• Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Glasgow Featured Masters Courses
University of Southampton Featured Masters Courses
Ulster University Featured Masters Courses
University of Bradford Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
"cancer" AND "medicine"×
0 miles

Masters Degrees (Cancer Medicine)

  • "cancer" AND "medicine" ×
  • clear all
Showing 1 to 15 of 222
Order by 
This course provides you with the opportunity to work within a world class Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, to master the discipline of experimental cancer medicine. Read more
This course provides you with the opportunity to work within a world class Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, to master the discipline of experimental cancer medicine.

You will spend a year as a member of the Experimental Cancer Medicine Team at The Christie. During this year, you will participate in four structured taught modules.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

As a nursing and physician student enrolled on this course, you will be expected to participate in patient care, with physicians and nursing staff participating in new and follow-on patient clinics, treatment and care giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops, with e-learning limited to parts of course unit 1.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be are assessed through oral presentations, single best answer exams, written reports and dissertation.

Career opportunities

The MRes in Experimental Cancer Medicine is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.

Read less
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Practical experience gained through two six-month laboratory rotations.

Key benefits

- The range of topics including advanced imaging methods is unique for this translational cancer programme

- The sponsoring laboratories and departments all have international standing and have agreed to closely supervise the trainees

- Recently released data from the Higher Education Funding Council for England (Hefce) shows that King’s College London is equal top in England (with Queen Mary, University of London) for its PhD completion rates. This programme will potentially select candidates for the PhD programme within the Division of Cancer Studies

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/translational-cancer-medicine-mres.aspx

Course detail

- Description -

Overview of subjects covered:

• Biomarkers, biostatistics and modelling
• Breast cancer
• Cancer bioinformatics
• Cancer imaging (optical)
• Cancer imaging (PET)
• Clinical trials and translational research
• Gene discovery through to therapeutic applications
• Haemato-oncology and associated genetics/genomics
• Immunology of cancers
• Molecular pathology
• Signal transduction in cancers

- Course purpose -

The programme will provide students with a detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging, all of which are relevant to Translational Cancer Research. In addition, practical experience will be gained through two laboratory rotations of six months duration.

- Course format and assessment -

Work with 2 supervisors and their teams, 6 months in each lab

Assignments:

• 30 credit taught module:

2-3 weekly lectures during first 3 months

Throughout the year, students also attend literature reviews and journal clubs that their labs/departments organise and any other internal or external seminars deemed relevant to their projects/assignments.

The assessment for this module is an essay on the fundamentals and the overall concept of Translational Cancer Medicine

• 75 credit laboratory based research project 1:

Assessed by a written dissertation, a seminar presentation and an oral examination

• 75 credit laboratory based research project 2:

Assessed by a draft of a paper of the standard and format required by a scientific journal.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. Read more
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. The MRes in Translational Medicine provides high quality graduates with the research rigour, the innovation culture and the leadership skills to be at the forefront of this translational revolution and so develop a cohort of appropriately qualified scientific medical/dental and veterinary graduates.

Translational Medicine allows experimental findings in the research laboratory to be converted into real benefit for the health and well-being of the patient, through the development of new innovative diagnostic tools and therapeutic approaches.

The main objective of the MRes Programme in Translational Medicine is to provide high quality candidates with the research rigour, innovation culture and the leadership skills to be at the forefront of this translational revolution. Students will receive expert training in all aspects of translational medicine including how new experimental findings are translated into treatments for patients; the experimental steps in the process, the development of innovative solutions, management and leadership skills and an appreciation of marketing and financial aspects of translational medicine through interaction with business leaders and scientists from Biotech and Pharmacy

This research intensive programme incorporates a 38 week research project in an area selected by the student in consultation with the research project co-ordinator. student selected area.

QUB has an international reputation in translational medicine, achieved through the recognised metrics of high impact peer review publications, significant international research funding, the generation of exploitable novel intellectual property and the establishment of successful spin-out biotech companies. This ethos of innovation was recently recognised with the award of the Times Higher Education Entrepreneurial University of the Year.

This unique course offers students the chance to choose one of these three research streams with the indicated specialist modules:

-

Precision Cancer Medicine

This stream provides students with a unique opportunity to study cancer biology and perform innovative cancer research within the Centre for Cancer Research and Cell Biology (CCRCB). Prospective students are immersed in this precision medicine milieu from Day 1, providing for them the opportunity to understand the key principles in discovery cancer biology and how these research advances are translated for the benefit of cancer patients. The strong connectivity with both the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also opening up potential doors for the student's future career.

-

Cardiovascular Medicine

This stream contains two complementary modules which significantly build on the foundation provided by undergraduate medicine or biomedical science to provide students with an advanced insight into current understanding of cardiovascular pathobiology and an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease, which remains the leading cause of death worldwide. Students who select the Cardiovascular Medicine Stream will be taught and mentored within the Centre for Experimental Medicine which is a brand new, purpose-built institute (~7400m2) at the heart of the Health Sciences Campus. This building represents a significant investment (~£32m) by the University and boasts state-of-the-art research facilities which are supported by a world-leading research-intensive faculty, ensuring that all of our postgraduate students are exposed to a top quality training experience.

-

Inflammation, infection and Immunity

This stream exposes students to exciting concepts and their application in the field of infection biology, inflammatory processes and the role of immunity in health and disease. There will be detailed consideration of the role of the immune system in host defence and in disease. There is a strong emphasis is on current developments in this rapidly progressing field of translational medicine. Students learn how to manipulate the inflammatory/immune response and their interaction with microbes to identify, modify and prevent disease. Students will also be introduced to the concepts of clinical trials for new therapeutics, and the basic approach to designing a trial to test novel methods to diagnose/prevent or treat illness.

Read less
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology. Read more
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology.

Why study Cancer Biology at Dundee?

The MRes Cancer Biology is a research-centred taught Masters programme providing a focused training in molecular cancer research. It covers both the fundamental and translational science of carcinogenesis, cancer biology, diagnosis and therapy.

The programme delivers outstanding research-focused teaching from internationally-renowned scientists and clinicians.

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities. In 2009 the university became the first Scottish university to be awarded Cancer Centre status by the CRUK.

What's so good about studying Cancer Biology at Dundee?

The MRes Cancer Biology has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

Areas of particular strength at the University of Dundee are in surgical oncology for breast and colon cancer, radiation biology and clinical oncology, skin cancer and pharmacogenomics. Areas of strength in basic cancer biology are DNA replication, chromosome biology and the cell cycle, cell signalling and targets for drug discovery.

Teaching and Assessment

This course is taught by staff based in the College of Medicine, Dentistry and Nursing and the School of Life Sciences.

The MRes will be taught full-time over one year (September to August).

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

The MRes degree course is taught full-time over three semesters.

The first semester provides in-depth teaching and directed study on the molecular biology of cancer, and covers:

Basic cell and molecular biology, and introduction to cancer biology
Cell proliferation, cell signalling and cancer
Cancer cell biology
Carcinogenesis, cancer treatment and prevention
Specific training in research methodology and critical analysis

Students will also be required to take part in a journal club to further develop their critical review skills.

In semesters two and three students will be individually guided to focus on a specific cancer research topic which will be the subject of a literature review and associated laboratory research project. The research project is based in laboratories with state-of-the-art facilities, and under the leadership of world-class researchers.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Places on the course are limited, so early applications are strongly encouraged.
Apply early to avoid disappointment.
Follow us on Twitter to keep up with news from the MRes Cancer Biology @Mrescancerbiol

Read less
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Read more
This Masters in Cancer Sciences will prepare you for a career in cancer science, whether you aim to pursue a PhD or further medical studies, or seek a career in the health services sector, in the life sciences, biotechnology or pharmaceutical industries. Our programme takes a “bench to bedside” approach, enabling graduates to work within a multidisciplinary environment of world-leading scientists and cancer-specialists to address the latest challenges in cancer research.

Why this programme

-University of Glasgow is rated in the UK top five and best in Scotland for Cancer Studies. You will be taught by a multidisciplinary team of world leading cancer scientists and clinicians within the Cancer Research UK Glasgow Centre.
-This MSc in Cancer Science programme is unique in the UK as it delivers integrated teaching in molecular biology, pathology and clinical service.
-The Cancer Research UK Glasgow Centre brings together scientists and clinicians from research centres, universities and hospitals around Glasgow to deliver the very best in cancer research, drug discovery and patient care. The Centre’s world leading teams have made major advances in the understanding and treatment of many cancers. For more information, please visit: http://www.wecancentre.org/
-In the first semester, each week is focused around one of the new Hallmarks of Cancer, with the focus on the molecular/cellular biology of this hallmark. A tutorial session will enable you to discuss and integrate your learning from the week. This will enable you to understand how research into the fundamental principles of cancer cell biology can translate to advances in cancer treatment.
-The aim of this MSc in Cancer Science is to train cancer researchers who can break down the barriers that currently prevent discoveries at the bench from being translated into treatments at the bedside. By understanding the science, methodology and terminology used by scientists and clinicians from different disciplines, you will learn to communicate effectively in a multidisciplinary environment, critically evaluate a wide range of scientific data and research strategies and learn how to make a significant contribution to cancer research.

Programme structure

Semester 1: Hallmarks of Cancer

This 13 week core course aims to:
 provide you with a critical understanding of the molecular and cellular events that drive cancer development and progression
 demonstrate how an understanding of these events underpins current and future approaches to cancer diagnosis and treatment
 integrate the teaching of molecular biology, cell biology, diagnosis and treatment of cancer
 describe how all these disciplines communicate and work together in the fight against cancer
 provide you with theoretical training in fundamental molecular and cell biology techniques used in cancer research
One week of practical training is provided at the start of the course. This course is assessed through a lab notebook, group assessment, critical essay and an exam that focuses on data analysis and interpretation.

Semester 2

In the second semester, you can choose from a range of 3 week optional courses, before taking the core course “Designing a Research Project”.
• Drug Discovery
• Drug Development and Clinical trials
• Viruses and Cancer
• Diagnostic technologies and devices
• Technology transfer and commercialisation of bioscience research
• Current trends and challenges in biomedical research and health
or
• Frontiers in Cancer Sciences – 5 week optional course
• Omic technologies for the biomedical sciences: from genomics to metabolomics - – 5 week optional course
or
• Designing a research project: biomedical research methodology - 6 week optional course

Semester 3

Bioscience Research Project

In this 14 week core course you will:
 have an opportunity to perform a piece of original research to investigate a hypothesis or research questions within the area of cancer research. The project may be “wet” or “dry”, depending what projects are available
 develop practical and/or technical skills, analyse data critically and draw conclusions, and suggest avenues for future research to expand your research findings
Note: students must have a minimum of grade C in semesters 1 and 2 in order to proceed to the research project.

[[Career prospects ]]
The knowledge and transferable skills developed in this programme will be suitable for those contemplating a PhD or further medical studies; those wishing to work in the health services sector; and those interested in working in the life sciences, biotechnology or pharmaceutical industries, including contract research organisations (CROs). This programme is designed for students with undergraduate degrees in the life sciences, scientists working in the pharmaceutical and biotechnology industries, and clinicians and other healthcare professionals.

Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

Degree information

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits, full-time nine months) is offered. A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules
-Basic Biology and Cancer Genetics
-Cancer Therapeutics

Specialist modules
-Behavioural Science and Cancer
-Biomarkers in Cancer
-Cancer Clinical Trials
-Haematological Malignancies and Gene Therapy

Dissertation/report
All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning
Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Top career destinations for this degree:
-Research Technician, NHS Imperial College Healthcare NHS Trust
-Cancer and Genetics, ETH Zurich
-PhD Cancer Research, University of New South Wales (UNSW)
-Clincial Trial Project Manager, Beijing Lawke Health Laboratory Inc.
-Research Scientist, SporeGen

Employability
Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Research training at the computational/clinical translational science interface

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will engage with both theoretical and practical elements. The theoretical elements will include why particular methods are used, assumptions they are based on and understanding the technical limitations and quality control of different data types. The practical elements will include data handling and the computational method employed for each data type.

When you enter your projects, you will perform novel bioinformatics-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings. The research projects may also include a smaller component of wet-lab experiments to provide some validation of the findings from the bioinformatics research.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work, then we would welcome an application from you.

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing. This is shared with the Cancer Biology stream.

While the Cancer Biology stream move into their first project, you will receive three weeks of specialist training in informatics which is comprised of lectures and workshops. You will then complete an initial assignment before beginning your first research placement of roughly 16 weeks, and then a second project of roughly 20 weeks. These will be within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Access advanced technology and approaches being used in cancer biology

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will perform novel laboratory-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings.

The course comprises both theoretical and practical elements, embracing cutting-edge developments in the field. You will experience some of the most technologically advanced approaches currently being applied to the broad field of cancer research.

As the taught component of the MRes is short, you will be expected to have sufficient lab experience in order to be able you to hit the ground running when you enter the lab.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work then we would welcome an application from you!

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing.

This is followed by two separate research placements of roughly 20 weeks each within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
The MSc course in Molecular Medicine and Cancer Research aims to provide specialist theoretical and practical knowledge in molecular and cellular genetics relevant for human diseases in the context of the scientific and clinical problem of human cancer. Read more

About the course

The MSc course in Molecular Medicine and Cancer Research aims to provide specialist theoretical and practical knowledge in molecular and cellular genetics relevant for human diseases in the context of the scientific and clinical problem of human cancer.

It focuses on the development of research skills in medical genetics and human diseases, and is designed to enable you to develop the ability to become an independent and creative scientist, able to form useful working hypotheses and to analyse data appropriately.

Taught modules will focus on how a greater understanding of these processes has created new avenues and targets for the therapeutic intervention in various forms of cancer.

Aims

Cancer is a complex and multi-factorial disease. For the development of any novel and specific therapeutic strategy, it is important to understand the complexity of pathogenesis and genetics that can lead to cancer. This course addresses various molecular and cellular aspects relevant for cancer research.

Course Content

The course is offered on a one-year full-time basis, taught over three terms, or on a two-year part-time basis, taught over six terms.

You will complete six modules in total. Four modules will each be taught over a two-week period in a ‘block’ mode. These taught modules will not run concurrently allowing you to focus on one module at a time and will help promote better time management skills. All lecture material will be available via Vista and will be accessible from your home computer.

You will take a Research Planning module to develop skills required for your dissertation. You will then study a unique Research
Dissertation module over a 9 month (full-time) or 18 month (part-time) period, to allow you to conduct a detailed investigation into a research question of your choice.

If in full-time employment, and attending the course on part-time mode, it may be possible to conduct the research dissertation at the workplace.

Typical Modules (all compulsory)

Research Planning
Cytogenetics and Cancer
Genomic Technologies and Cancer Research
The Biology, Genetics and Treatment of Human Cancer
Intracellular Signalling and Cancer
Research Dissertation

For more information regarding the course content and structure please vist the website

http://www.brunel.ac.uk/study/postgraduate/Molecular-Medicine-and-Cancer-Research-MSc

Assessment

The course is structured around a programme of lectures, seminars, practical classes, directed reading and coursework. You will be assessed by written examination and coursework, laboratory reports, oral and poster presentation and dissertation thesis writing.

A master’s degree is awarded if you reach the necessary standard on the taught part of the course and submit a dissertation of the required standard. The pass grade for all modules and the dissertation is 50%.

A master’s degree requires 180 credits, of which 75 are accounted for by the dissertation. A Graduate or Postgraduate Certificate can be awarded if between 60 and 105 credits are gained in the taught part of the course. The name of the certificate will be determined by the actual grades achieved.

Special Features

Through an enthusiastic, innovative and research-driven approach, our teaching will reflect the fast changing nature of the biomedical research (with specific emphasis to human genome, molecular medicine and cancer research).

Brunel University London is research led and students attending either course will have the opportunity to conduct a 9-month research dissertation as a part of the MSc course.

Students will be given a choice of research topics and will be normally associated with one of the research centres within Biosciences.

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer.

This will be underpinned by a thorough knowledge of cancer biology and pathology and research methodologies.

This knowledge will provide an excellent grounding in the development, use and evaluation of cancer therapies, which will enhance career prospects in many areas of early phase clinical trials and clinical drug development in the cancer setting.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Molecular Diagnostic & Therapeutics
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Genomic Approaches to Human Diseases
• Paediatric & Adolescent Oncology
• Pathology of Cancer

Core Module for MSc

• Dissertation.

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
This MSc course offers an innovative interdisciplinary perspective on the study of cancer. Three core modules encompass biological and social sciences. Read more
This MSc course offers an innovative interdisciplinary perspective on the study of cancer.

Three core modules encompass biological and social sciences. These equip you to apply key theories and concepts critically, and to develop the skills required to engage in debates about the impact of cancer on the individual, the family and society.

A wide range of additional modules offers the opportunity to examine aspects of cancer in greater detail from different perspectives, ranging from professional practice to historical perspectives, from epidemiological and medical research to biotechnology.

See the website http://www.brookes.ac.uk/courses/postgraduate/cancer-studies/

Why choose this course?

- Our lecturers maintain excellent practice links in their specialist areas locally, regionally and nationally.

- You will have access to state-of-the-art clinical skills simulation suites and resources.

- The department hosts the prestigious HRH Prince Sultan Chair in Cancer Care and the Cancer Care research group.

- In the Research Excellence Framework (REF) 2014, 98% of our research in Allied Health Professions, Dentistry, Nursing and Pharmacy was rated as internationally recognised, with 82% being world leading or internationally excellent.

- You will be undertaking advanced study in Oxford, which has a new Cancer Centre and a range of expert practitioners working in the cancer field.

- "Students on this course will gain important insights into the nature of cancer research and its broader implications." Sir Paul Nurse

Teaching and learning

You will be given opportunities to be involved in all aspects of your programme - its management and delivery.

Different students will bring varied experiences and cultures and will be encouraged to share these with each other. You will be expected to take responsibility for your own learning and also to contribute to the learning of your fellow students.

The programme includes a taught element, informed by relevant national and international research and evidence-based literature, designed to be a starting point for critical reading and reflection. Mutual support between students enhances the learning experience and will be strongly encouraged.

In order to make the most of the range of experience, skills and knowledge within the group, a variety of teaching and learning strategies will be employed.
- Lectures introduce you to new areas of study and provide the context for further independent reading and practical work.

- Group activities (eg seminars, workshops, presentations) are used as a means of sharing knowledge and experience, developing critical skills, and emphasising the inter-disciplinary nature of the course.

- Presentation skills are developed through student-led seminars, presentations to your fellow students for some of the assessments.

Studying on this course will give you in-depth knowledge of cancer from the molecular level to the personal, social, societal and international levels. In doing so, you will draw on knowledge from life sciences, psychology, sociology, history, and the health care professions. This means that the course requires a flexible mind and a willingness to see familiar subjects in challenging new ways.
This course does not provide a specialised clinical training in medicine or any other health profession, but it does provide professionals with an opportunity to develop a deeper understanding of the nature of cancer.

Approach to assessment

Assessment is designed to ensure that you develop and demonstrate the required knowledge and skills to successfully complete your programme. Types of assessments within your programme are varied and appropriate for individual module and programme learning outcomes and content, the academic standard expected and different learning styles.

Assessment is mainly by essay writing, helping you to develop high levels of critical analysis, original thinking and clarity of expression.

Assessments are used to give you an opportunity to demonstrate your knowledge as well as the critical and reflective analysis required for professional practice. You will be given the opportunity to submit draft work for feedback and formative assessment.

Endorsements

Sir Paul Nurse (Nobel Laureate and former chief executive of Cancer Research UK)

"Students on this course will gain important insights into the nature of cancer research and its broader implications. As the influence of science on society continues to grow, such insights are as important to scientists as they are to the wider public."

Jon Snow (Journalist, broadcaster and former Chancellor of Oxford Brookes University)

"Cancer and how it is dealt with needs to be seen in its wider social and political context. Oxford Brookes University provides a great environment in which students can engage with these issues."

Attendance pattern

Most modules on the programme involve attendance in the classroom once a week over a 12-week semester period.

How this course helps you develop

You will be given opportunities to develop your academic abilities at master's level, including critical reading and writing skills, digital literacy, communication and teamwork skills. Your contact with other students from different disciplines will provide you with networks that may be of value to you in the development of your future career.

Careers

You will be provided with additional knowledge and expertise to enable you to pursue your chosen career, whether this is in the biological, social sciences or humanities.

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

Cancer research is a key focus and the department hosts the prestigious HRH Prince Sultan Chair in Cancer Care. This is a very exciting addition to our portfolio, as it enables us to play a leading role in research development and education to improve the experience of patients undergoing cancer treatment and palliative care.

In the Research Excellence Framework (REF) 2014, 98% of our research in Allied Health Professions, Dentistry, Nursing and Pharmacy was rated as internationally recognised, with 82% being world leading or internationally excellent. The university has been careful to nurture emerging research strengths, and the international standing achieved by subjects allied to health demonstrates significant progress since 2008.

Read less
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research. Read more
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research.

You will learn how research in this area has advanced the treatment and diagnoses of cancer, and gain knowledge of how new therapies are developed, evaluated and implemented.

You will gain a thorough knowledge of research methodologies and laboratory techniques, which you will fully utilise in the laboratory research project stage. The valuable research experience you will gain from working with leading cancer experts, will give you a solid foundation upon which a future career in scientific research can be built.

Compulsory Modules

• Biological Therapies
• Cancer Biology
• Cancer Pharmacology
• Drug Development
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Pathology of Cancer
• Research Lab Skills
• Research Methods

Elective Modules

• Cancer Prevention & Screening
• Paediatric & Adolescent Oncology

Core Module for MSc

• Lab project


Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to. -Be fluent in medical sciences and clinical practice from the point of view of a researcher. Read more
Upon graduation from the Master’s Programme in Translational Medicine (TRANSMED) you can be expected to:
-Be fluent in medical sciences and clinical practice from the point of view of a researcher.
-Be familiar with up-to-date translational research methodologies.
-Be adept at scientific reasoning and critical analysis of scientific literature.
-Acknowledge the regulatory and ethical aspects of biomedical and clinical research.
-Have mastered scientific and medical terminologies.
-Have excellent communication and interpersonal skills, enabling you to find employment in an international and interdisciplinary professional setting.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The TRANSMED studies are built upon three core educational themes:
Development of Research Skills
These include an introduction to current methodologies, which are further developed during a training period in a research group; research ethics: principles of clinical investigation; and writing of research or grant proposals.

Studies in Human Disease
These range from normal human physiology and anatomy, and basic biomedical courses, to more specialised studies covering various topics pertinent to the specialist option. You supplement these studies with clinical rounds, during which you have an opportunity to study selected patient cases in hospital wards, under the supervision of a clinician mentor.

Development of Communication Skills
These are promoted throughout the curriculum, through utilisation of interactive approaches and discussions, problem-based learning and oral presentations. The multidisciplinary TRANSMED community encompasses a wide range of educational backgrounds and provides ample opportunities for direct interactions with medical students, science and clinical teachers to enable you to practice and adopt interdisciplinary communication skills. At the end of the course of study, your communication skills will be evaluated in the final exam, during which you will orally present your research plan to expert examiners.

Selection of the Majors

The major of the programme is Translational medicine. During your first study year you can choose any of the five available specialisation options. These options and their specific goals are:
Neuroscience and Psychobiology
-To acquire knowledge on research methodology and state-of-the-art information in systems and cognitive neuroscience, as well as in clinical neuropsychology.
-To learn to produce new scientific information in the fields of psychobiology of human life, health, and stress, and to transfer the results between basic research and clinical settings.

Cancer
-To acquire basic knowledge of the principles of neoplastic growth, cancer progression and dissemination.
-To acquire basic understanding of the interplay between different cell types during neoplastic growth.
-To acquire knowledge of major research methodologies and disease models in cancer biology.

Regenerative Medicine
-To understand the principles of developmental and stem cell biology and regenerative pharmacology as the basis of regenerative therapies.
-To be familiar with the major technologies applied in regenerative medicine, including tissue engineering, cell and organ transplantation and transplantation immunology.
-To understand the ethical principles of clinical translation of basic research and application of regenerative medicine therapies.

Metabolic Disorders
-To be able to understand the basic metabolic pathways.
-To understand the pathophysiology of metabolic disorders such as diabetes mellitus, insulin resistance, metabolic syndrome and obesity.
-To be able to use genetic knowledge as a basis for prediction, diagnosis and treatment of metabolic disorders.

Cross-Disciplinary Translational Medicine
-To achieve a broad understanding of topics and methods in the field of Translational medicine.

Programme Structure

The scope of the programme is 120 credits (ECTS) and can be completed within two academic years (60 ECTS / year).

The Master of Science in Translational medicine degree includes 60 ECTS of advanced and 60 ECTS of other studies. Both of these include both obligatory and optional studies.

The majority of the advanced studies are related to the chosen specialist option and include:
-Master’s thesis (30 ECTS)
-Placement in a research group for learning advanced methods in your selected field of study
-Methodological and human health and disease-related courses
-Clinical rounds in Helsinki University Central Hospital (HUCH) clinics
-Final examination in your field of specialisation

The other studies include e.g.
-Article analysis, scientific writing and presentation
-Biomedicine and introductory courses in research methods
-Career planning and orientation
-Individual study coaching and personal study plans
-Research ethics

You can select the optional courses based on your personal interests, or to support your chosen specialisation option. You can also include courses from other suitable Master’s programmes at the University of Helsinki, such as:
-Life Science Informatics
-Genetics and molecular biosciences
-Neuroscience
-Human Nutrition and Food Behaviour

You can also include studies in other universities under the flexible study right-agreement (JOO).

Career Prospects

The Master of Science in Translational medicine degree provides excellent opportunities to apply for and attend postgraduate studies. Currently, 50% of TRANSMED graduates are continuing their studies in doctoral programmes, either at the University of Helsinki or abroad.

TRANSMED graduates are also highly valued in the private sector. Around 35% of graduates have been employed directly by bioindustry, pharma or other health sector enterprises either in Finland or abroad. Titles include product manager, product specialist, personalised health care manager etc. All such enterprises usually recruit both at the graduate (MSc) and postgraduate (PhD) levels.

The health and health technology sectors represent a rapidly emerging field, and one of the areas with a growing importance as the population ages and the costs of new therapies steadily increase. Thus, the demand for well-trained specialists in the field of translational medicine is likely to increase in the near future, providing excellent career prospects globally.

Internationalization

The Translational Medicine major is only available in this international programme, making the programme attractive to both Finnish and international students. Indeed, opportunities for personal interaction with students from different cultures are an integral feature of the studies. During your studies, you can also volunteer to act as a tutor for the incoming international students.

The international research community in The Academic Medical Centre Helsinki actively participates in teaching in TRANSMED. You complete the research group practice for your Master’s thesis in multicultural research groups.

It is also possible to complete your Master’s thesis work or research group placement abroad, or to include coursework done at a foreign university.

Research Focus

The specialisation options of the programme – Neuroscience and psychobiology, Cancer, Regenerative medicine, Metabolic disorders, and Cross-disciplinary translational medicine – are closely aligned with the research focus areas of the Faculty of Medicine: malignancy, inflammation, metabolism, degenerative processes as well as psychiatric disorders and their mechanisms. You therefore have an opportunity to learn from, and be supervised by, the leading experts and professors in their fields.

Read less

Show 10 15 30 per page



Cookie Policy    X