• University of Leeds Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of London International Programmes Featured Masters Courses
Cass Business School Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Reading Featured Masters Courses
University of London International Programmes Featured Masters Courses
"cancer" AND "medicine"×
0 miles

Masters Degrees (Cancer Medicine)

We have 227 Masters Degrees (Cancer Medicine)

  • "cancer" AND "medicine" ×
  • clear all
Showing 1 to 15 of 227
Order by 
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more

Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. You'll gain practical experience through two six-month laboratory rotations. 

Key benefits

  • A unique research programme that includes the study of advanced imaging methods and tumour immunology.
  • The sponsoring laboratories and departments all have international standing and closely supervise research trainees throughout the study programme.
  • This programme is a competitive course to support PhD applications and continued translational and medical training.  

Description

The Translational Cancer Medicine MRes study pathway offers unique opportunities for you to join experienced research teams and work on particular projects from the outset. This course will allow you to develop an in-depth understanding of research methods, and of how theoretical academic studies and skills relate to research projects.

You will explore Fundamentals of Translational Cancer Medicine, providing you with advanced knowledge and skills to conceptualise, design, conduct and critically appraise specialist research. You will gain hands on research experience in two six month lab projects. 

Course format and assessment

Teaching

We use lectures, seminars and group meetings to deliver most of the modules on the course. 

On average teaching consists of:

  • 40 hours of lectures
  • 1.5 – 3 hours per week of Lab/group meetings (depending on projects)
  • supervision/feedback during each lab roation

You will also be expected to undertake a significant amount of independent study.

Typically, 1 credit equates to ten hours of work.

Throughout the year, you will also attend literature reviews and journal clubs that the labs/departments organise, as well as any other internal or external seminars deemed relevant to your projects/assignments.

Assessment

The primary method of assessment for this course is a combination of written essays, a thesis (research report), a presentation/Q&A session regarding the research report and a draft of a scientific paper.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However, they are subject to change. 

Extra information

Occupational health clearance will be required for some of the projects.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.



Read less
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. Read more
Recognising the need for the development of a cohort of appropriately qualified scientific, medical/dental and veterinary graduates, we are offering a research intensive, student-oriented MRes in Translational Medicine. The MRes in Translational Medicine provides high quality graduates with the research rigour, the innovation culture and the leadership skills to be at the forefront of this translational revolution and so develop a cohort of appropriately qualified scientific medical/dental and veterinary graduates.

Translational Medicine allows experimental findings in the research laboratory to be converted into real benefit for the health and well-being of the patient, through the development of new innovative diagnostic tools and therapeutic approaches.

The main objective of the MRes Programme in Translational Medicine is to provide high quality candidates with the research rigour, innovation culture and the leadership skills to be at the forefront of this translational revolution. Students will receive expert training in all aspects of translational medicine including how new experimental findings are translated into treatments for patients; the experimental steps in the process, the development of innovative solutions, management and leadership skills and an appreciation of marketing and financial aspects of translational medicine through interaction with business leaders and scientists from Biotech and Pharmacy

This research intensive programme incorporates a 38 week research project in an area selected by the student in consultation with the research project co-ordinator. student selected area.

QUB has an international reputation in translational medicine, achieved through the recognised metrics of high impact peer review publications, significant international research funding, the generation of exploitable novel intellectual property and the establishment of successful spin-out biotech companies. This ethos of innovation was recently recognised with the award of the Times Higher Education Entrepreneurial University of the Year.

This unique course offers students the chance to choose one of these three research streams with the indicated specialist modules:

-

Precision Cancer Medicine

This stream provides students with a unique opportunity to study cancer biology and perform innovative cancer research within the Centre for Cancer Research and Cell Biology (CCRCB). Prospective students are immersed in this precision medicine milieu from Day 1, providing for them the opportunity to understand the key principles in discovery cancer biology and how these research advances are translated for the benefit of cancer patients. The strong connectivity with both the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also opening up potential doors for the student's future career.

-

Cardiovascular Medicine

This stream contains two complementary modules which significantly build on the foundation provided by undergraduate medicine or biomedical science to provide students with an advanced insight into current understanding of cardiovascular pathobiology and an appreciation of how this knowledge is being applied in the search for novel diagnostic, prognostic and therapeutic approaches for the clinical management of cardiovascular disease, which remains the leading cause of death worldwide. Students who select the Cardiovascular Medicine Stream will be taught and mentored within the Centre for Experimental Medicine which is a brand new, purpose-built institute (~7400m2) at the heart of the Health Sciences Campus. This building represents a significant investment (~£32m) by the University and boasts state-of-the-art research facilities which are supported by a world-leading research-intensive faculty, ensuring that all of our postgraduate students are exposed to a top quality training experience.

-

Inflammation, infection and Immunity

This stream exposes students to exciting concepts and their application in the field of infection biology, inflammatory processes and the role of immunity in health and disease. There will be detailed consideration of the role of the immune system in host defence and in disease. There is a strong emphasis is on current developments in this rapidly progressing field of translational medicine. Students learn how to manipulate the inflammatory/immune response and their interaction with microbes to identify, modify and prevent disease. Students will also be introduced to the concepts of clinical trials for new therapeutics, and the basic approach to designing a trial to test novel methods to diagnose/prevent or treat illness.

Read less
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology. Read more
The course will provide a robust and wide-reaching education in fundamental and applied cancer biology, and focused training in laboratory research and associated methodology.

Why study Cancer Biology at Dundee?

The MRes Cancer Biology is a research-centred taught Masters programme providing a focused training in molecular cancer research. It covers both the fundamental and translational science of carcinogenesis, cancer biology, diagnosis and therapy.

The programme delivers outstanding research-focused teaching from internationally-renowned scientists and clinicians.

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities. In 2009 the university became the first Scottish university to be awarded Cancer Centre status by the CRUK.

What's so good about studying Cancer Biology at Dundee?

The MRes Cancer Biology has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

Areas of particular strength at the University of Dundee are in surgical oncology for breast and colon cancer, radiation biology and clinical oncology, skin cancer and pharmacogenomics. Areas of strength in basic cancer biology are DNA replication, chromosome biology and the cell cycle, cell signalling and targets for drug discovery.

Teaching and Assessment

This course is taught by staff based in the College of Medicine, Dentistry and Nursing and the School of Life Sciences.

The MRes will be taught full-time over one year (September to August).

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

The MRes degree course is taught full-time over three semesters.

The first semester provides in-depth teaching and directed study on the molecular biology of cancer, and covers:

Basic cell and molecular biology, and introduction to cancer biology
Cell proliferation, cell signalling and cancer
Cancer cell biology
Carcinogenesis, cancer treatment and prevention
Specific training in research methodology and critical analysis

Students will also be required to take part in a journal club to further develop their critical review skills.

In semesters two and three students will be individually guided to focus on a specific cancer research topic which will be the subject of a literature review and associated laboratory research project. The research project is based in laboratories with state-of-the-art facilities, and under the leadership of world-class researchers.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Places on the course are limited, so early applications are strongly encouraged.
Apply early to avoid disappointment.
Follow us on Twitter to keep up with news from the MRes Cancer Biology @Mrescancerbiol

Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more

The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

About this degree

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules

  • Basic Biology and Cancer Genetics
  • Cancer Therapeutics

Specialist modules

  • Behavioural Science and Cancer
  • Biomarkers in Cancer
  • Cancer Clinical Trials
  • Haematological Malignancies and Gene Therapy

Dissertation/report

All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning

Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Further information on modules and degree structure is available on the department website: Cancer MSc

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Employability

Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Cancer Institute

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Access advanced technology and approaches being used in cancer biology

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will perform novel laboratory-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings.

The course comprises both theoretical and practical elements, embracing cutting-edge developments in the field. You will experience some of the most technologically advanced approaches currently being applied to the broad field of cancer research.

As the taught component of the MRes is short, you will be expected to have sufficient lab experience in order to be able you to hit the ground running when you enter the lab.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work then we would welcome an application from you!

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing.

This is followed by two separate research placements of roughly 20 weeks each within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. Read more

Research training at the computational/clinical translational science interface

If you're looking for a career in the fight against cancer - this is the course for you. This full-time MRes offers two research projects to give your future career in cancer biology a boost. With two streams on offer – Cancer Biology, and Cancer Informatics – we have the options available for you to choose the best way for you to use your life-sciences degree to meet your objective. We will provide you with a broad-training in research as well as theoretical and practical skills to help you take the next step in your career.

Streams

There are two streams available:

•Cancer Biology - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology/
•Cancer Informatics - http://www.imperial.ac.uk/medicine/study/postgraduate/masters-programmes/mres-cancer-biology-cancer-informatics/

Is this programme for you?

You will engage with both theoretical and practical elements. The theoretical elements will include why particular methods are used, assumptions they are based on and understanding the technical limitations and quality control of different data types. The practical elements will include data handling and the computational method employed for each data type.

When you enter your projects, you will perform novel bioinformatics-based research, accumulate experimental findings and exercise critical scientific thought in the interpretation of those findings. The research projects may also include a smaller component of wet-lab experiments to provide some validation of the findings from the bioinformatics research.

You will need to be an independent person, who is looking for a challenge. If you're not afraid of hard work, then we would welcome an application from you.

Application

Decisions on applications are made in batches, with the following deadlines for each batch:
•09:00 GMT (UTC) Tuesday, 31 January 2017
•09:00 BST (UTC+1) Wednesday, 26 April 2017
•09:00 BST (UTC+1) Monday, 31 July 2017

You will receive notification of a conditional offer or rejection in the weeks following these deadlines. If you do not hear from us, it is because you have been placed on the waiting list. We withhold the right to close application early, so ensure that you submit your application sooner, rather than later.

Please note that we are unable to consider your application without at least one academic reference from your most recent institution.

Programme structure

The course comprises an initial four/five week taught component in which the cellular and molecular basis of cancer biology are covered, plus an introduction to the clinical and pathological aspects of carcinogenesis. This information is contained within the lectures which will partly be on the lecturer's own research, making use of the excellent researchers we have within Imperial College London. Within this period will also be a series of workshops covering key transferable skills such as oral presentation of scientific data and grant writing. This is shared with the Cancer Biology stream.

While the Cancer Biology stream move into their first project, you will receive three weeks of specialist training in informatics which is comprised of lectures and workshops. You will then complete an initial assignment before beginning your first research placement of roughly 16 weeks, and then a second project of roughly 20 weeks. These will be within the recently created Imperial College Cancer Research UK Centre, the Faculty of Medicine at the Hammersmith Hospital campus of Imperial College, and other collaborating institutes across London (e.g. Institute of Clinical Sciences, The Francis Crick Institute).

Read less
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. Read more
This is the only MRes programme in the UK with a specific focus on oral cancer. It provides a robust and wide-reaching education in both fundamental and applied cancer biology, together with focused training in laboratory research and associated methodology. There is a particular focus on oral cancer, its aetiology, diagnosis and management.

Why study Oral Cancer at Dundee?

Dundee University is internationally renowned for the quality of its cancer research and has over 50 cancer research groups: current funding for cancer research is about £40 million from research councils and charities.

This course offers a Masters level postgraduate education in the knowledge and understanding of molecular aspects of cancer with a particular emphasis on oral cancer, its aetiology, diagnosis and management. We offer outstanding research-focused teaching from internationally-renowned scientists and clinicians.

The MRes Oral Cancer will also provide you with considerable experience in the design and execution of a substantive laboratory-focused research project in the field of molecular oncology.

Throughout the course, you can also take part in journal clubs to develop your critical analytical skills. In addition, you will be given comprehensive training in academic writing and presentation skills.

What's so good about studying Oral Cancer at Dundee?

The MRes Oral Cancer has been developed from the innovative collaboration between the College of Medicine, Dentistry and Nursing and the School of Life Sciences, and it complements the establishment of the Cancer Research UK (CRUK) Centre here in Dundee.

The Dundee Cancer Centre aims to enhance cancer research and apply discoveries to improve patient care. Key to this is training the next generation of cancer researchers.

How you will be taught

The course will be taught through a combination of face-to-face lectures, tutorials, discussion group work and journal clubs, self-directed study and supervised laboratory research.

What you will study

Semester one will provide in-depth teaching and directed study on the molecular biology of cancer, with a particular emphasis on oral cancer, and comprises five compulsory modules plus a mandatory course introduction/orientation:

Module 1: Cell Proliferation and Cancer
Module 1a: Research Techniques
Module 2: Cell Signalling and Cancer
Module 3: Cancer Cell Biology
Module 4: Oral Cancer: Aetiology, Diagnosis and Management

Following the successful completion of the taught modules 1-4, students will be guided to focus on a specific research project, which, after completion of a series of practical classes and a relevant literature review, will be carried out in semester 2 and throughout the remainder of the year.

How you will be assessed

Modules 1-4 will be assessed by examination (60%) and coursework (40%). The research project will be assessed by coursework and oral examination (100%).

Careers

The course is aimed primarily at early career dentists and has been designed to prepare participants for clinical academic research careers. Upon graduating, participants will be ideally positioned to continue to postgraduate study, at PhD level.

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of treating cancer.

This will be underpinned by a thorough knowledge of cancer biology and pathology and research methodologies.

This knowledge will provide an excellent grounding in the development, use and evaluation of cancer therapies, which will enhance career prospects in many areas of early phase clinical trials and clinical drug development in the cancer setting.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Molecular Diagnostic & Therapeutics
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Genomic Approaches to Human Diseases
• Paediatric & Adolescent Oncology
• Pathology of Cancer

Core Module for MSc

• Dissertation.

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

Find out more about the BCI at http://www.bci.qmul.ac.uk/study-with-us

Read less
This MSc course offers an innovative interdisciplinary perspective on the study of cancer. Three core modules encompass biological and social sciences. Read more
This MSc course offers an innovative interdisciplinary perspective on the study of cancer.

Three core modules encompass biological and social sciences. These equip you to apply key theories and concepts critically, and to develop the skills required to engage in debates about the impact of cancer on the individual, the family and society.

A wide range of additional modules offers the opportunity to examine aspects of cancer in greater detail from different perspectives, ranging from professional practice to historical perspectives, from epidemiological and medical research to biotechnology.

See the website http://www.brookes.ac.uk/courses/postgraduate/cancer-studies/

Why choose this course?

- Our lecturers maintain excellent practice links in their specialist areas locally, regionally and nationally.

- You will have access to state-of-the-art clinical skills simulation suites and resources.

- The department hosts the prestigious HRH Prince Sultan Chair in Cancer Care and the Cancer Care research group.

- In the Research Excellence Framework (REF) 2014, 98% of our research in Allied Health Professions, Dentistry, Nursing and Pharmacy was rated as internationally recognised, with 82% being world leading or internationally excellent.

- You will be undertaking advanced study in Oxford, which has a new Cancer Centre and a range of expert practitioners working in the cancer field.

- "Students on this course will gain important insights into the nature of cancer research and its broader implications." Sir Paul Nurse

Teaching and learning

You will be given opportunities to be involved in all aspects of your programme - its management and delivery.

Different students will bring varied experiences and cultures and will be encouraged to share these with each other. You will be expected to take responsibility for your own learning and also to contribute to the learning of your fellow students.

The programme includes a taught element, informed by relevant national and international research and evidence-based literature, designed to be a starting point for critical reading and reflection. Mutual support between students enhances the learning experience and will be strongly encouraged.

In order to make the most of the range of experience, skills and knowledge within the group, a variety of teaching and learning strategies will be employed.
- Lectures introduce you to new areas of study and provide the context for further independent reading and practical work.

- Group activities (eg seminars, workshops, presentations) are used as a means of sharing knowledge and experience, developing critical skills, and emphasising the inter-disciplinary nature of the course.

- Presentation skills are developed through student-led seminars, presentations to your fellow students for some of the assessments.

Studying on this course will give you in-depth knowledge of cancer from the molecular level to the personal, social, societal and international levels. In doing so, you will draw on knowledge from life sciences, psychology, sociology, history, and the health care professions. This means that the course requires a flexible mind and a willingness to see familiar subjects in challenging new ways.
This course does not provide a specialised clinical training in medicine or any other health profession, but it does provide professionals with an opportunity to develop a deeper understanding of the nature of cancer.

Approach to assessment

Assessment is designed to ensure that you develop and demonstrate the required knowledge and skills to successfully complete your programme. Types of assessments within your programme are varied and appropriate for individual module and programme learning outcomes and content, the academic standard expected and different learning styles.

Assessment is mainly by essay writing, helping you to develop high levels of critical analysis, original thinking and clarity of expression.

Assessments are used to give you an opportunity to demonstrate your knowledge as well as the critical and reflective analysis required for professional practice. You will be given the opportunity to submit draft work for feedback and formative assessment.

Endorsements

Sir Paul Nurse (Nobel Laureate and former chief executive of Cancer Research UK)

"Students on this course will gain important insights into the nature of cancer research and its broader implications. As the influence of science on society continues to grow, such insights are as important to scientists as they are to the wider public."

Jon Snow (Journalist, broadcaster and former Chancellor of Oxford Brookes University)

"Cancer and how it is dealt with needs to be seen in its wider social and political context. Oxford Brookes University provides a great environment in which students can engage with these issues."

Attendance pattern

Most modules on the programme involve attendance in the classroom once a week over a 12-week semester period.

How this course helps you develop

You will be given opportunities to develop your academic abilities at master's level, including critical reading and writing skills, digital literacy, communication and teamwork skills. Your contact with other students from different disciplines will provide you with networks that may be of value to you in the development of your future career.

Careers

You will be provided with additional knowledge and expertise to enable you to pursue your chosen career, whether this is in the biological, social sciences or humanities.

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

Cancer research is a key focus and the department hosts the prestigious HRH Prince Sultan Chair in Cancer Care. This is a very exciting addition to our portfolio, as it enables us to play a leading role in research development and education to improve the experience of patients undergoing cancer treatment and palliative care.

In the Research Excellence Framework (REF) 2014, 98% of our research in Allied Health Professions, Dentistry, Nursing and Pharmacy was rated as internationally recognised, with 82% being world leading or internationally excellent. The university has been careful to nurture emerging research strengths, and the international standing achieved by subjects allied to health demonstrates significant progress since 2008.

Read less
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research. Read more
This programme aims to provide you with a clear understanding of molecular and cellular biology that is fundamental to cancer biology and cancer research.

You will learn how research in this area has advanced the treatment and diagnoses of cancer, and gain knowledge of how new therapies are developed, evaluated and implemented.

You will gain a thorough knowledge of research methodologies and laboratory techniques, which you will fully utilise in the laboratory research project stage. The valuable research experience you will gain from working with leading cancer experts, will give you a solid foundation upon which a future career in scientific research can be built.

Compulsory Modules

• Biological Therapies
• Cancer Biology
• Cancer Pharmacology
• Drug Development
• Genomic Approaches to Human Diseases
• Molecular Diagnostic & Therapeutics
• Pathology of Cancer
• Research Lab Skills
• Research Methods

Elective Modules

• Cancer Prevention & Screening
• Paediatric & Adolescent Oncology

Core Module for MSc

• Lab project


Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, our programmes are all taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
The overall aims of the programme are to. - provide professionally relevant teaching and learning informed by research in an integrated clinical and research environment;. Read more
The overall aims of the programme are to:

- provide professionally relevant teaching and learning informed by research in an integrated clinical and research environment;
- develop and create a cohort of doctors and other professionals allied to medicine able to pursue and develop their roles in a rapidly-changing and challenging environment of genomic medicine;
- prepare healthcare professionals for the adoption of genomic technologies and the increasing use of genomic information as part of the diagnostic and treatment pathway;
- develop a cohort of doctors and other professionals allied to medicine with the confidence to lead service improvement for safe and high quality patient care, and with the required knowledge, skills and capability to have a positive personal impact on the work of others;
- develop a cohort of doctors and other professionals allied to medicine with an understanding of research methodologies and clinical opportunities relevant to genomic medicine;
- encourage a commitment to intellectual challenge and evidence-based clinical practice informed by the latest conceptual and theoretical knowledge of genomic medicine;
- develop students' intellectual, practical and transferable skills related to genomic medicine;
encourage critical thinking related to genomic medicine;
- conduct systematic research relevant to their professional practice.

See the website http://www.graduate.study.cam.ac.uk/courses/directory/cvmgmpgnm

Learning Outcomes

The over-arching learning outcomes are:

- Knowledge and understanding -

- To enhance the students’ knowledge and critical understanding of recent developments in genomic medicine relevant to their present and future roles.
- To develop students’ knowledge and understanding of genomic medicine informed by research in a rapidly-changing integrated clinical and research environment.
- To enable deployment of new knowledge in their clinical practice, and to have a positive personal impact on the work of others in their clinical team and wider service.
- To develop an understanding of genomic technologies and to be able to use genomic information as part of the diagnostic and treatment pathway.
- To develop students’ knowledge so that they have the confidence to lead service improvement for safe and high quality patient care.
- To update and extend students’ understanding of research methodologies and clinical opportunities.
- To demonstrate knowledge, abilities and skills to engage in focused, professionally-relevant, independent learning, and through the production of a dissertation.

- Skills and other attributes -

- The skills necessary to locate, read, interpret and analyse primary and secondary sources of material enabling the development of a conceptual and theoretical understanding of recent developments in genomic medicine.
- Skills to evaluate current scholarship and research critically and to place this knowledge within the context of their own situation and practice as clinical leaders.
- The ability to formulate a research topic relevant to their clinical context, to collect and analyse primary and/or secondary sources of data, and to undertake professionally relevant research.
- The facility to communicate the results of their ideas, research and its conclusions in a written form acceptable as a work of scholarship potentially publishable in a professional or academic journal.

Format

The MPhil comprises either:

- eight modules, plus a research project and associated dissertation of 10-12,000 words, or
- ten modules, plus a literature-based research project and associated dissertation of 5-6,000 words.

Students must complete seven Core Modules and one/three further modules chosen from a range of Option Modules, with additional between-module reflection, study and assignment work.

The modules are structured as follows:

- Core Module 1: An introduction to human genetics and genomics
- Core Module 2: Omics techniques and the application to genomic medicine
- Core Module 3: Genomics of common and rare disease
- Core Module 4: Molecular pathology of cancer and application in cancer diagnosis, screening, and treatment
- Core Module 5: Application of genomics to infectious disease
- Core Module 6: Pharmacogenetics and stratified healthcare
- Core Module 7: Bioinformatics, interpretation, and data quality assurance in genome analysis

Option modules will be selected from the following list. Not all options may be offered every year.

- Option Module 1: Ethical, Legal and Social Implications in applied genomics (ELSI) **
- Option Module 2: Counselling skills for genomics
- Option Module 3: Professional and research skills
- Option Module 4: Advanced Bioinformatics – from genomes to systems
- Option Module 5: Epigenetics and epigenomics
- Option Module 6: Expanding the content of the MPhil in genomic medicine with a workplace-based module

Each core module will involve around 30 hours of contact time, including lectures, group work and online teaching.

Placements

The research project element of the course may be undertaken in a number of scientific institutions, within and without the University. This may include the University's School of Clinical Medicine, the School of Biological Sciences, the European Bioinformatics Institute, Welcome Trust Sanger Institute and, subject to approval, other suitable research institutions.

Assessment

Students must submit a dissertation of 5-6,000 words or 10-12,000 words, depending on the options selected. This will be worth 1/6th or 1/3rd of the overall mark for the course, respectively.

For each of the taught modules, students must complete summative assignments of 2500-3500 words or equivalent (except where other methods of module assessment are indicated in individual module descriptions)

Each student is allocated a named supervisor, who will meet regularly with the student to discuss progress and provide feedback and support as required. Written supervision reports are accessed via the online supervision system. Students are given feedback on the assessments conducted at the end of each module.

All students will meet with the programme director on a termly basis to discuss progress and to provide their feedback on the course.

How to apply: http://www.graduate.study.cam.ac.uk/applying

Funding Opportunities

Funding is available from Health Education England to pay course fees for NHS employees wishing to apply for this course. Prospective students wishing to apply for HEE funding should refer to the application process published by HEE at http://www.genomicseducation.hee.nhs.uk/msc-funding-info/and ensure that access to this funding is approved before applying for the course.

General Funding Opportunities http://www.graduate.study.cam.ac.uk/finance/funding

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments.

This will be underpinned by a thorough knowledge of cancer biology and pathology, drug development and research methodologies.

This knowledge will provide you with a good grounding in oncology within a clinical setting which will enhance prospects for those wanting to pursue a clinical academic career.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Genomic Approaches to Human Diseases
• Imaging
• Paediatric & Adolescent Oncology
• Pathology of Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer

Core Module for MSc

• Dissertation

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, all our programmes are taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
Cell-to-cell signalling in development and disease. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme. Read more

Cell-to-cell signalling in development and disease

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme Cancer, Stem Cells and Developmental Biology combines research in three areas: oncology, molecular developmental biology and genetics. The focus is on molecular and cellular aspects of development and disease, utilising different model systems (mice, zebrafish, C. elegans, organoids and cell lines). The programme will guide you through the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

The right choice for you?

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions. If you have a specific interest in cancer, stem cells or developmental biology, this Master’s programme is the right choice for you. Cancer, Stem Cells and Developmental Biology offers you international, high ranked research training and education that builds on novel methodology in genomics, proteomics, metabolomics and bioinformatics technology applied to biomedical and developmental systems and processes.

What you’ll learn

In the Cancer, Stem Cells and Developmental Biology programme you will learn to focus on understanding processes underlying cancer and developmental biology using techniques and applications of post-genomic research, including microarray analysis, next generation sequencing, proteomics, metabolomics and advanced microscopy techniques. You explore research questions concerning embryonic growth, stem cells, signaling pathways, gene regulation, evolution and development in relation to health and disease using various model systems. As a Master’s student you will take theory courses and seminars, as well as master classes led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills.

Why study Cancer, Stem Cells and Developmental Biology at Utrecht University?

Compared to most other Master’s programmes in cancer and stem cell biology in the Netherlands, in Utrecht we offer:

  • Strong focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine
  • A unique emphasis on Developmental Biology, a process with many connections to cancer
  • The opportunity to carry out two extensive research projects at renowned research groups
  • An intensive collaboration with national and international research institutes, allowing you to do your internship at prestigious partner institutions all around the world

Career in Cancer, Stem Cells and Developmental Biology

As a MSc graduate trained in both fundamental and disease-oriented aspects of biomedical genetics you are in great demand. You’ll be prepared for PhD study in one of the participating or associated groups. Alternatively, leaving after obtaining your MSc degree you will profit from a solid education in molecular genetics, in addition to your specialised knowledge of developmental biology. You’ll find your way to biotechnology, the pharmaceutical industry or education.



Read less
MRes in Cancer Biology. Imperial College London. Dept of Histopathology. COURSE CODE. A3CB. http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/. Read more
MRes in Cancer Biology
Imperial College London
Dept of Histopathology
COURSE CODE: A3CB
http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/

Imperial College is ranked in the top five universities of the world, according to the 2007 Times Higher Education Supplement league tables.

This MRes is a 1-year full-time postgraduate course run by the Faculty of Medicine, Dept of Oncology at the Hammersmith Hospital Campus of Imperial College London.

This course is designed both for BSc graduates with a suitable first degree in subjects such as Life Sciences or Biomedical Sciences and clinicians specializing in cancer related fields including medical or clinical oncology wishing to undertake a research degree to further their career in academic medicine.

Course objectives:
1) To provide science or medical graduates with an excellent introduction to the cellular and molecular biological basis of cancer.
2) To enable students to experience some of the most technologically advanced and diverse approaches currently being applied in the broad field of cancer biology through two independent 19-week research projects within the Faculty of Medicine, Imperial College.
3) To introduce students to the research environment, develop the experimental expertise required to embark on an independent research career and provide training in key transferable skills including bioinformatics, and grant writing.
4) To facilitate interactions between clinical and non-clinical scientists, enabling the cross-fertilisation of ideas and approaches bringing about greater understanding and future productive collaboration between scientists with differing backgrounds.

Structure of the MRes in Cancer Biology:
The course comprises an initial eight week taught component in which the cellular and molecular basis of cancer biology are covered plus an introduction to the clinical and pathological aspects of carcinogenesis. Within this period will also be a series of workshops covering key transferable skills such as statistics, bioinformatics and grant writing. This is followed by two separate 19-week research placements in the Faculty of Medicine, Imperial College London.


Career opportunities:
The course is primarily designed to prepare students for an academic or industrial research career, with those students successfully completing the course ideally placed to apply for fellowships and register for a Ph.D.

Entrance requirements:
Applications are welcomed from candidates with a first degree in an appropriate medical or science subject. Candidates are normally expected to hold a good first degree (upper second class or better) from a UK university or an equivalent qualification if obtained outside the UK. In line with Imperial College policy, students for whom English is not their first language will be expected to pass the British council IELTS test at grade 6.0 or above, with a score of 5 or above I each component. An alternative is the TOEFL Internet Based Test (minimal score of 90 overall, with required scores of 20 in Speaking and 24 in Writing).

To apply for a place, go to
https://apply.embark.com/grad/imperial/
For application forms & information regarding course fees:
The Registry, Sherfield Building, Imperial College London, London SW7 2AZ

Places are extremely limited

For informal enquiries please see the course website below or contact the Course Organizer Dr Ernesto Yague at

http://www1.imperial.ac.uk/medicine/teaching/postgraduate/taughtcourses/mrescancerbiology/

Valuing diversity and committed to equality of opportunity
-----------------------------------------------
Home, EU and Overseas applicants hoping to start this course in October 2014 are eligible to apply for the Imperial Faculty of Medicine Master’s Degree Scholarships. This scheme offers a variety of awards, including full tuition payment and a generous stipend. For more information, please visit our website: http://www1.imperial.ac.uk/medicine/prospectivestudents/mastersdegreescholarships/

Read less

Show 10 15 30 per page



Cookie Policy    X