• University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Cambridge Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Teesside University Featured Masters Courses
"cell" AND "culture"×
0 miles

Masters Degrees (Cell Culture)

We have 89 Masters Degrees (Cell Culture)

  • "cell" AND "culture" ×
  • clear all
Showing 1 to 15 of 89
Order by 
Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. Read more

Academic, practical and research teaching covering all aspects of the latest developments in regenerative dentistry including dental stem cell culture, iPS and ES cells, tooth bioengineering, the role of stem cells in tooth repair and regeneration. A major feature of the course is a research project carried out in one of our research labs and supported by practical demonstrations and evaluation of research publication.

Key benefits

  • Training in research methodologies and the critical evaluation of data.
  • Taught course on the very latest advances of stem cell research.
  • World renowned department.
  • Original research project.

Description

Taught course elements include: Introduction to stem cells, ES and iPS, Dental stem cells, Endogenous dentine repair, Endodontic applications of stem cells, Whole tooth regeneration, Scaffolds and bone regeneration, Salivary gland regeneration, Periodontal ligament restoration, GMP cell culture.

Research and practical elements include a research project, practical demonstrations of dental pulp stem cell culture combined with critical evaluation of research methods and approaches in dental stem cell biology.

Examples of research projects:

  • Salivary gland stem cells
  • Stem cells in the middle ear and their role in homeostasis and repair
  • Development of replacement teeth: location of stem cell niches in a range of species
  • A chemical genetics screen for regulators of cranial muscle stem cells
  • Dental pulp stem cells in tooth repair
  • Exploring the relationship between surface free energy and osseointegration with modifiable ceramic coatings
  • Human Embryonic tooth mesenchymal cells and bio-tooth engineering
  • Periodontal tissue regeneration - evaluating different human dental stem cell populations
  • Neural crest stem cells and ossification of the mandible

Course purpose

Regenerative dentistry is for both dentists and biological scientists who desire to learn more about the latest advances in cell and molecule-based dentistry and also gain experience in carrying out laboratory-based, cutting-edge research in dental stem cell biology.

Course format and assessment

Written exam, practical tests and written reports, seminar presentation.



Read less
Develop advanced laboratory research skills to progress your career in the field of toxicology. You will enhance your understanding of the interaction of toxins with molecular targets, target organ toxicity, and the role of the immune system in response to toxins. Read more
Develop advanced laboratory research skills to progress your career in the field of toxicology. You will enhance your understanding of the interaction of toxins with molecular targets, target organ toxicity, and the role of the immune system in response to toxins.

You will learn about specific tests utilised in both research and industry, such as toxicological screening programmes used by pharmaceutical and medical companies, and improve your presentation and communication skills by analysing scientific literature and presenting scientific information. You will have access to a variety of research projects which align with the expertise of our staff within the Centre for Biomedical Sciences Research, including neurotoxicity testing using cell culture methods and developing smart bandages for wound care.

You will spend more than 200 hours within our biomedical laboratories, and have access to cell culture facilities and up-to-date molecular toxicology techniques.

- Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 200.

Visit the website http://courses.leedsbeckett.ac.uk/toxicological_sciences

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will be able to enter a wide range of careers, from working in scientific laboratories in pharmaceutical companies to developing further investigative and innovative research. Our course will provide the expertise you require to secure employment in laboratories in commercial industries such as food manufacturing or chemical facilities, where you will utilise your research and lab skills.

- Toxicologist
- Scientific Labratory Technician
- Microbiologist

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will spend over 200 hours of our course making good use of our biomedical science laboratories, working on specific research projects that are of interest to you and that align with our expertise. We will give you access to Class 2 microbiology facilities, along with cell culture and micro-electric fabrication equipment. With our new biomedical sciences research laboratory (opened in 2013), you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

You'll have your own tutor to support you in your specialist project areas, and will also have time work collaboratively with other research areas to enhance your overall outlook. Guest lectures from industry professionals will provide you with a valuable insight into the research methods currently used in practice.

Core Modules

Contemporary Research In Biomedical Science
Develop your ability to discuss and evaluate current research in biomedical sciences, and to relate this both to the theoretical basis of the subject and to the methodologies used to generate the data.

Advanced Professional Practice and Research
Gain a grounding in the different approaches to research, including quantitatative and qualitative data collection methods, allowing you to plan your own research and more.

Bio-analytical Techniques
Develop a greater understanding of analytical methods, along with how they can be optimised and assessed. You will also gain practical experience in the development of these skills.

Cellular Toxicology
Develop your understanding of the core principles of toxicology and an appreciation of current research in the area by preparing your own portfolio and by critically evaluating other laboratory-based techniques.

Research Project
Undertake an independent research project within the remit of expertise of our course team.

Mechanisms and Molecular Aspects of Immunopathology
Understand immunological disease and disorders, transplantation immunology, prophylaxis and immunotherapy.

Molecular Toxicology
Further explore selected aspects of toxicology and its applications leading to the development of a narrative review.

Facilities

- Biomedical Research Laboratory
The latest scientific testing equipment lets you put your learning into practice and break new ground in biomedical research.

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Biomedical Science Laboratory
Housing state-of-the-art IT and AV facilities, our new Biomedical Sciences laboratory provides important, cutting edge facilities for our students including walk-in cold rooms.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This course is suitable if you. wish to pursue research into molecular and cell biology or disease mechanisms at PhD level. want to improve your knowledge and skills to be competitive in the life science jobs market. Read more

This course is suitable if you

  • wish to pursue research into molecular and cell biology or disease mechanisms at PhD level
  • want to improve your knowledge and skills to be competitive in the life science jobs market
  • are currently employed and seeking to improve your career prospects

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography. In addition many of our research facilities such as flow cytometry, confocal microscopy and mass spectrometry are used in taught modules and research projects and our tutors are experts in these techniques.

You gain

  • a detailed and up-to-date understanding of molecular biology and cell biology
  • knowledge of how alterations or defects in cellular processes may lead to disease, such as cellular dysfunction leading to degenerative diseases, cell cycle dys-regulation in cancer, and how mutations result in genetic diseases
  • hands-on expertise in the latest techniques including cell culture, flow cytometry, real-time PCR, immuno-histochemistry and recombinant DNA technology
  • professional skills to further your career in research or the life science industry

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where students are assigned to a tutor who is an active researcher in the biomedical research centre. Typically, taught modules have a mixture of lectures and tutorials and involve a significant amount of laboratory time. Other modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

Tutors complete research within the Biomolecular Sciences Research Centre into cancer, musculoskeletal diseases, human reproduction, neurological disease, medical microbiology and immunological basis of disease. Their work is regularly published in international peer-reviewed journals, showing that the course is underpinned by relevant quality research.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Biomedical laboratory techniques (15 credits)
  • Cell biology (15 credits)
  • Molecular biology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Biotechnology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment methods include written examinations and coursework including

  • problem-solving exercises
  • case studies
  • reports from practical work.

Research project assessment includes a written report and viva voce. 

Employability

As a graduate you can find work in the expanding area of life sciences or enter a career in research. You can find careers in areas such as • medical research in universities hospital laboratories or research institutes • private industry.

The course also provides the skills and knowledge for those wishing to do research at PhD level.



Read less
Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. You will also explore advanced medical microbiology, studying specific global health issues and the procedures involved in medical diagnostics. Read more
Investigate the effects of pathogens on the body, the intricacies of the human immune system and the impact of infections. You will also explore advanced medical microbiology, studying specific global health issues and the procedures involved in medical diagnostics.

Gain advanced laboratory skills and an in-depth knowledge of investigative methods being applied within the search for novel antimicrobial agents.

You will carry out extensive practical investigations, including quantifying the antimicrobial effects of compounds against specific microorganisms, or studying the mechanisms of microbial resistance to therapeutics. You'll have access to Class 2 microbiology facilities, along with cell culture, molecular virology and epigenetic research methods. With our new biomedical sciences research laboratory you will be able to conduct project work in a dedicated research environment and benefit from an enhanced range of equipment.

- Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008.

Visit the website http://courses.leedsbeckett.ac.uk/microbiology_biotechnology

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will be able to go into a range of careers, including those within pharmaceutical companies, food manufacturing, chemical facilities or developing further investigative and innovative research. A move into a more senior position will be available to you, such as senior researcher or laboratory analyst roles, where you would be involved in designing research projects and analysing the data generated.

- Medical Research Scientist
- Labratory Analyst
- Microbiologist

Careers advice: The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will spend a considerable proportion of your time in a hands-on environment, spending over 200 hours within the biomedical science laboratories, completing practicals and working on a specific research project that interests you and aligns with our expertise.

We will give you access to Class 2 microbiology facilities, along with cell culture and micro-electric fabrication equipment. With our new dedicated biomedical sciences research laboratory (opened in 2013) you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

You'll benefit from working with a first class teaching team. One of our lecturers, Dr Margarita Gomez Escalada, developed internationally-recognised research data on treating acne using the ingredient thyme, with a student who performed all the practical tests for her project.

Core Modules

Contemporary Research In Biomedical Science
Discuss and evaluate current research in biomedical sciences and relate this both to the theoretical basis of the subject and to the methodologies used to generate the data.

Advanced Professional Practice and Research
Gain a grounding in the different approaches to research, including quantitatative and qualitative data collection methods. You will then be able to plan research, effectively search for and evaluate research literature and be able to apply and analyse data using appropriate statistical tests.

Bio-analytical Techniques
Combine theory and practice of many modern analytical techniques that are used in biological, medical and chemical analysis, and learn the important steps in the development and assessment of analytical measures.

Infection and Immunity
Develop an in-depth understanding of the infection process, taking into consideration the pathogenesis process both from the point of view of the pathogen as well as the host where the immune response will be investigated.

Advanced Medical Microbiology
Look at different aspects of current trends in microbiological research, and use laboratory sessions to undertake problem solving activities such as the planning of a class lab activity and mini projects.

Applied Biotechnology
Study up to date issues concerning current biotechnological products and processes, especially with regard to the use of microorganisms and recombinant DNA techniques.

Research Project
Undertake an independent research project within the remit of expertise of our course team. Design experimental methods to test your aims or hypotheses and report the findings in the form of both a thesis and an oral presentation.

Dr. Margarita Gomez Escalada

Senior Lecturer

"I find it really exciting to generate new data and ideas alongside my students and collaborators, which may one day lead to changes in the ways in which we tackle diseases caused by microorganisms. Teaching allows me to share and explore these latest findings with those who will go on to work in the field."

Margarita recently produced internationally-recognised research treating acne with herbal compounds. Working with a student, she discovered that an extract of thyme was more effective than traditional chemical-based creams.

Facilities

- Biomedical Research Laboratory
The latest scientific testing equipment lets you put your learning into practice and break new ground in biomedical research.

- Library
Our libraries are two of the only university libraries in the UK open 24/7 every day of the year. However you like to study, the libraries have got you covered with group study, silent study, extensive e-learning resources and PC suites.

- Biomedical Sciences Laboratory
Housing state-of-the-art IT and AV facilities, our new Biomedical Sciences laboratory provides important, cutting edge facilities for our students including walk-in cold rooms.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry. Read more
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry.

This course focuses on developing investigative laboratory-based research skills while addressing theoretical and applicable questions in stem cells and regenerative biology. The course provides an intensive research-led environment, which will give you the opportunity to develop a career in academic or applied biomedical or biological sciences.

Why study Stem Cell and Regenerative Biology with us?

Our lecturers have specialist knowleadge and work with a diverse range of skill sets that have application in the field of stem cell research and regenerative biology.

The Faculty of Medicine, Dentistry and Life Sciences at Chester is unique in having academic staff who’s research involves a variety of relevant model organisms. As well as humans, the team researches into fundamental biology of a variety of other mammallian species, birds, fish, amphibians and invertebrates. Students undertaking the MRes are able to draw on this expertise.

In addition, Chester is an active member of the Mercia Stem Cell Alliance and the UK Mesenchymal Stem Cell research community.

What will I learn?

In the module Models of Regenerative Biology, you will attend lectures, small group teaching and practical sessions relating to:

- various model systems of regeneration, with cell culture based models and in vivo systems, e.g. planaria; responses to injury;
- regulatory factors governing tissue regeneration;
- aspects of regenerative medicine.

In the module on Stem Cells and Tissue Engineering, you will attend lectures, small group teaching and practical sessions relating to:

- how to define stem cells;
- stem cell culture and maintenance;
- the principles of tissue engineering;
- the application of stem cell and tissue engineering, e.g. in the clinic or in drug screening and development.

The individual research project is undertaken following completion of these two taught modules and is the primary focus of this course.

Read less
Why study at Roehampton. Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry. Read more

Why study at Roehampton

  • Develop advanced research skills required in preparation for your career within biomedical research, a clinical environment, or in the health industry.
  • Collaborate with leading, internationally renowned experts in the field who will teach topical and current issues in biomedicine.
  • Conduct your own research project in our state-of-the-art molecular biology laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.
  • We are the most research-intensive modern university in the UK (Research Excellence Framework 2014).
  • Roehampton is ranked best modern university in London (Sunday Times Good University Guide 2016).

Course summary

This innovative degree offers a fascinating opportunity to study modern and topical research areas in Cell Biomedicine. You will gain the essential skills required to prepare for your career in either biomedical research, a clinical setting or within the health industry.

This postgraduate degree will provide you with advanced research training in medical aspects of cell biology and pathology and you will conduct your own lab based research project. With a focus on research methods, you will take you research methods to the next level in producing your own research design, understanding ethics in research projects and best practice in handling statistical data-sets. The programme includes a variety of subject-specific lectures, seminars, tutorials and practical work that will give keep you up-to-date with the current advances in the field. You will learn the theoretical and technological aspects of cellular biomedicine and their practical applications within industry.

You will be taught by enthusiastic, research active experts in the field who conduct research in a diverse range of topics that you can choose to study such as cellular and molecular mechanisms of cancer, microbial resistance to antibiotics, immune mechanisms of disease, stem cell research and molecular modelling in cell biology.

You will conduct your research project in our state-of-the-art laboratories equipped with microscopy analysers, autoradiography, flow cytometry, high sensitivity HPLC and LC-MS, and neural stem cell and tissue culture facilities.

You will automatically be a part of our Health Sciences Research Centre, a community of leading experts who are currently investigating a range of topical issues. You will participate in engaging discussions within research seminars on the latest developments within neuroscience and the health sciences.

Content

In this postgraduate programme, you will be trained in medical aspects of cell biology and pathology with a focus on the lab based research project. The programme has a strong focus on research methods and will provide you with necessary skills in research design, ethics and statistical methods.

You will learn the most recent advances in cellular biomedicine by being part of engaging subject-specific lectures, seminars, tutorials and conducting your own research. You will study the theoretical and technological and their practical applications in cellular biomedicine.

Modules:

  • Research Project
  • Research Methods
  • Cells, Disease and Therapy
  • Communication

Career options

This postgraduate programme provides both a solid academic basis and practical hands-on experience in the area of cellular biomedical sciences. It will prepare you for careers in academia, clinical research, the health industry or within government organisations.

Email Now



Read less
This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. Read more

This course increases your knowledge and skills in pharmacology and biotechnology to increase your competitiveness in the job market or complete research at PhD level. If you are already employed, this course can help you to further your career prospects.

The course is delivered by internationally recognised academics who are involved in biotechnology and pharmacology research. Research projects include studying the manipulation of proteins and their application to Alzheimer's disease, epilepsy, ion channels and the development of novel drugs from natural products.

You learn in detail how drugs act at the molecular and cellular level and then how biotechnological techniques are used to produce new drugs. Examples include developing new and effective treatments for diseases, such as Alzheimer’s and rheumatoid arthritis.

You also gain experience of the latest techniques used by the pharmaceutical industry to produce and study the effects of novel drugs.

The course gives you

  • up-to-date knowledge of cellular and molecular pathology of various human diseases
  • the basis of therapeutic rationales for treating diseases and their development
  • an advanced understanding of recombinant DNA technology and how it is used to produce drugs
  • experience of the latest practical techniques, such as cell culture, quantitative PCR analysis, cloning, western blotting, and analytical techniques such as HPLC and mass spectrometry
  • the transferable and research skills to enable you to continue developing your knowledge and improve your employment potential.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits. 

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules:

  • Cell biology (15 credits)
  • Fundamentals of pharmacology (15 credits)
  • Molecular biology (15 credits)
  • Biotechnology (15 credits)
  • Professional development (15 credits)
  • New approaches to pharmacology (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Pharmaceutical drug development (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment is mostly by written examination and coursework including problem solving exercises, case studies and input from practical laboratory work. Research project assessment includes a written report and viva voce.

Employability

The course improves your career prospects in areas of • biomedical sciences • medical research in universities and hospitals • the pharmaceutical industry • biotechnology companies • government research agencies.

You also develop the skills to carry out research to PhD level in pharmacology and biotechnology.

Recent MSc Pharmacology and Biotechnology graduates jobs include • project specialist at PAREXEL • quality assurance documentation assistant at Vifor Pharma • PhD at the University of Manchester • clinical research associate at AstraZeneca • workplace services analyst at Deloitte India (Offices of the US) • regulatory compliance specialist for Selerant • senior product executive at PlasmaGen BioSciences.



Read less
Either biomedical science Masters offered at Nottingham Trent University are accredited by the Institute of Biomedical Science. This. Read more

Either biomedical science Masters offered at Nottingham Trent University are accredited by the Institute of Biomedical Science.

This MSc Biomedical Science course provides a biological understanding of human disease processes, the treatment principles of such diseases, and the underlying biological disciplines that enable their study and explanation. It has extensive links with BioCity Nottingham, the city's groundbreaking healthcare and biosciences centre. One of the largest innovation and incubation centres of its kind in Europe.

This course can be taken full-time for one year or add an additional work placement year to make it two years; or go part-time.

If you would like to study part-time and through distance learning for a Masters qualification while continuing to work, then this flexible programme is for you - MSc Biomedical Science (Flexible Learning). It is designed to further your career in the healthcare profession, biomedical industry or in academia and has the potential to lead on to a professional doctorate.

With multiple entry points in September, January and April, take this Masters as a part-time option or study individual modules for continuing professional development points.

Modules

  • Cell culture and antibody technology
  • Research methods and bioethics
  • Research project
  • Microbial diagnostics
  • Pharmacology
  • Molecular biology
  • Biology of disease
  • Cellular pathology
  • Clinical chemistry
  • Haematology and transfusion science
  • Medical microbiology
  • Scientific analysis, review and presentation
  • Cytology
  • Cancer and heart disease
  • Molecular biology and DNA technology
  • Special topics in molecular biology
  • Cellular pathology with professional studies
  • Clinical chemistry with professional studies
  • Haematology and transfusion science with professional studies
  • Medical microbiology with professional studies

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
This. MSc Molecular Cell Biology. course covers a wide range of up-to-date and industry relevant technologies and will enable students to become familiar with the latest advances and commercial techniques. Read more

This MSc Molecular Cell Biology course covers a wide range of up-to-date and industry relevant technologies and will enable students to become familiar with the latest advances and commercial techniques. This exciting course is designed to give you the theoretical and practical skills needed for a career in molecular bioscience within companies and research organisations.

You get the opportunity to enhance your CV with a year's work placement with this Masters.

Modules

  • Molecular biology
  • Cell culture and antibody technology
  • Biology of disease
  • Business and enterprise
  • Research methods and bioethics
  • Research project

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.



Read less
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. Read more
Materials are at the forefront of new technologies in medicine and dentistry, both in preventative and restorative treatment. This programme features joint teaching within the School of Engineering and Materials Science and the Institute of Dentistry, bringing together expertise in the two schools to offer students a fresh perspective on opportunities that are available in the fields of dental materials.

* This programme will equip you with a deep understanding of the field of dental materials and the knowledge necessary to participate in research, or product development.
* An advanced programme designed to develop a broad knowledge of the principles underlying the mechanical, physical and chemical properties of Dental Materials.
* Special emphasis is placed on materials-structure correlations in the context of both clinical and non clinical applications.
* Provides an introduction to materials science, focusing on the major classes of materials used in dentistry including polymers, metals, ceramics and composites.
* Provides up-to-date information on dental materials currently used in Clinical Dentistry and in developments for the future It covers the underlying principles of their functional properties, bioactivity and biocompatibility, and also covers specific dental materials applications such as drug delivery, tissue engineering and regulatory affairs.

Why study with us?

Dental Materials is taught jointly by staff from the School of Medicine and Dentistry (SMD), and School of Engineering and Materials Science (SEMS).

Our school of medicine and dentistry is comprised of two world renowned teaching hospitals, Barts and The London School of Medicine and Dentistry, which have made, and continue to make, an outstanding contribution to modern medicine. We are ranked sixth in the UK for medicine (Complete University Guide 2012), and Dentistry was placed at number two in the UK in last Research Assessment Exercise (2008). Our Materials Department was the first of its kind established in the UK, and was placed at number 1 in the UK in the 2011 National Student Survey.

This degree is aimed at dental surgeons, dental technicians, materials scientists and engineers wishing to work in the dental support industries, and the materials health sector generally. On completion of the course you should have a good knowledge of topics related to dental materials, and in addition, be competent in justifying selection criteria and manipulation instructions for all classes of materials relevant to the practice of dentistry.

There has been a general move away from destructive techniques and interventions towards less damaging cures and preventative techniques. This programme will update your knowledge of exciting new technologies and their applications.

* The programme is taught by experts in the field of dentistry and materials; they work closely together on the latest developments in dental materials.
* Innovations in medical practice, drug development and diagnostic tools are often tested in the mouth due to simpler regulatory pathways in dentistry.
* The programme allows practitioners the opportunity to update their knowledge in the latest developments in dental materials.

Facilities

You will have access to state-of-the-art laboratories and equipment, including:

* Cell & Tissue Engineering Laboratories; five dedicated cell culture laboratories, a molecular biology facility and general purpose laboratorie
* Confocal microscopy unit incorporating two confocal microscopes, enabling advanced 3D imaging of living cells
* Mechanical Testing Facilities
* NanoVision Centre; our state-of-the-art microscopy unit bringing together the latest microscope techniques for structural, chemical and mechanical analysis at the nanometer scale
* Spectroscopy Lab
* Thermal Analysis Lab.

Read less
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics. Read more
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics.

It is accredited by the Institute of Biomedical Science and is based at one of the largest transfusion centres in the world, enabling visits to manufacturing, testing and tissue typing sections. You will learn from specialist lecturers based at the University, NHS Blood and Transplant (NHSBT), and NHS hospitals, and have an opportunity to become fully embedded in an NHS environment while you develop your knowledge.

The programme will give you extensive practical experience of transfusion and transplantation, allowing you to gain skills that directly relate to your future career. As well as being academically interesting, this continually developing area of healthcare science has a major impact on patients' quality of life.

The programme:
-Is one of just two specialist full-time courses in transfusion and transplantation, and is a recommended course at level seven in the Career Framework for Health.
-Gives you the opportunity to carry out your MSc project with NHSBT research staff within the transfusion centre.
-Has high contact hours, with teaching each day and practical classes.
-Includes a large skills component (eg writing in different formats, conference and publication skills, assignments with specific study aims).
-Includes laboratory management, a key skill required at level seven.
-Attracts a diverse range of students (about 50 per cent overseas students), including new graduates, those working in blood centres or blood transfusion/haematology in hospitals, or training to lecture in transfusion.

Programme structure

The programme comprises eight taught units that run from September to March and a research project that begins in May and runs until August. Example project topics have included:
-A study on red cell antibody formation in trauma patients
-Optimisation of platelet antigen detection using recombinant proteins
-Expression of red cell membrane proteins during large-scale red cell culture
-A comparison of stem cell mobilisation drugs for stem cell transplantation

Taught units
-Transfusion and Transplantation Science:
-Pathology of Transfusion and Transplantation Science
-Provision of Blood, Cells, Tissues and Organs
-Clinical Transfusion and Transplantation
-Transfusion and Transplantation in Practice (two units)
-Biostatistics
-Research and Laboratory Management

Assessments are designed to teach skills such as comprehension, scientific writing in different formats and conference skills, and to further knowledge in subject areas not covered in the lectures. Students must pass the taught component to be able to progress to the project.

Part-time students complete the Postgraduate Certificate components in their first year and the Postgraduate Diploma in the second. The project is usually taken during year three to complete the MSc.

Careers

Some of the career paths that graduates have followed include: blood transfusion and fetal medicine research, working for a bone marrow donor laboratory or bone marrow registry, biostatistics, graduate entry to medical school, NHS Clinical Scientist Training programme, and progression to PhD study in several areas including cancer biology and stem cell regeneration.

Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Read more
Molecular medicine is transforming the way we understand and treat human diseases, from cancers to neurodegenerative disorders. Combining contemporary medical studies with biochemistry and molecular biology, this rapidly advancing area creates a bridge between the subjects, and draws on other fields such as physics, chemistry, biology and medicine.

This course examines how normal cellular processes are affected by disease. You gain an understanding of the core foundations of molecular medicine, studying the topics most relevant to the real world, and how this science may be used in the prevention, diagnosis, and treatment of diseases.

You learn about and appraise the approaches that can be used to address global health problems, including cancer as well as genetic and infectious diseases. The foundations that support investigations of molecular disease mechanisms and the search for new diagnostic tools and treatments will be laid, as you explore topics including:
-Gene and protein technology.
-Synthetic biology
-Bioinformatics
-Genomics

This course has a very high proportion of practical and bioinformatic work that provides valuable experience for your career. This includes our optional module Creating and Growing a New Business Venture, which challenges you to think creatively and increases your value to organisations, including small enterprises, which are a growing part of the biopharmaceutical sector.

Your research project is a major component of your course, in which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside academics and PhD students in shared labs
-Learn to use state-of-the-art research facilities, from protein purification, to cell culture and imaging, to molecular modelling

Your future

Contribute to a growing industry and gain the skills and knowledge to pursue a career in biomedical research and industry, or continue your studies further in postgraduate science and medical degrees.

Advances in molecular medicine will continue to drive growth of new services and products in health care, biomedical and pharmaceutical organisations and companies, and our graduates are well placed to take advantage of employment opportunities in the life science, biotech and pharmaceutical industries and hospitals.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Research Project: MSc Molecular Medicine
-Protein Technologies
-Gene Technology and Synthetic Biology
-Professional Skills and the Business of Molecular Medicine
-Molecular Medicine and Biotechnology
-Genomics
-Advanced Medical Microbiology (optional)
-Human Molecular Genetics (optional)
-Cancer Biology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)
-Molecular and Developmental Immunology (optional)
-Cell Signalling (optional)
-Mechanisms of Neurological Disease (optional)

Read less

Show 10 15 30 per page



Cookie Policy    X