key role.

Core modules

Interdisciplinary Seminars in Biomedical Imaging and Sensing
Mathematics of Imaging Sciences
Scientific Software Development for Biomedical Imaging

Departmental optional modules

Advanced Signal Processing
Computer Vision, Biomedical Signals and Systems
Physiological Signals and Sensing; Physics of Light Microscopy of Cells and Tissues
Physics of Medical Imaging with Ionising Radiation
Physical Principles of Imaging: Radiation-Matter Interaction
Medical Image Computing
Biomaging with Light and Sound
Microscopy Image Analysis
Magnetic Resonance Imaging and Spectroscopy

Interdisciplinary optional modules

The programme allows you to explore some elective modules from interdisciplinary domains that relate to anatomy, physiology, cell biology, physics of the senses, and vision and neurosciences, among others.

Teaching and assessment

Research-led teaching from our department, and various interdisciplinary modules from other departments from the Faculty of Engineering and the Faculty of Medicine, Health and Dentistry.

Individual support for your research project and dissertation.

Assessment is by examination, a project, and coursework in the first year with future examinations and dissertation in your second year.

Read less
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. Read more
The M.Sc. in Medical Physics is a full time course which aims to equip you for a career as a scientist in medicine. You will be given the basic knowledge of the subject area and some limited training. The course consists of an intense program of lectures and workshops, followed by a short project and dissertation. Extensive use is made of the electronic learning environment "Blackboard" as used by NUI Galway. The course has been accredited by the Institute of Physics and Engineering in Medicine (UK).

Syllabus Outline. (with ECTS weighting)
Human Gross Anatomy (5 ECTS)
The cell, basic tissues, nervous system, nerves and muscle, bone and cartilage, blood, cardiovascular system, respiratory system, gastrointestinal tract, nutrition, genital system, urinary system, eye and vision, ear, hearing and balance, upper limb – hand, lower limb – foot, back and vertebral column, embryology, teratology, anthropometrics; static and dynamic anthropometrics data, anthropometric dimensions, clearance and reach and range of movement, method of limits, mathematics modelling.

Human Body Function (5 ECTS)
Biological Molecules and their functions. Body composition. Cell physiology. Cell membranes and membrane transport. Cell electrical potentials. Nerve function – nerve conduction, nerve synapses. Skeletal muscle function – neuromuscular junction, muscle excitation, muscle contraction, energy considerations. Blood and blood cells – blood groups, blood clotting. Immune system. Autonomous nervous system. Cardiovascular system – electrical and mechanical activity of the heart. – the peripheral circulation. Respiratory system- how the lungs work. Renal system – how the kidneys work. Digestive system. Endocrine system – how hormones work. Central nervous system and brain function.

Occupational Hygiene (5 ECTS)
Historical development of Occupational Hygiene, Safety and Health at Work Act. Hazards to Health, Surveys, Noise and Vibrations, Ionizing radiations, Non-Ionizing Radiations, Thermal Environments, Chemical hazards, Airborne Monitoring, Control of Contaminants, Ventilation, Management of Occupational Hygiene.

Medical Informatics (5 ECTS)
Bio statistics, Distributions, Hypothesis testing. Chi-square, Mann-Whitney, T-tests, ANOVA, regression. Critical Appraisal of Literature, screening and audit. Patient and Medical records, Coding, Hospital Information Systems, Decision support systems. Ethical consideration in Research.
Practicals: SPSS. Appraisal exercises.

Clinical Instrumentation (6 ECTS)
Biofluid Mechanics: Theory: Pressures in the Body, Fluid Dynamics, Viscous Flow, Elastic Walls, Instrumentation Examples: Respiratory Function Testing, Pressure Measurements, Blood Flow measurements. Physics of the Senses: Theory: Cutaneous and Chemical sensors, Audition, Vision, Psychophysics; Instrumentation Examples: Evoked responses, Audiology, Ophthalmology instrumentation, Physiological Signals: Theory Electrodes, Bioelectric Amplifiers, Transducers, Electrophysiology Instrumentation.

Medical Imaging (10 ECTS)
Theory of Image Formation including Fourier Transforms and Reconstruction from Projections (radon transform). Modulation transfer Function, Detective Quantum Efficiency.
X-ray imaging: Interaction of x-rays with matter, X-ray generation, Projection images, Scatter, Digital Radiography, CT – Imaging. Fundamentals of Image Processing.
Ultrasound: Physics of Ultrasound, Image formation, Doppler scanning, hazards of Ultrasound.
Nuclear Medicine : Overview of isotopes, generation of Isotopes, Anger Cameras, SPECT Imaging, Positron Emitters and generation, PET Imaging, Clinical aspects of Planar, SPECT and PET Imaging with isotopes.
Magnetic Resonance Imaging : Magnetization, Resonance, Relaxation, Contrast in MR Imaging, Image formation, Image sequences, their appearances and clinical uses, Safety in MR.

Radiation Fundamentals (5 ECTS)
Review of Atomic and Nuclear Physics. Radiation from charged particles. X-ray production and quality. Attenuation of Photon Beams in Matter. Interaction of Photons with Matter. Interaction of Charged Particles with matter. Introduction to Monte Carlo techniques. Concept to Dosimetry. Cavity Theory. Radiation Detectors. Practical aspects of Ionization chambers

The Physics of Radiation Therapy (10 ECTS)
The interaction of single beams of X and gamma rays with a scattering medium. Treatment planning with single photon beams. Treatment planning for combinations of photon beams. Radiotherapy with particle beams: electrons, pions, neutrons, heavy charged particles. Special Techniques in Radiotherapy. Equipment for external Radiotherapy. Relative dosimetry techniques. Dosimetry using sealed sources. Brachytherapy. Dosimetry of radio-isotopes.

Workshops / Practicals
Hospital & Radiation Safety [11 ECTS]
Workshop in Risk and Safety.
Concepts of Risk and Safety. Legal Aspects. Fundamental concepts in Risk Assessment and Human Factor Engineering. Risk and Safety management of complex systems with examples from ICU and Radiotherapy. Accidents in Radiotherapy and how to avoid them. Principles of Electrical Safety, Electrical Safety Testing, Non-ionizing Radiation Safety, including UV and laser safety.
- NUIG Radiation Safety Course.
Course for Radiation Safety Officer.
- Advanced Radiation Safety
Concepts of Radiation Protection in Medical Practice, Regulations. Patient Dosimetry. Shielding design in Diagnostic Radiology, Nuclear Medicine and Radiotherapy.
- Medical Imaging Workshop
Operation of imaging systems. Calibration and Quality Assurance of General
radiography, fluoroscopy systems, ultrasound scanners, CT-scanners and MR scanners. Radiopharmacy and Gamma Cameras Quality Control.

Research Project [28 ECTS]
A limited research project will be undertaken in a medical physics area. Duration of this will be 4 months full time

Read less
Overview. Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. Read more

Overview

Located within a European Centre of Excellence for Tissue engineering, and based on Keele’s University’s local hospital campus at the Guy Hilton Research Centre, the MSc in Cell and Tissue Engineering provides support and development to enhance your career within this rapidly expanding field. The research centre is also an EPSRC Doctoral Training Centre for Regenerative Medicine, an Arthritis UK Centre and a UK Regenerative Medicine Platform Research Hub. This multidisciplinary environment enables close interaction with leading academics and clinicians involved in cutting-edge, and clinically transformative research.

Course Director: Dr Adam Sharples ()

Studying Cell and Tissue Engineering at Keele

Our MSc Cell and Tissue Engineering programme has tracked alongside the strongly emergent global Regenerative Medicine industry and will prepare you for an exciting future within a range of medical engineering areas, be that in academic or industrial research, medical materials, devices, or therapeutics sectors, or in the clinical arena. The modular structure to the course enables flexibility and personalisation to suit your career aspirations, build upon strengths and interests and develop new understanding in key topics.

Graduate destinations for our students could include: undertaking further postgraduate study and research (PhD); pursuing a university-based, academic research career; providing technical consultancy for marketing and sales departments within industry; working within biomedical, biomaterials, therapeutic, life science and regenerative medicine industries or working for a governmental regulatory agency for healthcare services and products.

See the website https://www.keele.ac.uk/pgtcourses/cellandtissueengineering/

‌‌The course provides support from the basics of human anatomy and physiology, through to development of novel nanotechnologies for healthcare. Due to the teaching and research involvement of clinical and academic staff within the department, there are exciting opportunities to be exposed to current clinical challenges and state-of-the-art developments. Clinical visits and specialist seminars are offered and students will be able to select dissertation projects that span fundamental research to clinical translation of technologies – a truly ‘bench to bedside’ approach.

Learning and teaching methods include lectures and demonstrations from medical and engineering specialists, practical classes using state-of-the-art facilities and seminars with leading national and international researchers. Full-time study will see the course completed in 12 months; part-time study will allow you to complete it over two years.

About the department

Delivered through the Keele School of Medicine and the Research Institute for Science and Technology in Medicine (ISTM), the course dates as far back as 1999, when it was established in partnership with Biomedical Engineering and Medical Physics at the University Hospital. Most teaching now takes place in the Guy Hilton Research Centre, a dedicated research facility located on the hospital campus. The medical school is one of the top-ranked in the UK, and the research institute has an international reputation for world-leading research.

The centre was opened in 2006 and offers state-of-the-art equipment for translational research including newly-developed diagnostic instruments, advanced imaging modalities and additive manufacturing facilities. Its location adjacent to the university hospital ensures that students experience real-world patient care and the role that technology plays in that. Students also have access to advanced equipment for physiological measurement, motion analysis and functional assessment in other hospital and campus-based laboratories. The School embraces specialists working in UHNM and RJAH Orthopaedic Hospital Oswestry, covering key medical and surgical subspecialties.

The course runs alongside its sister course, the MSc in Biomedical Engineering, and an EPSRC-MRC funded Centre for Doctoral Training, ensuring a stimulating academic environment for students and many opportunities for engaging with further study and research.

Course Aims

The aim of the course is to provide multidisciplinary Masters level postgraduate training in Cell and Tissue Engineering to prepare students for future employment in healthcare, industrial and academic environments. This involves building on existing undergraduate knowledge in basic science or engineering and applying it to core principles and current issues in medicine and healthcare.

Specifically, the objectives of the course are to:

- provide postgraduate-level education leading to professional careers in Cell and Tissue Engineering in industry, academia and a wide range of healthcare establishments such as medical organisations, medical research institutions and hospitals;

- provide an opportunity for in-depth research into specialist and novel areas of Biomaterials, and Cell and Tissue Engineering;

- expose students to the clinically translational environment within an active medical research environment with hands-on practical ability and supporting knowledge of up-to-date technological developments at the forefront of the field;

- introduce students to exciting new fields such as regenerative medicine, nanotechnology and novel devices for physiological monitoring and diagnostics.

Teaching and Learning Methods

The course is taught through subject-centred lectures and seminars, supported by tutorials and practical exercises. Collaborative learning and student-centred learning are also adopted giving widespread opportunity for group work and individual assignments. Students are required to conduct extensive independent study, and this is supported by full access to two libraries, online journal access and a suite of dedicated computers for exclusive use by MSc students on the course. In addition, students are supported by the guidance of a personal tutor within the department, as well as having access to university-wide support services. This includes English language support where appropriate.

Assessment

Modules will be assessed by a mixture of assessment methods, including lab reports, essays, and presentations, and final examination. This ensures the development of a range of transferrable employability skills such as time management and planning, written and verbal communication and numeracy as well as technical and subject-specific knowledge. The project dissertation forms a major component of the student’s assessed work.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/



Read less
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Read more
Tissues in the human body have a defined structure in that their growth and differentiation have developed in specific ways to create a cellular architecture that supports their function. Following this fundamental principle that ‘from structure comes function’ we can develop in vitro models that resemble elements of the anatomy and physiology of real human tissues. This can be achieved through our understanding of tissue development and morphology, and the application of innovative technologies to build mature, functional tissue equivalents. Such innovation often occurs at the interface between disciplines such as biological, chemistry, and engineering.
In my laboratory, we specialise in the development of novel approaches to culturing cells in vitro, to enhance cell viability, growth, and differentiation, to enable the creation of human tissue mimetics that can subsequently be used for basic research, drug screening, and the assessment of chemicals. Cell biology-based Master by Research projects are available in tissue engineering in various areas, notably: epithelial biology (for example, skin, oral mucosa, intestine); neural biology (for example, in vitro models of neurological disorders); and basic biological mechanisms involved in stem cell differentiation, tissue development and function in vitro. In other projects, we are also interested in developing new cell technologies to further improve the culture and differentiation of human tissues in vitro and invite applicants who are interested in working at the interface between biology and the physical sciences. The exact nature of the project will be determined in discussions with the applicant but will involve engineering human tissues in vitro and their development, characterisation, and application in areas consistent with our fields of interest. For further information about our research please visit my research staff profile https://www.dur.ac.uk/biosciences/about/schoolstaff/profile/?id=1016
Successful applicants will join a busy and productive research group. The Masters projects on offer provide excellent training in the development of non-animal in vitro technologies, cell biology, tissue specific anatomy/physiology, engineering human tissues, stem cell science and cell differentiation, and advanced cell technologies. Students will master a range of cutting edge techniques to advance their research programme, including advanced 3D cell culture, cell and molecular biology, tissue analysis, histology, cell-based assays, and imaging (advanced light and electron microscopy). Students will train to become a research scientist, develop ownership of their project, and become expert in their field of interest. The Department of Biosciences at Durham University has excellent research facilities and training support programme to prepare students for a successful career in scientific research.

APPLICATIONS ACCEPTED ALL YEAR ROUND

Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients. Read more

Why this course?

This MSc course provides engineers and physical scientists with knowledge and understanding of the medical devices used in diagnosis and treatment of patients.

The course is delivered by staff of the EPSRC-funded Centre for Doctoral Training in Medical Devices and Health Technologies (CDT), with colleagues from Engineering, the Life Sciences and Physical Sciences. There’s also input from clinical advisers from the NHS and elsewhere.

The training programme equips you with the basic knowledge and terminology in current life science subjects to allow you to explore topics in your own research project with direction from your supervisor.

You'll gain practical experience in the life science techniques and an appreciation of interdisciplinary project work.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/medicaldevicesmsc/

You’ll study

This credit-based modular degree comprises assessed instructional classes and project work.
You’ll also undertake a research project. You’ll choose from a list of relevant industrial or clinical projects, and submit a thesis.

Recent Projects

There's a range of projects topics you can choose from. Some of our more recent titles are:
- Vaccine delivery via high-throughput nanoparticle-enhanced cell imaging in microfluidic devices
- Development of an optically guided navigated orthopaedic surgical tool (OGNOST)
- Developing a means of diagnosing and assessing prosodic deficits in people with Parkinson's disease
- A plastic laser diagnostic platform for assessing the risk of cardiovascular disease

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

The first and second semesters consist of taught classes, laboratory demonstrations, practical exercises and clinical visits.

Careers

This course will enable graduates to pursue a career in the medical device or research industry.

No.1 in the UK for Medical Technology

The Department of Biomedical Engineering is ranked No. 1 in the Complete University Guide League Tables 2016 for Medical Technology.

Find information on Scholarships here http://www.strath.ac.uk/search/scholarships/index.jsp

Read less
Sign up to our. Postgraduate Open Evening. - 31 Jan 2018. New Master's Scholarships available. Find out more and apply. Our Neuroimaging MSc course will provide you with training in all the scientific and methodological aspects of neuroimaging. Read more

Sign up to our Postgraduate Open Evening - 31 Jan 2018

New Master's Scholarships available. Find out more and apply.

Our Neuroimaging MSc course will provide you with training in all the scientific and methodological aspects of neuroimaging. It has a strong focus on applied neuroimaging, including practical experience of scanning techniques and analysis methodologies. You will develop the broad set of skills that are essential to anybody wanting to work in the competitive world of neuroimaging.

Key benefits

  • Interdisciplinary research environment, which specialises in a world-leading combination of application-oriented brain imaging and analysis techniques. Neuroimaging is today one of the most successful research fields within the Institute of Psychiatry, Psychology & Neuroscience.
  • Breadth of applications, including psychiatry, neurology, psychology, clinical neuroscience, neuroscience and beyond.
  • Based in the state-of-the-art Centre for Neuroimaging Sciences, with direct access to five MR scanners (one 1.5T, three 3T and one preclinical 9.4T) and to EEG labs.
  • Strong partnerships with sister hospitals, industries and other research centres hosting complementary technologies, such as PET, MEG, CT, Ultrasound and Stem Cell Imaging.
  • World-class team of academic physicists and methodologists, as well as leading psychiatrists, neurologists, psychologists and clinical psychologists.
  • Extensive collaboration within King’s and with other universities and industries.
  • Lectures given by experts in their field providing students with in-depth knowledge of their subject areas.
  • Strong practical and experiential course components aimed at immersing students in all aspects of day-to-day neuroimaging techniques and their applications.

Description

Our Neuroimaging course aims to train the neuroimaging researchers of tomorrow by focusing on teaching you the scientific and methodological aspects of neuroimaging techniques in parallel to their application to psychiatry, neurology, psychology, clinical psychology, neuroscience, and beyond.

In addition to theoretical approaches, our course has a strong applied element, which will allow you to gain practical experience of scanning techniques, with a focus on the skills needed to run a scanning session and to analyse and interpret the data produced. It also includes visits to other centres providing PET, MEG and NIRS among other imaging techniques.

Course format and assessment

You will be taught through a combination of lectures, seminars and tutorials.

You will be assessed through a combination of coursework and examinations.

Examination (40%) | Coursework (40%) | Practical (20%) 

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they may change if the course modules change. 

Extra information

Regulating body

King’s College is regulated by the Higher Education Funding Council for England

Career prospects

Upon completion, you will have a solid understanding of the techniques and applications of Neuroimaging and will be well equipped to work in Neuroimaging or related professions. You may also wish to use the course programme as preparation for PhD study in either Neuroimaging or a related research area. 



Read less
Bioscience research at Newcastle is part of the Institute for Cell and Molecular Biosciences. We integrate traditional bioscience disciplines to investigate the steps from genotype to phenotype. Read more
Bioscience research at Newcastle is part of the Institute for Cell and Molecular Biosciences. We integrate traditional bioscience disciplines to investigate the steps from genotype to phenotype. Our research also incorporates chemistry, biophysics and eukaryotic-microbial models.

We offer MPhil supervision in all of our main research areas. You will join a vibrant research community of about 100 postgraduate research students in the Institute. You will work in one of our established research groups alongside postdoctoral researchers, senior students and staff. You will be encouraged to present your work in the Institute and at scientific meetings.

Our staff are successful in attracting postgraduate funding from diverse sources, such as:
-UK Research Councils, including a BBSRC Doctoral Training Partnership
-Industrial CASE awards
-Charities
-UK and international government initiatives

Our results in the Research Excellence Framework 2014 were exceptional. We were ranked 1st for research output amongst all UK submitted university biosciences departments (UoA5 - Biological Sciences Unit of Assessment). In the overall scores, the Institute for Cell and Molecular Biosciences (UoA5) was 5th out of 44 UK submissions.

Our research is divided into four themes, each linked to a research group.

Facilities

Research in the Institute for Cell and Molecular Biosciences is supported by a wide range of facilities, including services and equipment for:
-Cell imaging
-High throughput technologies
-Bioinformatics and proteomics
-Transcriptomics and X-ray crystallography
-Proteomics and biological mass spectrometry

Underpinning our status as a world leading research institute was the construction of the Centre for Bacterial Cell Biology (CBCB) that was opened in 2010.

Read less
The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge. Read more

The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge.

We’ll give you advanced training in the mechanisms underpinning a spectrum of infectious and non-infectious diseases, including viral, bacterial and parasitic infections, cancer, neurodegeneration, cardiovascular disease and chromosomal abnormalities. You’ll also explore current and emerging diagnostic and treatment strategies.

You’ll learn about the latest molecular, genetic and cellular approaches being used to understand, diagnose and treat human disease, including traditional methods such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), and novel methods involving genome and proteome analysis.

You’ll also have the opportunity to investigate the role of the immune system in the response to infection and disease, covering topics such as innate and adaptive immunity, allergy and immune evasion.

If you choose to study at Leeds, you’ll join a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014), and you’ll graduate with the solid base of scientific knowledge and specialist skills highly valued by employers.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular sciences. You’ll investigate five topic areas: molecular biology, structural biology, cell imaging and flow cytometry, high throughput techniques and transgenic organisms.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

To help you to develop and specialise, you’ll get substantial subject-specific training through an independent research project in an area of infection, immunity or human disease.

You’ll also take specialist taught modules covering topics such as infectious and non-infectious disease, advanced immunology, medical diagnostics and treatment of infectious diseases and cancer.

If you have previous experience of immunology, you could opt to investigate the structure, regulation and development of the pharmaceutical manufacturing sector, or explore aspects of human toxicology. These could include the actions of toxicants on the cardiovascular, immune and nervous systems, kidneys, liver and lungs, genetic toxicology and chemical carcinogenesis, and the effects of chemicals on fetal development.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Compulsory modules

  • Advanced Immunology 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Practical Bioinformatics 10 credits
  • Medical Diagnostics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Treatment of Infectious Disease and Cancer 10 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Infection, Immunity and Human Disease MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Infection, Immunity and Human Disease MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our programmes.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications.


Read less
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
This research area has grown enormously over the last decade and now embodies a number of disciplines. At Nottingham we adopt an integrated approach in which several strategies are developed to address particular problems in Cell Biology. Read more
This research area has grown enormously over the last decade and now embodies a number of disciplines. At Nottingham we adopt an integrated approach in which several strategies are developed to address particular problems in Cell Biology. Projects are available to study how the unlimited potential of primordial germ cells is governed at a molecular level during development in representative species such as amphibians and mice. Within the cell important processes are governed by the structures and dynamics of numerous macromolecules. Projects are offered to directly visualize macromolecular behaviour with a view to elucidating cellular function. These studies examine protein-protein, protein-membrane and receptor-mediated interactions within cells using state-of-the-art imaging systems.

APPLICATION PROCEDURE

After identifying which Masters you wish to pursue please complete an on-line application form
http://www.nottingham.ac.uk/pgstudy/apply/apply-online.aspx
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
This award has been designed to facilitate the learning of the generic skills and knowledge essential to successful higher clinical practice and careers in academic medicine by applying the principles of the scientific method to studies in both anatomical research and clinically-applied anatomy. Read more

Overview

This award has been designed to facilitate the learning of the generic skills and knowledge essential to successful higher clinical practice and careers in academic medicine by applying the principles of the scientific method to studies in both anatomical research and clinically-applied anatomy. Anatomy encompasses all levels of structural organisation, topographical, neuroanatomical, histological, cellular and developmental, as well as providing a basis for studies in radiological imaging and pathology. This approach allows students to integrate recent advances in molecular genetics, cell biology, microscopy, imaging and computer simulation to biological and clinical problems concerning the human body.

See the website https://www.keele.ac.uk/pgtcourses/medicalscienceanatomicalsciences/

Course Content

A total of 180 credits are required to achieve the MMedSci (Anatomical Sciences) Intercalated.

One third of the credits are associated with the major dissertation/project, one third are anatomy-related taught modules with practical content, and one third comprises a combination of core generic methodology modules and a choice of modules in areas of cell and molecular biology or applied clinical science.

COURSE MODULES

FOUR CORE modules which are compulsory:

Applied Morphological Techniques and Imaging (30 credits):

This module, taken early in the semester, introduces some of the key research techniques employed in anatomical, experimental and pathological investigations, including whole body methods, optical, confocal and electron microscopy, histochemical and immunocytochemical staining methods, and quantitative techniques such as morphometry and stereology. In general, half-day theory sessions are followed by practicals and visits to various research and pathology laboratories and seminars involve critical analysis of the literature and applications to project design and research grant funding.

Applied Clinical Anatomy 1 (15 credits):

A six-day module spread over semester 1, covering practical, theoretical and applied aspects of the anatomy and development of the muscular, nervous, cardiovascular and respiratory systems. The unit includes anatomy prosection practicals, anthropometry, ultrasound imaging and critical analysis of the research literature particularly in the field of neuromuscular anatomy, variations, anomalies, and applied anatomy.

Applied Surgical Anatomy (15 credits):

This module, spread over both semesters, provides students with the opportunity to acquire a thorough knowledge of anatomy as applied to surgical diagnoses and procedures as a foundation for understanding and developing the scientific and evidence base of current practice. Activities include anatomy dissection labs, small group work and presentations, case-based discussions and critical appraisal work on the anatomical and surgical literature and self-directed learning.

Research Methods in Health (15 credits):

The aims of this module are as follows:

• To develop the students’ understanding of the philosophical and methodological bases of health and social research
• To enable the student to make an informed and appropriate choice of research design and methods
• To equip the student with critical appraisal skills
• To provide the student with the methodological foundation for a research dissertation

THREE OPTIONAL modules, ideally ONE from each of groups A, B, and C by discussion with the course tutors:

Group A

• Statistics and Epidemiology (15 credits)
• Medical Education 15 credits)

Group B

• Stem Cells: Types, Diagnoses and Applications (15 credits)
• Cell & Tissue Engineering (15 credits)

Group C

• Physiology of Neuromusculoskeletal Tissue (15 credits)
• Psychosocial Aspects of Pain (15 credits)
• Concepts of Neurological Rehabilitation (15 credits)
• Physiology and Pharmacology of Pain (15 credits)
• Assistive Technologies in Neuromuscular Rehabilitation (15 credits)
• Dynamic Ultrasound Imaging (15 credits)

Dissertation/Project:
This may take the form of one long (9 month) dissection or laboratory-based research topic written up to include a literature review, methodologies, results and discussion. Alternatively, this could comprise a short dissection or laboratory research project and a related medical education research project written up as above. Some short exploratory anatomy lab research projects may be undertaken in the style of Applied Clinical Anatomy 2.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this postgraduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
Overview. The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. Read more
Overview
The MRes courses are designed to provide students with intensive laboratory-based training in research methods, supported by in-depth understanding. The aim is to prepare graduates to make contributions, as individuals and members of a team, to research-oriented activities in the biomedical industries and related service sectors, or academia. The courses are also well-suited to students wishing to upgrade a first degree, change field, or gain valuable laboratory experience before employment or a PhD. The Strathclyde Institute of Pharmacy and Biomedical Sciences represents the largest Pharmacy research group in the UK, with 55% of its staff rated as either world-leading or internationally excellent in terms of originality, significance and rigour (data: Research Assessment Exercise 2008). The University of Strathclyde has invested £30M in a world-class, pioneering centre for biomedical and pharmaceutical sciences teaching and research, opened Aug 2010. Students will find themselves in stimulating, unique environment on account of the strongly multidisciplinary nature of the Institute. Combining fundamental and applied research across the areas of bioscience and pharmacy, SIPBS builds on its record of success in drug and vaccine discovery and development. The Institute engages with industry and the health services, ensuring that its excellent fundamental research is translated into products that are of benefit to health and society. For more information on SIPBS go to http://www.strath.ac.uk/sipbs

Course outline

An MRes degree is focussed on research and students will spend 8 months undertaking a laboratory-based project.
To support their chosen research project, students choose advanced-level taught courses in a named specialisation, from the following areas:

Taught classes delivered through lectures, workshops and practical classes in four areas:
1. Transferable skills training in data mining, interpretation and presentation; experimental planning, personal effectiveness, ethics in research
2. Commercialisation and entrepreneurship
3. MRes-specific classes relevant to subject area

Biomedical Sciences

Example research projects:
1. Antileishmanial activity of extracts and compounds from Monodora myristica
2. Imaging and modelling of cancer development
3. Endothelial progenitor cell expression and differentiation
4. Targeted radiotherapy for cancer
5. The involvement of pulmonary veins in atrial fibrillation: electrical properties
6. Reducing bacterial resistance to antibiotics
7. Development of neural stem cells with increased levels of the autophagy cell survival pathway
8. Investigating the role of Sigma 54 in Pseudomonas aeruginosa virulence
9. Transcriptional network analysis of the Escherichia coli core stress response.
10. Identification of novel anti-microbial compounds targeted at biofilm formation

Drug Delivery systems

Example research projects
1. Nanoparticulate formulations of insulin and their analysis
2. Mesoporous silicas for oral delivery of cyclosporine
3. Bioprocessing of biopharmaceuticals
4. Modified and time-delayed oral solid-dose release formulations
5. Nasal formulations of poorly soluble compounds
6. Reducing bacterial resistance to antibiotics: establishing, optimising and implementing a high throughput assay to discover natural product derived inhibitors of metallo beta-lactamase.
7. Imaging of dermal formulations using Raman microscopy techniques
8. Antileishmanial activity of extracts and compounds from Monodora myristica
9. Anti-trypanosomal active triterpenoids from some African Propolis
10. Investigation into the potential therapeutic properties of marine organisms
11. Photo-triggered adhesion of mammalian cells

Drug Discovery

Projects in the areas of :
1. Drug Delivery
2. Molecular Biology
3. Pharmacology
4. Pharmaceutical Materials and Formulation
5. Toxicology

Neuroscience

Projects in the areas of:
1. Electrophysiology
2. Stem cell biology for regenerative purposes
3. Cell biology
4. Inflammation
5. In vitro culture systems
6. Functional genetics

How to Apply
Applicants should apply through the University of Strathclyde on-line application form: http://pgr.strath.ac.uk indicating "Masters by Research", and named specialisation as appropriate. Applicants are not required to submit a detailed research proposal at this stage.

Read less
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. Read more

Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. The integration of cognitive brain imaging with neuroscience will play a central part in discovering how the brain functions in health and disease in the 21st century, as illustrated by the Human Brain Project in Europe and The Brain Initiative in the USA. The taught Brain Sciences degree will help you gain interdisciplinary knowledge “from molecules to mind” and enable you to develop research skills in cognitive brain imaging, fundamental neuroscience and brain disorders.

Why this programme

  • You will study the Brain Sciences degree in an institute that strives to understand the brain at multiple levels of function, from cells to cognition using approaches ranging from molecular, cellular and systems level investigations to brain imaging.
  • Lectures will be given by staff who are international research leaders and who publish cutting edge research at the forefront of brain sciences.
  • You will attend seminars on a wide range of topics given by eminent external speakers visiting the Institute from around the world as part of our Current Research Topics course. 
  • You will carry out a research project working in labs equipped with technology and expertise at the forefront of brain science research, including
  • 3 Tesla fMRI system to image human brain function
  • magnetoencephalography and electroencephalography to study neural activity
  • transcranial magnetic stimulation for non-invasive brain stimulation
  • 7 Tesla experimental MRI scanner for studying models of disease 
  • confocal microscopy for high resolution cellular imaging
  • models of disease for pharmcolgical, gene and stem cell therapies.
  • You will receive training in research design, data handling, data analysis, and reporting of results.
  • The brain science programme allows student choice and flexibility. Through your choice of optional taught courses you can develop in-depth specialist knowledge to enhance further academic research as well as transferable skills for a career outside academia.
  • You will join a vibrant community of masters students from other programmes and for your research project you will be based in laboratories alongside PhD students, postdocs and senior researchers.
  • Through the range of teaching methods and assessments used you will gain skills in critical appraisal, independent working, presentations, writing scientific documents and time management.

Programme structure

The programme will consist of compulsory taught courses, selected optional courses and a research project spread over 11-12 months.

Core courses and research project

  • Fundamentals for Neuroscience Research
  • Cognitive Brain Imaging
  • The Research Cycle
  • Current Research Topics in Brain Sciences
  • Neuroscience: Animal Models of Disease and Function
  • Designing a Research Project
  • Brain Sciences Research Project

Optional courses

  • Introduction to Matlab for Biologists
  • Neuroscience: In Vivo Models
  • In Vitro and Analytical Approaches in Neuroscience
  • Bioimaging for Life Sciences
  • Current Trends and Challenges in Biomedical Research and Health
  • Technology Transfer and Commercialisation of Biomedical Research
  • Neuroinflammation 
  • Statistics and Research Design

Teaching and learning methods

Taught courses are delivered by lectures, tutorials, problem-based learning and computer-based sessions supplemented by a wide range of electronic resources for independent or group study. You will use the primary scientific literature as an information resource and through project work will develop skills in team-working, experimental design and data interpretation. Through assessment of coursework you will gain skills in oral and written communication.

Career prospects

The University of Glasgow MSc in Brain Sciences provides you with many career opportunities. 

Research:  MSc students can enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in academic settings.

Industry: Other options include going on to work in a wide range of commercial sectors including the pharmaceutical or biotechnological industries and scientific publishing.



Read less

Show 10 15 30 per page



Cookie Policy    X