• University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Glasgow Featured Masters Courses
"carbon" AND "capture" AN…×
0 miles

Masters Degrees (Carbon Capture And Transport)

We have 4 Masters Degrees (Carbon Capture And Transport)

  • "carbon" AND "capture" AND "transport" ×
  • clear all
Showing 1 to 4 of 4
Order by 
Programme description. This programme will give you a fundamental understanding of the issues affecting the Earth enabling you to play a vital role in devising and enacting strategies to protect and conserve the environment, both in Europe and beyond. Read more

Programme description

This programme will give you a fundamental understanding of the issues affecting the Earth enabling you to play a vital role in devising and enacting strategies to protect and conserve the environment, both in Europe and beyond.

Human activities are recognised as having an increasingly significant effect on the Earth’s biosphere. Our use of natural resources, deforestation, soil erosion, the release of potentially toxic compounds and pathogens, and the increase in greenhouse gases are all examples of pressures that have potentially serious consequences for humanity and other life on Earth.

On this programme you will learn about the issues that face the Earth and gain an in-depth understanding of natural resource management and the processes that give rise to environmental degradation and pollution problems.

It will allow you to play a vital role in planning and putting into action strategies to protect and conserve the environment.

This programme is run in collaboration with Scotland’s Rural College (SRUC).

This programme is affiliated with the University's Global Environment & Society Academy.

Programme structure

This programme involves two semesters of taught courses, which are a balance of lectures, seminars, workshops and visits, plus a research dissertation project of about 16,000 words.

Compulsory courses typically will be:

  • Atmospheric Quality and Global Change
  • Analysing the Environment
  • Land Use/Environmental Interactions
  • Analysing the Environment Study Tour
  • Dissertation

Option courses:

You will also choose four optional courses^. We particularly recommend the following:

  • Soil Protection and Management
  • Integrated Resource Management
  • Ecosystem Dynamics and Functions
  • Marine Systems and Policies
  • Archives: History, Geography, Politics
  • Carbon Capture and Transport
  • Culture, Ethics & Environment
  • Encountering Cities
  • Environmental Geochemistry
  • Foundations in Ecological Economics
  • Human Dimensions of Environmental Change and Sustainability
  • Principles of Environmental Sustainability
  • Principles of GIS
  • Project Appraisal
  • Understanding Environment and Development
  • Values and the Environment
  • Environmental Impact Assessment
  • Waste Reduction and Recycling
  • Sustainability of Food Production
  • Participation in Policy and Planning
  • Forests and Environment
  • Carbonate Sequence Stratigraphy
  • Climate Change and Corporate Strategy
  • Hyperspectral Remote Sensing
  • Integrated Resource Planning
  • Introduction to Environmental Modelling
  • Political Ecology
  • Ecosystem Values and Management
  • Soil Science Concepts and Application
  • Water Resource Management

Courses are offered subject to timetabling and availability and are subject to change.

Field trip

Part of this programme is a week-long study tour in spring. Past study tours have been held in France, Greece, Portugal, Israel and Morocco.

Learning outcomes

Students will:

  • develop a scientific understanding of some of the major processes which influence the quality of land, air and water resources
  • acquire knowledge of the most effective methods of environmental protection
  • develop expertise in the design and implementation of programmes of environmental protection
  • have the opportunity to study the integrated protection and management of particular ecosystems or resources

Career opportunities

Our graduates have a solid record in finding employment in the environmental sector while some choose to further their studies through a PhD.

There are also opportunities in consultancy positions and with environmental regulators, government and NGOs.

Student experience

Would you like to know what it’s really like to study at the School of GeoSciences?

Visit our student experience blog where you can find articles, advice, videos and ask current students your questions.



Read less
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Read more
This is the first masters level degree course that brings academic rigour and focus to this multi-disciplinary subject. The MSc in Flow Assurance for Oil and Gas Production is suitable for engineering and applied science graduates who wish to embark on successful careers in the oil and gas industry. Our strategic links with industry ensures that all the materials taught on the course are relevant, timely and meets the needs of organisations competing within the sector. This industry-led education makes our graduates some of the most desirable the world for energy companies to recruit.

In the foreseeable future, hydrocarbon (oil and gas) will still be the major energy source irrespective of the developments in renewable and nuclear energy. The term ‘flow assurance’ was coined by Petrobras in the early 1990s meaning literally “guarantee of flow.” It covers all methods to ensure the safe and efficient delivery of hydrocarbons from the well to the collection facilities. It is a multi-disciplinary activity involving a number of engineering disciplines including mechanical, chemical, process, control, instrumentation and software engineering.

Previously uneconomical fields are now being exploited - oil and gas are produced in hostile environments from deep water to the Arctic. As conventional oil reserves decline, companies are developing unconventional oil fields with complex fluid properties. All of these factors mean that flow assurance plays an increasingly important role in the oil and gas industry.

Course overview

The MSc in Flow Assurance for Oil and Gas Production is made up of nine compulsory taught modules (eight compulsory and one optional from a selection of three), a group project and an individual research project.

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

- Develop a professional ability to undertake a critical appraisal of technical and/or commercial literature.
- Demonstrate an ability to manage research studies, and plan and execute projects in the area of oil and gas production technology and flow assurance.
- Use of the techniques appropriate for the management of a oil and gas production and transport systems.
- Gain an in-depth understanding of the technical, economic and environmental issues involved in the design and operation of oil and gas production and transport systems.

Group project

The group project runs between February and April and is designed to give students invaluable experience of delivering a project within an industry structured team. The project is sponsored by industrial partners who provide particular problems linked to their plant operations. Projects generally require the group to provide a solution to the operational problem. This group project is shared across the Process Systems Engineering MSc, Flow Assurance MSc and Carbon Capture and Transport MSc, giving the added benefit of gaining new insights, ways of thinking, experience and skills from students with other backgrounds.

During the project you will develop a range of skills including learning how to establish team member roles and responsibilities, project management, and delivering technical presentations. All groups submit a written report and deliver a presentation to the industry partner. Part-time students will take an additional elective module instead of the group project.

It is clear that the modern design engineer cannot be divorced from the commercial world. In order to provide practice in this matter, a poster presentation will be required from all students. This presentation provides the opportunity to develop presentation skills and effectively handle questions about complex issues in a professional manner.

Recent Group Projects include:

- Waste water treatment process design
- A new operation mode design for a gas processing plant.

Individual Project

The individual research project allows students to delve deeper into a specific area of interest. Our industrial partners often put forward practical problems or areas of development as potential research topics. For part-time students, their research project is usually undertaken in collaboration with their place of work. The individual project takes place from April/May to August.

Recent Individual Research Projects include:

- Separation – from Subsea to Topside
- Evaluation of Multiphase Flow Metering
- Multiphase Jet Pumps
- Sand Transport in Undulating Terrains.

Modules

The taught programme for the Flow Assurance masters is generally delivered from October to March and is comprised of eight compulsory modules, and one optional module to select from a choice of four. The modules are delivered over one to two weeks of intensive delivery with the later part of the module being free from structured teaching to allow time for more independent learning and reflection. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Assessment

Taught modules: 40%; Group project: 20% (dissertation for part-time students); Individual Research Project: 40%.
The taught modules are assessed by an examination and/or assignment. The Group Project is assessed by a written technical report and oral presentations. The Individual Research Project is assessed by a written thesis and oral presentation.

Funding

Bursaries are available; please contact the Course Director for more information.

Cranfield Postgraduate Loan Scheme (CPLS) - https://www.cranfield.ac.uk/Study/Postgraduate-degrees/Fees-and-funding/Funding-opportunities/cpls/Cranfield-Postgraduate-Loan-Scheme

The Cranfield Postgraduate Loan Scheme (CPLS) is a funding programme providing affordable tuition fee and maintenance loans for full-time UK/EU students studying technology-based MSc courses.

Career opportunities

There is considerable global demand in the oil and gas industry for flow assurance specialists with in-depth technical knowledge and practical skills. The industry led education makes our graduates some of the most desirable for recruitment in this sector. The depth and breadth of the course equips graduates with knowledge and skills to tackle one of the most demanding challenges to secure our energy resource. Graduates of the course can also be recruited in other upstream and downstream positions. Their knowledge can additionally be applied to the petrochemical, process and power industries.

Further Information

For further information on this course, please visit our course webpage - http://www.cranfield.ac.uk/courses/masters/flow-assurance-for-oil-and-gas-production.html

Read less
Programme description. This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. Read more

Programme description

This MSc is aimed at students who wish to pursue a geosciences-related career in the future energy sector, as it transitions from fossil fuels to a low carbon economy. The aim is to offer a programme that uses subsurface (geological) knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies; the disposal of energy-related wastes and the hydrocarbon industry.

This MSc programme builds on the strength and reputation of the research groups operating in the School of GeoSciences on uses of the subsurface: carbon capture and storage (CCS); radioactive waste disposal; energy storage and extraction; unconventional and conventional hydrocarbons; wet and dry geothermal heat; and subsurface fluid tracing using noble gases and stable isotopes.

Programme structure

Compulsory courses (for students who have accredited prior learning, elective courses are taken in lieu) – 90 credits

  • Future Geoenergy Resources
  • Applied Hydrogeology and Near surface Geophysics
  • Hydrogeology 2
  • Environmental Geochemistry
  • Project Design and Literature Analysis
  • Carbon Storage and Monitoring

Compulsory Courses – for those with Geoscience background – 20 credits

  • Subsurface Reservoir Quality

Compulsory Courses – for those without Geoscience background – 20 credits

  • Geology for Earth Resources
  • Hydrocarbons

Optional courses: choice of 10 credits from following

  • Ore Mineralogy, Petrology & Geochemistry
  • Seismic Reflection Interpretation
  • Carbon Capture and Transport
  • Helmsdale MSc Field Excursion
  • Environmental Problems and Issues
  • Nuclear Waste Management: Principles, Policies & Practice

Compulsory Dissertation

  • Dissertation in Applied Geoscience (Geoenergy)

Career opportunities

This programme will train students in the use of subsurface geological knowledge opening a diverse range of career pathways in lower carbon geoenergy technologies and the disposal of energy-related wastes. These include radioactive waste disposal; carbon capture and storage; geothermal energy and subsurface energy storage including compressed air energy storage.

Other pathways include working in environmental and regulatory aspects of energy storage involving potential pollution; tracking subsurface fluids in the event of leakage from subsurface facilities and ground water resources.



Read less
This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. Read more

Introduction:

This is a one-year postgraduate course designed to provide civil engineers and other suitably qualified professionals with a good understanding of energy management and efficiency as well as sustainable energy generation. The course will further advanced knowledge in efficiency techniques, sustainable energy technologies and energy management systems and strategies. It will include theory and practice along with economics, current legal requirements and standards. The course will be of particular interest to those already in employment as part of ongoing professional training as well as leading to the widening of new job opportunities for its graduates. The Diploma award is based on a combination of the results of two examination papers and an individual project. Students must pass each paper and the project and neither of these can be deferred.

Course Content:

The course consists of 3 taught modules each carrying 20 ECTS credits.

Module 1: Energy management and efficiency will introduce topics such as energy physics, energy resources, climate change and environment. Energy demand and energy management will be detailed sectorally in terms of energy in buildings; in transport and in industry. There will be a focus on measures for energy reduction and energy efficiency along with assessment procedures. Topics in energy economics, policy, embodied energy and life cycle analysis and finally energy legislation and energy markets will be addressed.

Module 2: Sustainable energy technologies will introduce energy generation and conversion. It will concentrate on renewable energy generation technologies (and include lectures on wind, wave, tidal, biomass, biofuels, geothermal, hydro, solar, waste to energy) and low carbon technologies (nuclear energy, hydrogen, fuel cells). Grid integration and energy storage will be addressed as well as the future of fossils including clean coal and carbon capture and storage.

Module 3: Individual project is a key element of the course where the theoretical and technical aspects of Sustainable Energy which have been presented, analysed and discussed in the other two modules are brought into practical and innovative focus. Each student will be expected to engage in a piece of original study to reveal a novel aspect of sustainable energy.

Lectures will be held on Friday evenings and Saturday mornings each week throughout the two semesters (September to April), with laboratories or site visits scheduled for Saturday mornings. In addition to attending lectures, students are required to prepare and submit individual original pieces of coursework relating to the subject matter of each of the modules. Assessment is by examination and coursework.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X