• University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leicester Featured Masters Courses
University of Dundee Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Swansea University Featured Masters Courses
"catia"×
0 miles

Masters Degrees (Catia)

We have 6 Masters Degrees (Catia)

  • "catia" ×
  • clear all
Showing 1 to 6 of 6
Order by 
Discover the techniques and standards required to design components to ensure airworthiness on this dedicated course. The demands on aircraft components are extremely robust, as they must adhere to the extreme loads and stresses the vehicle is exposed to, as well as rigorous safety standards. Read more

Discover the techniques and standards required to design components to ensure airworthiness on this dedicated course.

The demands on aircraft components are extremely robust, as they must adhere to the extreme loads and stresses the vehicle is exposed to, as well as rigorous safety standards. This course will give you the opportunity to learn the required skills and techniques to design aircraft components, as well as understand the theory behind them.

Facilities

As part of the School of Applied Science, Computing and Engineering, candidates will have access to state-of-art Merlin flight simulator for design and testing their own aircraft, will learn and use cutting-edge design, analysis and simulation software including MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS, and will have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities.

The university has invested £500K in engineering equipment in recent years, in association with an investment of equipment from major companies and local suppliers.

At Wrexham Glyndŵr University we are on the door step of one of the largest aircraft manufacturers in the world, Airbus, with a large number of first and second tier suppliers in the locality. Many of the academic staff have industrial experience spanning a broad range of engineering areas and working levels.

Areas of study

Taught elements of the course include advanced materials, design and stress testing, and fluid dynamics analysis. You will have the opportunity to use state-of-the-art commercial software such as CATIA V5, ABAQUS and ANSYS.

  • Engineering Research Methods
  • Sustainable Design & Innovation
  • Engineering Systems Modelling & Simulation
  • Advanced Composite Materials
  • Aircraft Structures
  • Advanced Manufacturing Technology
  • Dissertation

Careers

The courses will give you the chance to advance your career to management levels. You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

Many students from previous years are now in jobs at top international companies such as Rolls-Royce, Raytheon, Magellan and Airbus. Aside from major manufacturers, North Wales and North West England have numerous maintenance companies, keeping the UK flying safely and efficiently. With the average life of an aircraft expected to be over 30 years, maintenance and overhaul engineers will continue to be in high demand in the future.

The Careers & Zone at Wrexham Glyndŵr University is there to help you make decisions and plan the next steps towards a bright future. From finding work or further study to working out your interests, skills and aspirations, they can provide you with the expert information, advice and guidance you need.



Read less
By studying this programme you will engineer a better future. Accredited by the Institution of Mechanical Engineers (IMechE), our Mechanical Engineering degree can help you gain chartered status, as well as equipping you with a range of skills. Read more
By studying this programme you will engineer a better future. Accredited by the Institution of Mechanical Engineers (IMechE), our Mechanical Engineering degree can help you gain chartered status, as well as equipping you with a range of skills.

What's covered in the course?

Advance your knowledge and understanding, develop your critical thinking and prepare to work across a range of organisations with our MSc Mechanical Engineering course.

You will engage in independent study and systematic enquiry at an advanced level, developing new skills and becoming capable of undertaking mechanical engineering tasks using the latest technologies.You'll also work on industry-standard complex analytical tools such as Matlab/Simulink, CATIA, Ansys and ADAMS Mechanisms. You will work collaboratively with tutors, practitioners, theorists and designers, equipping you with everything you need to launch your career.

In the UK, companies such as Jaguar Land Rover, BMW and Honda require a constant supply of highly-skilled engineers with the kind of fully-rounded experience which our course will give you.

In addition to further academic research opportunities, career prospects are expected to keep pace with the rapid advances in computer aided methods and intelligent technologies, hence, there is expected to be continuing demand for competent, versatile postgraduates who can design and implement innovative solutions for industry.

Why choose us?

-Our accreditation from the Institution of Mechanical Engineers (IMechE) keeps our course fresh and relevant, as well as providing us with key industry contacts and insight. It also means the course satisfies academic requirements towards, and allows graduates to apply for, Chartered Engineer status (CEng).
-Our well-equipped laboratories enhance your educational experience, providing a bridge between theoretical learning and hands-on teaching to prepare you for a career in industry.
-You will gain the interpersonal skills necessary to liaise and work in teams, structuring your work and meeting the varying demands of the workplace.
-You will be able to apply real-life problem-based learning to industry and commerce, while also learning new technologies and techniques to solve global engineering problems.

Institution of Mechanical Engineers

The course is accredited by IMechE, ensuring our content remains fresh, relevant and replete with key industry information.

Course in depth

You will acquire knowledge and understanding of the subject through formal lectures, tutor-led seminars and practical activities, as well as a range of independent learning activities. The course structure emphasises guided, self-directed and student-centred learning with a progressively increasing independence of approach, thought and process.

Lectures will introduce themes, theories and concepts, which are further explored in seminars. You will benefit from technology-enhanced learning, where appropriate, through online resources, discussion forums and other activities. You will consult advanced textbooks, together with professional material and journal articles, in order to ensure that you develop a critical understanding of work at the forefront of your discipline.

A range of assessment methods are employed with associated assessment criteria. Knowledge and skills are assessed, formatively and summatively, by a number of methods such as coursework, examinations (seen and unseen, open and closed-book), presentations, practical assignments, vivas, online forums, podcasts, and project work.

Modules
-Research Methods 20 credits
-Advanced Systems Engineering 20 credits
-Thermofluids 20 credits
-Advanced Dynamics 20 credits
-Control Engineering 20 credits
-Advanced Materials and Manufacture 20 credits
-Master’s Project 60 credits

Employment opportunities

There are many challenging and rewarding career opportunities for practitioners able to operate at a senior level in the mechanical, automotive, aeronautical and offshore engineering industries. Never has the need been greater for highly skilled, innovative engineers.

Read less
This course promotes a dynamic and speculative approach to the design of interior spatial environments and values research that seeks to challenge traditional methodologies. Read more

This course promotes a dynamic and speculative approach to the design of interior spatial environments and values research that seeks to challenge traditional methodologies. It gives you the opportunity to pursue your particular issues of interest in interior design or specialist areas of three dimensional design, through concise and focused studies.

You will cover a range of issues, both theoretical and practical. Design modules deal with contemporary issues in a variety of interior design typologies, including retail, exhibition, gallery, performance and speculative efforts broadly described as installation. Careful studies are made in the pursuit of a fresh approach to their design resolution, through analogous and figurative studies, as well as comparison using suitable contemporary exemplars. The thesis can be undertaken as a design project, a dissertation or a piece of research – effectively a hybrid, both a project and a written summary or theoretical proposition.

Course structure

The following modules are indicative of what you study on this course.

Core modules

Industry links

We have a wide network of architects and interior designers operating in London seeking graduates to join their practices, which is a very important link between our academic environment and professional body at work in London and further afield. We have used this route to place a number of graduates in successful, growing practices with great results.

Career path

Our graduates have the knowledge and advantage of already operating within a competitive and demanding academic environment in London. The broad range of skills taught during the MA has enabled our graduates to either strengthen or change their career paths.

Our students have moved on to:

  • teaching at senior level (London School of Communication)
  • getting employment and progressing in large multinational companies (Gensler, Benoy)
  • working in world-renowned design practices (David Adaje)
  • starting their own design practice (Catia Interiors – opening April 2017 )

In some cases the course has equipped our graduates to advance their study at PhD level. It has also enabled established fine artists to question their practice and take new directions. Many of our international students have gone back to their country of origin to use their new skills in progressing academia and industry abroad.



Read less
Aircraft aerodynamics and flying and handling performances are always the most important and challenging aspects for aircraft designs, particularly with the consideration of advanced materials and advanced aircraft technologies. Read more

Aircraft aerodynamics and flying and handling performances are always the most important and challenging aspects for aircraft designs, particularly with the consideration of advanced materials and advanced aircraft technologies.

At Glyndŵr University, the MSc Engineering (Aeronautical) will enable candidates to develop a deep understanding and solid skills in aerodynamics and aerodynamic design of aircraft, grasp detailed knowledge and application principles of composite materials and alloys, critically review and assess the application and practice of advanced materials in modern aircraft, model and critically analyse aircraft flight dynamic behaviour and apply modern control approaches for control-configured aircraft.

Candidates will have access to state-of-art Merlin flight simulator for design and testing their own aircraft, will learn and use cutting-edge design, analysis and simulation software: MATLAB/Simulink, CATIA v5, ANSYS, and ABAQUS, and will have access to subsonic and supersonic wind tunnel facilities and rapid prototyping facilities. Glyndŵr University is located nearby to one of the largest aircraft company in the world, Airbus and also has close link with aviation industries, such as Rolls-Royce, Raytheon, Magellan, and Airbus.

Key course features

  • The courses will give you the chance to advance your career to management levels.
  • You might also consider consultancy, research and development, testing and design positions within the aeronautical industry. Airbus is a classic example of an employer excelling in this field in the north Wales region.

What you will study

FULL-TIME STUDY (SEPTEMBER INTAKE)

The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE

The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:

  • Engineering Research Methods & Postgraduate Studies
  • Engineering Design & Innovation
  • Engineering Systems Modelling & Simulation
  • Advanced & Composite Materials
  • Structural Integrity & Optimisation
  • Applied Aerodynamics & Flight Mechanics
  • Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

You will be assessed throughout your course through a variety of methods including portfolios, presentations and, for certain subjects, examinations.

 

TEACHING AND LEARNING

 Teaching methods include lectures, laboratory sessions, student-led seminars and guided research.

 Independent learning is an important aspect of all modules, as it enables students to develop both their subject specific and key skills.

 Independent learning is promoted through guided study or feedbacks given to students.

Career prospects

The course equips you with a thorough knowledge and skills in engineering at the forefront of new and emerging technologies. Graduates will be well placed to become subject specialists within industry or to pursue research careers within academia.



Read less
Wrexham Glyndwr University has a proven track of success in Automotive Engineering and Motorsport. The course contains modules covering the essential aspects of the automotive engineering field, providing a solid background for a career in the automotive engineering and motorsport sector. Read more

Wrexham Glyndwr University has a proven track of success in Automotive Engineering and Motorsport. The course contains modules covering the essential aspects of the automotive engineering field, providing a solid background for a career in the automotive engineering and motorsport sector.

Lecturers and supporting staff have the required industrial experience and are practitioners (track racing, car building. etc.).

The laboratories at Wrexham Glyndwr University are equipped with up-to-date specialist equipment and vehicles.

The programme provides the opportunity to combine practical aspects as well as simulation based projects. The university operates a computer lab with industry relevant software, e.g. CATIA, ANSYS (Mechanical and CFD)

An open and friendly atmosphere enhances the students’ learning experience. Strong links to local, national and international companies ensure the standard of teaching is industry relevant and they provide students’ with the best possible starting point into their professional career paths.

Key course features

  • Strong links with the industries such as Toyota and Polybush.
  • Access to a specialist motorsport workshop as well as an industry standard production workshop to gain experience of using machinery.
  • You will be given an access to various projects (projects are changing at all times – subjected to changes - currently Glyndwr Racing Alfa 159, MX5 race car, Westfield amongst many others). Students are also currently running a Formula Student team.
  • Solid base for career progression in industry.

What will you study?

FULL-TIME STUDY (SEPTEMBER INTAKE)

 The taught element, Part One, of the programmes will be delivered in two 12 week trimesters and each trimester has a loading of 60 credits.

You will cover six taught modules which include lectures, tutorials and practical work on a weekly basis. The expected timetable per module will be a total of 200 hours, which includes 40 hours of scheduled learning and teaching hours and 160 independent study hours.

Part Two will then take a further 15 weeks having a notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

FULL-TIME MODE (JANUARY INTAKE)

For the January intake, students will study the three specialist modules first during the second trimester from January to May. The three core modules will be studied in the first trimester of the next academic year from September to January.

On successful completion of the taught element of the programme the students will progress to Part Two, MSc dissertation to be submitted in April/May.

PART-TIME MODE

The taught element, part one, of the programmes will be delivered over two academic teaching years. 80 credits or equivalent worth of modules will be delivered in the first year and 40 credits or equivalent in the second year. The part time students would join the full time delivery with lectures and tutorials/practical work during one day on a weekly basis.

The dissertation element will start in trimester 2 taking a further 30 weeks having a total notional study time of 600 hours. During this time the student will be responsible for managing his/her time in consultation with an academic supervisor.

AREAS OF STUDY INCLUDE:

Engineering Research Methods & Postgraduate Studies

Engineering Design & Innovation

Engineering Systems Modelling & Simulation

Advanced & Composite Materials

Structural Integrity & Optimisation

Advanced Automotive Chassis, Engines, Powertrain & Control

Dissertation

The information listed in this section is an overview of the academic content of the programme that will take the form of either core or option modules. Modules are designated as core or option in accordance with professional body requirements and internal academic framework review, so may be subject to change.

Career prospects

The course equips you with a thorough knowledge and skills in engineering at the forefront of new and emerging technologies. Graduates will be well placed to become subject specialists within industry or to pursue research careers within academia.



Read less
Researchers in the field of transport and related departmental authorities identify the increasing negative impact of the transport system on humans and environment as a strategically central issue. Read more

Researchers in the field of transport and related departmental authorities identify the increasing negative impact of the transport system on humans and environment as a strategically central issue. MSc of Vehicle Engineering provides new knowledge and competences to meet the challenges, in particular, in terms of introduction of a methodology for development of green vehicles equipped with hybrid powertrains or running on alternative fuels and exploration of scientific engineering solutions for improved performance of the power trains.

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills by choosing the Interdisciplinary Expert track emphasising managerial skills or a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Why @KTU?

Well equipped laboratories with latest software

Studies and research are carried out in modern laboratories of Transportation and Mechatronic Systems, Aerodynamics: wind tunnel, using DL, TRITOP equipment and VISSIM and VISUM software.

During studies using modern technologies

Application of the state-of-the-art diagnostic technologies and design environments – CATIA, ADAMS, etc. – employed by the international companies working in the industry of development of the vehicles.

Master+

Master+ model offers either to masterpiece in the specialisation or to strengthen managerial/interdisciplinary skills by choosing individual set of competencies required for career.

MA+

Master+ is a unique model within a chosen MSc programme

The Master+ model offers either to masterpiece in the chosen discipline by choosing the Field Expert track or to strengthen the interdisciplinary skills in addition to the main discipline by choosing the Interdisciplinary Expert track providing a choice of a different competence to compliment the chosen discipline and achieve a competitive advantage in one’s career.

Students of these study programmes can choose between the path of Field Expert and Interdisciplinary Expert. Selection is made in the academic information system. Each path (competence) consists of three subjects (18 credits) allocated as follows: 1 year 1 semester (autumn) – first subject (6 credits), 1 year 2 semester (spring) – second subject (6 credits), 2 year 3 semester – third subject (6 credits). A student, who chooses a path of the Field Expert, deepens knowledge and strengthens skills in the main field of studies. The one, who chooses a path of the Interdisciplinary Expert, acquires knowledge and skills in a different area or field of studies. Competence provides a choice of alternative additional subjects.

  • Field Expert (profound knowledge and skills in the area, required for solution of scientific research tasks);
  • Interdisciplinary Expert: 
  • (fields of different knowledge and skills are combined for solution of specific tasks);

Acquisition of the competence is certified by the issue of KTU certificate and entry in the appendix to the Master’s diploma. In addition, students can acquire an international certificate (details are provided next to each competence).

Competences are implemented by KTU lecturers – experts in their area – and high level business and public sector organizations; their employees deliver lectures, submit topics for the student’s theses, placement-oriented tasks for the projects, etc.

Career

Student’s competences:

– Knowledge of project management and business aspects in transportation industry, and links between technological solutions and their economic effects

– Analytical thinking

– Planning and realisation of the research for modelling and experimental vehicles, systems and technological processes

– Development and application of models

– Improvement and design of vehicles and technological equipment

– Openness to experience

– Management of critical situations

Student’s skills:

– Able to design equipment

– Able to apply relevant methods and technologies

– Able to develop, improve vehicles and their systems

– Able to modernise equipment

– Able to create merger models for vehicles and transportation systems

– Able to perform research and synthesis of models



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X