• University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Kingston University Featured Masters Courses
University College London Featured Masters Courses
Imperial College London Featured Masters Courses
Cranfield University Featured Masters Courses
Teesside University Featured Masters Courses
"cardiovascular" AND "pha…×
0 miles

Masters Degrees (Cardiovascular Pharmacology)

We have 30 Masters Degrees (Cardiovascular Pharmacology)

  • "cardiovascular" AND "pharmacology" ×
  • clear all
Showing 1 to 15 of 30
Order by 
This Clinical Pharmacology degree programme offers focused training which integrates basic and clinical sciences, and equips students with the essential skills required to function effectively as a clinical pharmacologist in the 21st century. Read more

This Clinical Pharmacology degree programme offers focused training which integrates basic and clinical sciences, and equips students with the essential skills required to function effectively as a clinical pharmacologist in the 21st century. As a student on the MSc Clinical Pharmacology programme, you will acquire core skills, enabling an appreciation of how to apply clinical pharmacological, regulatory and ethical principles to the optimisation of therapeutic practice and clinical research. Crucially, in addition to a firm grasp of the principles of molecular pharmacology, you will also gain foundational knowledge in the emerging science of pharmacogenomics and personalised medicine.

Why this programme

  • This Clinical Pharmacology MSc is one of only a few UK postgraduate programmes that cover clinical pharmacology in sufficient detail to allow you to make an informed choice about pursuing clinical pharmacology as a career.
  • You will learn the basics of molecular genetics and population genetics as applied to pharmacogenetics and gene therapy.
  • You will have the opportunity to gain hands-on experience in molecular methods and analysis along with critical interpretation of genomic literature. This will enable you to analyse, synthesise and formulate an action plan for personalised patient care.
  • You will gain the knowledge and experience necessary to engage in and contribute to discussions about therapeutic issues in the commercial and academic research environments. As part of the MSc Clinical Pharmacology degree, you will undertake your own research project under expert supervision, which will allow you to consolidate your knowledge and apply the skills you have acquired.
  • At every stage of the MSc Clinical Pharmacology you will benefit from the close involvement of clinical academics and visiting lecturers from the pharmaceutical industry and national drug regulatory bodies: the programme is specifically designed to prepare graduate for future senior roles within the pharmaceutical medicine. Guest lecturers have recently included staff from Pfizer, Servier, Johnson & Johnson and the Scottish Medicines Consortium.

Programme structure

You will attend lectures, seminars and tutorials and take part in lab, project and team work.

Core courses

  • Principles of Pharmacology
  • Drug Disposition
  • Pharmaceutical Medicine
  • Topics in Therapeutics: General Topics and Cardiovascular Drugs
  • Topics in Therapeutics: Commonly Used Drugs
  • Medical Statistics 1
  • Medical Statistics 2
  • Pharmacogenomics & Molecular Medicine: Fundamentals of Molecular Medicine
  • Pharmacogenomics & Molecular Medicine: Applied Pharmacogenomics & Molecular Medicine

In addition you will undertake a dissertation/project.

Career prospects

Career opportunities include positions in academia, health care and the pharmaceutical industry; returning to more advanced positions within a previous clinical environment (eg pharmacicts, clinicians); and PhD study.



Read less
The graduate program in Pharmacology was established in 1951, and currently includes programs in cardiovascular pharmacology, neuropharmacology, viral pharmacology, free radical biology, and drug development. Read more

Program Overview

The graduate program in Pharmacology was established in 1951, and currently includes programs in cardiovascular pharmacology, neuropharmacology, viral pharmacology, free radical biology, and drug development. Additional training programs exist in therapeutics, evidence-based medicine, and clinical investigation. The pharmacology graduate program has strengths in basic science as well as translational research.

The graduate program in Pharmacology is a component of the newly formed Department of Anesthesiology, Pharmacology & Therapeutics, and formalizes the Department's historical research and academic interactions. Within this new structure, additional research programs reflecting the close association between the disciplines of anesthesiology, pharmacology, and therapeutics are now available. Courses in pharmacology are taught at the undergraduate science, medical, dental, and graduate levels.

The program adheres to an 'apprenticeship' model of graduate training, in which graduate students work in close collaboration with a faculty member who is also their graduate supervisor. The program has strengths in projects covering a wide range of scientific and clinical areas of investigation. The primary aim of our graduate training program is to provide students with the skills necessary to conduct research in pharmacology and therapeutics that can be published in first-rate journals. Thus, an important factor in an applicant's admissibility is a matching of research and professional interests of the student and a faculty member within the program.

The Department has facilities available for original investigations in cellular, biochemical, viral, autonomic, cardiovascular, clinical, and neuropharmacology.

Quick Facts

- Degree: Master of Science
- Specialization: Pharmacology
- Subject: Health and Medicine
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Medicine

Read less
- https://www.kent.ac.uk/locations/medway/. This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme provides general-level hospital pharmacists – registered with the GPhC and working – with the core skills required to provide holistic pharmaceutical care in the practice setting.

The programme aligns with a nationally agreed pharmacy practitioner development strategy and is the result of a unique collaboration of higher education institutions across London and the south and east of England.

The programme develops your knowledge and skills in clinical pharmacy practice and medicines management. It works on a philosophy of student-centred workplace learning, supported by workbooks and contact days facilitated by experienced pharmacy practitioners. You are expected to take responsibility for managing your learning and achieving the programme objectives. The ethos and culture of the programme is to enhance and develop self-reliance and an adult approach to learning in support of continuing professional development.

Visit the website https://www.kent.ac.uk/courses/postgraduate/737/general-pharmacy-practice

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Modules

For more about the structure of this course please visit the Medway School of Pharmacy website (http://www.msp.ac.uk/studying/postgraduate/cert-gen-pharm-pract/index.html).

Assessment

Assessment is by Objective Structure Clinical Examination (OSCE), multiple-choice questions, assignments, literature review, prescribing audit, change management project, and a competency-based portfolio review.

Programme aims

The PCert and PDip aim to:

- enable you to apply appropriate knowledge, skills and attitudes in order to carry out effectively the role of the general pharmacist practitioner within your pharmacy practice base and wider healthcare teams

- enable you to carry out effective consultations with patients respecting their diverse needs and with regard to confidentiality and consent

- enable you to identify, prioritise and resolve complex pharmaceutical care issues

- enable you to apply knowledge of pathophysiology, pharmacology and the clinical use of drugs and therapeutic guidelines to the treatment of common disease states

- enable you to access, gather, interpret, critically evaluate and summarise medicines information

- enable you to monitor the quality of services provided, identify, prioritise and resolve significant medicines management issues and monitor and evaluate outcomes

- enable you to establish population health needs and apply specialist pharmaceutical knowledge to public health issues.

The MSc aims are to:

- investigate a topic in depth

- evaluate current practice or a new service

- publish research and advance knowledge in pharmacy practice

- develop skills you require for the RPS Advanced Pharmacy Framework

- inspire you and others in your workplace to carry out much needed practice research

- support your future career and perhaps to help you explore new career paths.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

This programme provides progression for pharmacists towards advanced practitioner status.

Completion of the practice elements of the course leads to the award of the Certificate of Completion of General Pharmacist Training from an accredited training centre.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme, approved by the appropriate professional/regulatory bodies, provides a distance learning option for qualification as a non-medical prescriber.

Eight contact days cover communication and diagnostic skills. Other topics on the syllabus include the legal, policy, professional and ethical aspects of prescribing, plus pharmacology and patient assessment and monitoring.

Visit the website https://www.kent.ac.uk/courses/postgraduate/740/independent-supplementary-prescribing

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can take the Master’s programme as a stand-alone PCert in Independent/Supplementary Prescribing, or as one pathway into the Medicines Management programme, by studying prescribing as either the first or second year of the Medicines Management PDip.

On successful completion, the School will notify the appropriate professional/regulatory body that you have qualified as an independent/supplementary prescriber.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by Objective Structured Clinical Examination (OSCE), assignments, case-study analysis, multiple-choice questions, short answer paper, narrative based on portfolio entries and attendance at a period of learning in practice.

Programme aims

This programme aims to:

- prepare pharmacists to practice as supplementary prescribers

- prepare nurses and midwives to practice as supplementary/independent prescribers

- develop the knowledge and skills required by an allied health professional to practice as a supplementary prescriber

- meet the standards set by the respective professional or regulatory body as required within the legislative framework.

Research areas

Chemistry and drug delivery
This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

Biological sciences
This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

Pharmacy practice
This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
The Master of Biomedical and Health Science is a coursework degree to be undertaken in key research areas in the sub-Faculty of Biomedical and Psychological Sciences in the Faculty of Medicine, Nursing and Health Sciences. Read more
The Master of Biomedical and Health Science is a coursework degree to be undertaken in key research areas in the sub-Faculty of Biomedical and Psychological Sciences in the Faculty of Medicine, Nursing and Health Sciences.

The focus in your initial year will be on research methods and practices. You will undertake coursework units in pedagogical and research skills training, and engage in specialist theory units. Your second year involves a full-time research project and internship under the supervision of a member of the academic staff. The internship will equip you with skills highly valued by employers.

The intention of the Masters program is to provide students with flexibility, a core Monash value enunciated in the "Monash: The Next 10 years" strategy document, and to gain an understanding of the nature of workplaces and their associated values, routines and cultures and to develop and refine skills and professional capacity for work.

The work undertaken in this degree must contribute significantly to the knowledge and understanding of a field of study of direct concern to the Faculty. Additionally, it must demonstrate your capacity to carry out independent research. In the second year, you will complete a literature review, assist in the planning of a research project, conduct the research project, and write a thesis.

Visit the website http://www.study.monash/courses/find-a-course/2016/biomedical-and-health-science-m6003?domestic=true

Specialisations

Infectious diseases and population health
This specialisation provides you with the skills to formulate a research question on the most important, prevalent, emerging or neglected diseases affecting humans and conduct research to address that question in the second year of study, by generalising and integrating discipline knowledge gained in the first year of study. The emphasis is on those diseases affecting resource-poor or low and middle income countries and you will use a variety of research techniques and methodologies to address this question.

Neuroscience
This specialisation provides you with the skills to formulate a research question on the relationships between brain processes and behaviour and conduct research to address that question in the second year of study, by generalising and integrating discipline knowledge gained in the first year of study. The emphasis is on the relationship between brain and behaviour, in health and/or disease, and you will use a variety of research techniques and methodologies to address this question.

Regenerative medicine and stems cells
This specialisation provides you with the skills to formulate a research question on the repair or replacement of damaged human tissues and organs in health and disease and conduct research to address that question in the second year of study, by generalising and integrating discipline knowledge gained in the first year of study. The emphasis is on the cells, factors, other biological building blocks, and bioengineered materials and technologies that assist the body's regenerative capacity, and you will use a variety of research techniques and methodologies to address this question.

Cardiovascular diseases
This specialisation provides you with the skills to formulate a research question on the role of the cardiovascular system in health and disease and conduct research to address that question in the second year of study, by generalising and integrating discipline knowledge gained in the first year of study. The emphasis is on dysfunctions of the cardiovascular system in disease or how disease impacts on the cardiovascular system, and you will have the opportunity to use a variety of research techniques and methodologies, from the cellular level though to integrative physiology and pharmacology, including the whole animal, to address this question.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/biomedical-and-health-science-m6003?domestic=true#making-the-application

Read less
- https://www.kent.ac.uk/locations/medway/. Start. At any time but preferably in September. Our research programme in Pharmacy gives you the integrated, broad-based research training needed to exploit current advances in pharmaceutical and biological sciences and pharmacy practice. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

Start: At any time but preferably in September

Our research programme in Pharmacy gives you the integrated, broad-based research training needed to exploit current advances in pharmaceutical and biological sciences and pharmacy practice.

Within the school we have a number of home, EU and international postgraduate students who are undertaking doctoral research degrees. Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

Visit the website https://www.kent.ac.uk/courses/postgraduate/171/pharmacy

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Study support

- Postgraduate resources

Postgraduate students have access to all the facilities at the Medway School of Pharmacy, including clinical skills labs and a ‘simulation man’. As the School of Pharmacy is a joint venture between the two universities, students have access to facilities at Kent’s Medway and Canterbury campuses, and the University of Greenwich.

- Dynamic publishing culture

Medway School of Pharmacy has a research culture and as such postgraduate students publish regularly and widely in journals, conference proceedings and books. Among others, they have recently contributed to: International Journal of Pharmacy Practice; Nephron Physiology; Acta Physiologica; Purinergic Signalling; and European Journal of Pharmacology.

- Researcher Development Programme

Kent's Graduate School co-ordinates the Researcher Development Programme for research students, which includes workshops focused on research, specialist and transferable skills. The programme is mapped to the national Researcher Development Framework and covers a diverse range of topics, including subjectspecific research skills, research management, personal effectiveness, communication skills, networking and teamworking, and career management skills

Research areas

The Medway School of Pharmacy houses strong and vibrant research groups that span a range of pharmacy-related areas. Staff have a wealth of research experience, and UK and international links with both industry and academic institutions.

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

This programme builds on a very successful in-house training programme implemented by a major pharmaceutical company.

It was designed and conceived by pharmaceutical industry experts in drug discovery and will be delivered and assessed by experts in this field at the School of Pharmacy.

The MSc covers how fundamental science is applied to the discovery and development of medicines and the main aims are to:

- provide you with the experience of critically appraising the research questions and techniques that are routine in the pharmaceutical industry workplace

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- provide expert preparation for students who wish to pursue a career in drug discovery, or wish to proceed to a PhD.

Visit the website https://www.kent.ac.uk/courses/postgraduate/736/applied-drug-discovery

Duration: One year full-time (campus based), two years part-time (distance learning)

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

This programme is taught as either a classic one year full-time programme with attendance required on Mondays and Tuesdays for 48 weeks plus an additional study day off-campus, or delivered through distance e-learning using an interactive virtual learning environment on a two-year part-time basis.

The programme comprises 60 credits at certificate level, 60 credits at diploma level and 60 credits at Master’s level. You may choose to end your study at any one of these stages.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment is by 100% coursework; including scientific reports, assignments, essays, a research project and portfolio entries.

Programme aims

This programme aims to:

- produce graduates trained in the processes by which fundamental science is linked to the design and development of modern medicines

- teach you an understanding of the drug discovery process

- provide you with expanded training in the biological sciences technical skills that underpin the processes of drug discovery

- provide you with the experience of critically appraising the research questions and techniques they use routinely in the workplace

- develop a variety of postgraduate level intellectual and transferable skills

- equip you with lifelong learning skills necessary to keep abreast of developments in drug discovery

- provide you with opportunities for shared multidisciplinary learning in drug discovery

- give you the experience of undertaking an independent research project

- provide expert preparation for students who wish to pursue and/or further a career in drug discovery, or wish to proceed to a higher degree (PhD) in topics related to the drug discovery process

- provide access to as wide a range of students as practicable irrespective of race, background, gender or physical disability from both within the UK and from overseas.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career. While the MSc in Applied Drug Discovery produces elite drug discovery personnel, who can pursue a career in the pharmaceutical industry or academia.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
- https://www.kent.ac.uk/locations/medway/. The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions. Read more

This course will be held at the Medway Campus

- https://www.kent.ac.uk/locations/medway/

The Medway School of Pharmacy’s innovative postgraduate distance-learning programme in Medicines Management equips healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions.

The programme emphasises clinical and costeffective prescribing in the context of holistic consideration of patient needs, and one of its pathways offers you the chance to qualify as an independent/supplementary prescriber.

Visit the website https://www.kent.ac.uk/courses/postgraduate/738/medicines-management

About Medway School of Pharmacy

Medway School of Pharmacy is one of the few regional schools of pharmacy in the UK, a collaboration between the University of Kent and the University of Greenwich.

The impetus for the formation of the Medway School of Pharmacy came from the local community, who recognised the shortage of qualified pharmacists in all branches of the pharmacy profession in Kent.

The School is now recognised as an established school with accreditation from the General Pharmaceutical Council (GPhC) and the Health and Care Professions Council (HCPC). Graduates are employed in health disciplines in Kent and the south-east and more broadly across the UK.

Course structure

You can register for the full MSc programme or undertake stand-alone modules. Modules can be put together to form a short course programme. Module length varies from five to 15 credits.

For the PCert, you must complete 60 credits, of which at least 20 must be from core modules. Diploma students must complete 120 credits, of which at least 40 credits must be from core modules. To gain the MSc, you must complete a 60-credit research project, write a dissertation and present the results as a poster.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

Assessment

Assessment includes case study analysis, critical appraisal of literature, assignments including short essays, a research project and dissertation.

Programme aims

This programme aims to:

- equip healthcare professionals with the skills and knowledge to contribute effectively to medicines management services and to individual drug therapy decisions in primary and secondary care.

- enable you to incorporate your learning directly into your workplace and to rise to the challenges presented by the new, patient-centred NHS.

Research areas

- Chemistry and drug delivery

This group has laboratories with dedicated state-ofthe art drug delivery, nanotechnology, spectroscopy, chromatography and organic synthesis facilities. It brings together researchers in medicinal chemistry and drug design, nanotechnology and materials science, drug delivery and pharmaceutics encouraging a multidisciplinary approach to research. Research covers synthesis and biological evaluation of potential anti-cancer agents, structurebased drug design, QSAR predication of ADMET properties, controlled release, particle engineering, powder technology, pharmaceutical technology, and novel drug delivery systems, with a focus on respiratory drug delivery.

- Biological sciences

This group is housed in recently refurbished laboratories with dedicated state-of-the-art molecular biological, electrophysiological, tissue culture and microscopy facilities. The research is divided into four main themes; infectious diseases and allergy; neuroscience; renal and cardiovascular physiology; and pharmacology. Examples of current work include: investigation of the use of non-pathogenic virus ‘pseudotypes’ to study pathogenic RNA, study of the properties of neuronal potassium channels and their modulation and the development of new therapies for patients that have developed acute kidney injury in collaboration with a major pharmaceutical company.

- Pharmacy practice

This group conducts research in two areas: public health and medicines optimisation, with a particular focus on cardiovascular diseases and mental health. Work in public health includes studies in physical exercise, alcohol, cardiovascular screening and spirometry testing, plus pharmacovigilance. Studies in medicines optimisation include work in dementia, bipolar disorder and stroke, with an emphasis on the patient perspective.

Careers

Graduates who obtain their PhD from Kent or Greenwich are highly sought after by prospective employers, both within the UK and overseas. Destinations for doctoral graduates include university academic departments, research institutes and leading pharmaceutical and biotechnological companies.

The taught postgraduate programmes are designed to promote the continuing professional development by providing sought-after skills. The programmes are beneficial for those who wish to develop their skills and/or to take the next step in their career.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
In the Bio-Pharmaceutical Sciences master’s programme you are trained at the leading edge of drug-design and fundamental research of new drugs, optimization of existing drugs, and personalised medicine. Read more

In the Bio-Pharmaceutical Sciences master’s programme you are trained at the leading edge of drug-design and fundamental research of new drugs, optimization of existing drugs, and personalised medicine.

Specialisations

What does this master’s programme entail?

Despite major advances in drug-research, many common diseases such as cancers, neurological diseases, cardiovascular disease and other auto-immune diseases, lack effective treatment, or are found incurable. You are trained for a scientific career in drug research and development. Depending on your interest, you can choose from seven specialisations to further extend your scientific training and theoretical background.

Read more about our Bio-Pharmaceutical Sciences programme.

Why study Bio-Pharmaceutical Sciences at Leiden University?

  • The programme is offered by the Leiden Academic Centre for Drug Research (LACDR) – one of the world leading academic pharmaceutical research groups.
  • We offer you a research-oriented programme in which you can specialize in different areas in the wide spectrum of drug research; from Analytical BioSciences, Biopharmaceutics, Drug Delivery Technology, Medicinal Chemistry to Pharmacology, and Toxicology.
  • The programme offers flexibility and tailoring to meet your individual scientific interests and career aspirations.

Find more reasons to study Bio-Pharmaceutical Sciences at Leiden University.

Bio-Pharmaceutical Sciences: the right master’s programme for you?

The master’s programme of Bio-Pharmaceutical Sciences (BPS) aims to train you in the research area of bio-pharmaceutical sciences and drug research in such a way that you have extensive knowledge and hands-on experience to be able to work independently as a scientific researcher. Moreover, you have a wide range of other career opportunities bio-pharmaceutical industry, science communication, and education.



Read less
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. Read more
Stratified Medicine holds huge potential in the timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new treatments. This new taught postgraduate Masters programme draws on the current and future needs of the Life Sciences sector, to create a highly skilled workforce. It harnesses Scotland’s strengths in Stratified Medicine, Clinical Trials, Bioinformatics and Pharmacogenomics to provide focused training which integrates basic and clinical sciences, and equips students with grounding in the essential skills required to design, execute and evaluate modern clinical interventions.

Why this programme

◾The programme will cover the principles which underpin the emerging science at the interface between genetics and pharmacology and the clinical evaluation of the resultant new medicines, taught by internationally recognised experts
◾The aim of this programme is to train researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside
◾University of Glasgow is rated in the top 1% of universities worldwide, and has a global reputation in the field of clinical trials and stratified medicine. You will be taught by a multidisciplinary team of world leading scientists and clinicians within the College of Medical, Veterinary and Life Sciences
◾Students will gain an understanding of statistical methods used to evaluate the efficacy and cost-effectiveness of new treatments
◾Students on the programme will undergo theoretical and practical training in state-of-the-art research processes available to researchers in Glasgow, enabling an appreciation of how to apply novel stratified approaches, together with clinical pharmacological, regulatory and ethical principles to the optimisation of future clinical research and therapeutic practice.
◾We have excellent opportunities to engage with industrial and clinical scientists, with guest lecturers from the pharmaceutical industry, medical diagnostic laboratories and bioscience business which will help you understand the science, methodology and terminology used by scientists and clinicians from different disciplines. You will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to research and treatment in the 21st century
◾You will be taught by a multidisciplinary team of world leading scienctists and clinicians within the College of Medical, Veterinary and Life Sciences
◾Students will learn how all of the above techniques are applied by academic and industrial researchers in the development of new medicines
◾Scholarships available

Programme structure

Students will undertake core courses which will account for 90 credits and a further 30 credits from options which will enable students to personalise their degree to better align it with their future career aspirations. Students will also be offered a choice of project.

Core Courses

◾Topics in Therapeutics - general topics and cardiovascular disease
◾Pharmacogenomics and Molecular Medicine - fundamentals of molecular medicine
◾Medical Statistics 1
◾Evidence based research in medicine
◾Drug disposition
◾Clinical trials: principles and methods.

Optional Courses

◾Pharmacogenomics & molecular medicine - applied pharmacogenomics and molecular medicine
◾Topics in therapeutics - commonly used drugs
◾Pharmaceutical medicine
◾Medical statistics 2
◾Established and novel techniques in cardiovascular & medical sciences research.

Project and Assessment

The project will account for the remaining 60 credits. The programme will include an opportunity for all students to present the outcomes of their projects to an audience of other students and academics. Assessment will consist of submission of a Dissertation and a viva examination.

Career prospects

Graduates of this programme will be competitive applicants for the positions in the commercial life sciences sector, or for PhD study in an academic or combined commercial / academic environment.

Read less
We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments. Read more

We invite postgraduate research proposals in a number of disease areas that impact significantly on patient care. We focus on exploring the mechanisms of disease, understanding the ways disease impacts patients’ lives, utilising new diagnostic and therapeutic techniques and developing new treatments.

As a student you will be registered with a University research institute, for many this is the Institute for Cellular Medicine (ICM). You will be supported in your studies through a structured programme of supervision and training via our Faculty of Medical Sciences Graduate School.

We undertake the following areas of research and offer MPhil, PhD and MD supervision in:

Applied immunobiology (including organ and haematogenous stem cell transplantation)

Newcastle hosts one of the most comprehensive organ transplant programmes in the world. This clinical expertise has developed in parallel with the applied immunobiology and transplantation research group. We are investigating aspects of the immunology of autoimmune diseases and cancer therapy, in addition to transplant rejection. We have themes to understand the interplay of the inflammatory and anti-inflammatory responses by a variety of pathways, and how these can be manipulated for therapeutic purposes. Further research theme focusses on primary immunodeficiency diseases.

Dermatology

There is strong emphasis on the integration of clinical investigation with basic science. Our research include:

  • cell signalling in normal and diseased skin including mechanotransduction and response to ultraviolet radiation
  • dermatopharmacology including mechanisms of psoriatic plaque resolution in response to therapy
  • stem cell biology and gene therapy
  • regulation of apoptosis/autophagy
  • non-melanoma skin cancer/melanoma biology and therapy.

We also research the effects of UVR on the skin including mitochondrial DNA damage as a UV biomarker.

Diabetes

This area emphasises on translational research, linking clinical- and laboratory-based science. Key research include:

  • mechanisms of insulin action and glucose homeostasis
  • insulin secretion and pancreatic beta-cell function
  • diabetic complications
  • stem cell therapies
  • genetics and epidemiology of diabetes.

Diagnostic and therapeutic technologies

Focus is on applied research and aims to underpin future clinical applications. Technology-oriented and demand-driven research is conducted which relates directly to health priority areas such as:

  • bacterial infection
  • chronic liver failure
  • cardiovascular and degenerative diseases.

This research is sustained through extensive internal and external collaborations with leading UK and European academic and industrial groups, and has the ultimate goal of deploying next-generation diagnostic and therapeutic systems in the hospital and health-care environment.

Kidney disease

There is a number of research programmes into the genetics, immunology and physiology of kidney disease and kidney transplantation. We maintain close links between basic scientists and clinicians with many translational programmes of work, from the laboratory to first-in-man and phase III clinical trials. Specific areas:

  • haemolytic uraemic syndrome
  • renal inflammation and fibrosis
  • the immunology of transplant rejection
  • tubular disease
  • cystic kidney disease.

The liver

We have particular interests in:

  • primary biliary cirrhosis (epidemiology, immunobiology and genetics)
  • alcoholic and non-alcoholic fatty liver disease
  • fibrosis
  • the genetics of other autoimmune and viral liver diseases

Magnetic Resonance (MR), spectroscopy and imaging in clinical research

Novel non-invasive methodologies using magnetic resonance are developed and applied to clinical research. Our research falls into two categories:

  • MR physics projects involve development and testing of new MR techniques that make quantitative measurements of physiological properties using a safe, repeatable MR scan.
  • Clinical research projects involve the application of these novel biomarkers to investigation of human health and disease.

Our studies cover a broad range of topics (including diabetes, dementia, neuroscience, hepatology, cardiovascular, neuromuscular disease, metabolism, and respiratory research projects), but have a common theme of MR technical development and its application to clinical research.

Musculoskeletal disease (including auto-immune arthritis)

We focus on connective tissue diseases in three, overlapping research programmes. These programmes aim to understand:

  • what causes the destruction of joints (cell signalling, injury and repair)
  • how cells in the joints respond when tissue is lost (cellular interactions)
  • whether we can alter the immune system and ‘switch off’ auto-immune disease (targeted therapies and diagnostics)

This research theme links with other local, national and international centres of excellence and has close integration of basic and clinical researchers and hosts the only immunotherapy centre in the UK.

Pharmacogenomics (including complex disease genetics)

Genetic approaches to the individualisation of drug therapy, including anticoagulants and anti-cancer drugs, and in the genetics of diverse non-Mendelian diseases, from diabetes to periodontal disease, are a focus. A wide range of knowledge and experience in both genetics and clinical sciences is utilised, with access to high-throughput genotyping platforms.

Reproductive and vascular biology

Our scientists and clinicians use in situ cellular technologies and large-scale gene expression profiling to study the normal and pathophysiological remodelling of vascular and uteroplacental tissues. Novel approaches to cellular interactions have been developed using a unique human tissue resource. Our research themes include:

  • the regulation of trophoblast and uNk cells
  • transcriptional and post-translational features of uterine function
  • cardiac and vascular remodelling in pregnancy

We also have preclinical molecular biology projects in breast cancer research.

Respiratory disease

We conduct a broad range of research activities into acute and chronic lung diseases. As well as scientific studies into disease mechanisms, there is particular interest in translational medicine approaches to lung disease, studying human lung tissue and cells to explore potential for new treatments. Our current areas of research include:

  • acute lung injury - lung infections
  • chronic obstructive pulmonary disease
  • fibrotic disease of the lung, both before and after lung transplantation.

Pharmacology, Toxicology and Therapeutics

Our research projects are concerned with the harmful effects of chemicals, including prescribed drugs, and finding ways to prevent and minimise these effects. We are attempting to measure the effects of fairly small amounts of chemicals, to provide ways of giving early warning of the start of harmful effects. We also study the adverse side-effects of medicines, including how conditions such as liver disease and heart disease can develop in people taking medicines for completely different medical conditions. Our current interests include: environmental chemicals and organophosphate pesticides, warfarin, psychiatric drugs and anti-cancer drugs.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.



Read less
Medicines Management has been at the top of our agenda since its inception in the early 1990s. Now it is at the top of the national pharmacy agenda. Read more

Overview

Medicines Management has been at the top of our agenda since its inception in the early 1990s. Now it is at the top of the national pharmacy agenda. Our Clinical Pharmacy programme for hospital pharmacists was first established in 1981, and we are proud of our high completion rate.

We are continually updating the programme to meet the changing requirements of the health service and individual practitioners. We are happy to put you in touch with some of our former students for their independent view. It is highly acclaimed by students, employers, purchasers and external course assessors for its structure, content and end value in relation to service, professional and career development.

In the fast changing world of Pharmacy and health care provision, standing still is not an option, but you may, understandably, feel under-equipped to meet the new challenges. Let Keele help you meet the challenges set by the Government’s plan for the profession, Pharmacy in England. Our distance learning programme in Clinical Pharmacy for hospital pharmacists aims to provide you with a wider view of health care, and equip you with sufficient knowledge, skills and confidence to be able to develop and extend your clinical and professional role as part of a multidisciplinary health care team. The programme links to the NHS Knowledge and Skills Framework to enable you to meet the relevant competencies and provide evidence for your continued professional development.

The Clinical Pharmacy Programme is designed to allow you choice and flexibility in your progression to Certificate, Diploma and Masters awards, to meet your specific professional development needs and advance your professional practice.

See the website https://www.keele.ac.uk/pgtcourses/clinicalpharmacy/

Course Aims

Keele’s Pg Clinical Pharmacy Programme aims to:
- Build on your existing knowledge of disease states, pharmacology and pharmacokinetics to enable you to apply this in a clinical setting

- Equip you to assess drug therapy for effectiveness, safety, compatibility, patient acceptability and cost, and use this information to make effective interventions and develop and document pharmaceutical care plans

- Encourage you to develop an understanding of the principles of pharmaceutical care and problem-solving approach to clinical practice

- Provide you with a wider view of health care and equip you with sufficient knowledge and skills to be able to develop and extend your professional role

- Increase your confidence in your ability to contribute to patient care as part of the multidisciplinary health care team

- Provide you with a structured learning programme that will help you apply your knowledge and skills in daily practice

- Encourage you to develop a reflective approach to your clinical pharmacy practice

- Encourage you to develop the self-discipline of private study and self-directed learning that will be continued beyond Keele’s Programme in your Continuing Professional Development (CPD) as an independent learner

In addition, you will develop valuable practical skills including written and oral communication, and the ability to design a project, collect, analyse and interpret data.

Course Content

The Clinical Pharmacy programme can be completed via the following flexible pathways to accumulate academic credits at Masters Level:
- CPD Plus+ – register for individual short courses of 10 credits. You can register on a number of occasions in any academic year. Completing 6 CPD Plus+ courses will provide the postgraduate Certificate award and 12 courses the Diploma award.

- CPD Plus+ Open Learn – provides opportunity to negotiate some or all of the content and learning outcomes to meet your specific needs (available as 10, 15 and 30-credit modules)

- Certificate in Clinical Pharmacy – register for 9 months and you’ll complete your choice of 6 of the optional modules from our CPD Plus+ portfolio.

- Diploma in Clinical Pharmacy – register for 21 months and in the first year you will complete the 6 modules as described for the Certificate and an additional 6 modules of your choice in Year 2.

- Professional MSc – Building on the Diploma course students study a further three modules: Research Methods (15 credits), Advanced Practice Development (15 credits) and Independent Learning Project (30 credits)

The CPD Plus+ short courses that are currently available, and which also form the course content for Certificate and Diploma courses are:
- Cardiovascular Disease 1
- Cardiovascular Disease 2
- Central Nervous System Diseases
- Critical Care and Parenteral Nutrition
- Education Theory and Practice for Health Professionals (includes two f2f study days)
- Endocrine Disease
- Quality in Healthcare & Evidence-Based Practice (includes Critical Appraisal)
- Gastrointestinal Disease
- Hepatic Disease
- HIV & AIDS
- Infections
- Joint Disease
- Malignant Disease
- Medicines Optimisation and Patient Centred Care
- Mental Health
- Monitoring Therapy
- Neonatal and Child Health
- Personal Effectiveness and Collaborative Working
- Renal Disease
- Respiratory Disease
- Surgical

Teaching & Assessment

The Clinical Pharmacy Programme is designed principally for distance-learning. We provide mainly online distance-learning materials so that you can study where and when it is most convenient for you. Our methods of delivery allow us to revise and update the course quickly to meet your changing needs as a pharmacist.

The Clinical Pharmacy Programme is fully supported by a team of experienced, friendly, and approachable academic, administrative and technical staff based at Keele. The Programme is also supported by our network of experienced, practising hospital pharmacists who fulfil the roles of clinical co-ordinators and tutors. You’re not on your own! And, don’t forget the network of other pharmacists on the course whom you can contact. You will require the equivalent of 1-2 days (approximately 10-15 hours) each week to complete your course. Remember that the online nature of our course materials, and the fact that a good proportion of the assessed work focuses on your daily practice, means that you can integrate study and work.

Assessment is entirely by coursework for the Certificate, Diploma and MSc courses. A variety of assessment methods are used.

All of the modules contain Practice-Based Assignments that will assess your knowledge, problem-solving skills, and data interpretation skills in relation to application of knowledge to practice, patient care and medicines management. Case Presentations assess your ability to critically appraise the literature and relate published theory to everyday practice.

An Audit Project, Practice-Based Assignments , Project Protocol Development and the Independent Study Project Report assess ‘thinking’ and practical skills, and your ability to plan, conduct and report on an investigation. They also assess your ability to critically appraise the literature and relate published theory to everyday practice. Your Reflective Portfolio also assesses your ability to relate theory to practice, and self evaluation of, and reflection on, your own performance and CPD needs.

The nature of the assessments develops your written and oral communication skills. Practical skills and key life/transferable skills are assessed within the methods described above. Each method of assessment is supported by clear criteria for marking; these are explained in the relevant Course Handbooks. The minimum pass mark is 50%. The summative assessment is supported by a variety of formative assessment activities that include online discussions, formative feedback on elements of the reflective portfolio, contributions to study days and feedback on draft proposals.

Additional Costs

For all programmes you will need regular access to a computer, email and the internet. However apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for our postgraduate programmes.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences. Read more
The Graduate Program in Pharmaceutical Sciences, located on the Texas Tech University Health Sciences Center (TTUHSC) campus at Amarillo, Texas offers Masters (M.S.) and Doctoral (Ph.D.) degrees in integrated biomedical/pharmaceutical research as part of the TTUHSC Graduate School of Biomedical Sciences.

About the Program

Modern pharmaceutical science encompasses a number of disciplines, including biochemistry, molecular biology, physiology, immunology, pharmacology, pharmaceutics, and medicinal chemistry. The field is unified by the search for novel drug targets and the development of new agents and formulations for the treatment biomedical disease. This includes cutting edge techniques to target drugs to sites of therapeutic action and to reduce adverse effects related to drug metabolism, lack of target selectivity, and pharmacogenetic differences within the human population. PhD’s in pharmaceutical science are well trained for drug discovery and development positions in academic labs, government (e.g., Food and Drug Administration), and the pharmaceutical or biotech industries.
Each student completes a core curriculum including foundation training in biochemistry, physiology, pharmacology and pharmaceutics designed to give students a basic understanding of the biomedical processes by which the body operates and the pharmaceutical agents and delivery systems available to interact with these systems. Electives studies offer the student the opportunity for specialization in more focused areas of interest, including receptor biology, molecular drug action, cell signaling, cancer research, pharmacokinetics, drug metabolism, and biotechnology. Communication, research design, professional skills and ethics are developed throughout the curriculum in complementary courses. Students become immersed in the philosophy of life-long learning and the importance of maintaining and updating their knowledge base as critical, independent thinkers and scientists. The faculty sees this integrated approach as one of the primary strengths of the program, combining cutting-edge molecular and biomedical breakthroughs with modern drug development, targeting and formulation. A broad range of biomedical and pharmaceutical research opportunities are available throughout the department. Focus areas of the Department with links to specific faculty interests are listed below:
Aging/Brain/Neuroprotection/Stroke
Blood Brain Barrier and Neurovascular
Cancer and Molecular Biology & Therapy
Cardiovascular Disease & Regulation
Drug Discovery and Formulation & Pharmacokinetics
Receptor Biology, Cell Signaling & Immunotherapy

Funding

Typically, students may complete a course of study for a Ph.D. degree within 4-5 years or a Masters degree in about half that time (2-2.5 years). Funding is available in the form of stipends ($23,000) from the Department/Graduate School and from individual faculty research resources. These stipends are awarded on a competitive basis to qualifying Ph.D. candidates. Currently, the Department has 43 funded graduate students.

Read less
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Read more
The MRes in Biomedical Research offers advanced research training in a broad range of laboratory based medical science. The emphasis of the course is how to do successful research and the research area is decided by the student. Participating departments include Biomolecular Medicine, Molecular Medicine, Cancer Medicine, Reproductive and Developmental Biology, Anaesthetics, Pain Medicine and Intensive Care, Biosurgery and Surgical Technology, Leukocyte Biology and Cardiovascular Sciences.

The research interests of the participating departments cover many aspects of molecular, cellular and physiological science including Bacterial virulence, Biomarkers of disease, Bioinformatics, Carcinogenesis, Cancer Biology, Cell Biology, Cell Signalling, Chemokines and their receptors, DNA damage and Repair, Electrophysiology, Immunosuppression, Leukocyte biology, Live cell imaging, Metabolomics/Metabonomics, Microbial Pathogenesis, Molecular Genetics, Molecular Motors, Molecular Pharmacology, Molecular Toxicology, Muscle Physiology, and Vascular Development, Neurological receptors, Nuclear receptors, Sepsis, Single molecule microscopy, Stem Cell Biology.

Students complete two research projects of their own choosing and through a core programme learn how to collect, analyse and interpret scientific research findings. They learn how to prepare data for publication, how to present and defend research data at scientific meetings and how to put together a grant application. The core programme also introduces students to advanced research techniques through a series of workshops and offers students a wide range of transferable skills courses. In addition to the core programme, the course comprises of other streams that offer further opportunities in specific areas. The course is an excellent grounding for students wishing to pursue a career in research and about 90% of past graduates have progressed to the PhD degree.

Please visit the course website for more information about how to apply, and for more information about the streams of specialism which run within the course.

Read less
This programme brings together expertise from across the many subject areas in the biomedical sciences to provide you with training in several key areas of current research interest. Read more
This programme brings together expertise from across the many subject areas in the biomedical sciences to provide you with training in several key areas of current research interest. The programme focuses on experimental science and it is research-informed. It will provide you with practical laboratory-based experience with access to specialist techniques, in state-of-the-art facilities.

It is a flexible programme: you will select three units of your choice during your studies, giving you the opportunity to investigate a range of different topics within the biomedical sciences. For your final research project, you again have the flexibility to choose your research area from a wide range of suggested projects or you can design your own research project, working with academic staff. You can also choose a project offered at an off-campus site, such as Southmead Hospital, Bristol Dental School or the Bristol Heart Institute.

You will learn in small teaching and tutorial groups. The taught and research elements of this MSc are carefully balanced: your research project, for example, runs over a 12-week period free of lectures, allowing you to focus solely on your project.

The skills you can develop during this programme include presentation, report-writing and work-planning. Several students have contributed to published papers and many go on to study at PhD level.

Programme structure

Core skills
-A series of practical classes, lecture-based teaching sessions and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary project
-An extended essay on a subject chosen from an extensive list supplied by the unit organiser. You work independently under the guidance of a member of staff.

Project proposal and research project
-Each school provides a number of research project topics within the themes described below. You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based units
You will study three lecture-based units from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Pharmacology
-Neuroscience

Each taught unit is assessed independently by written examinations, or - in the case of Core Skills - by written examinations and coursework. The literary project, project proposal and practical projects are presented as written dissertations.

Careers

Approximately one third of our students have gone on to PhD-level studies at the Universities of Bristol, Bath, Manchester, Glasgow, Dublin and Plymouth, among others. The next largest group of students are those that have gone on to study medicine. Others have gone on to research assistantships, teacher training, biomedical scientist training or non-scientific careers, such as accountancy.

Read less

Show 10 15 30 per page



Cookie Policy    X