• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
King’s College London Featured Masters Courses
Ulster University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Bradford Featured Masters Courses
Northumbria University Featured Masters Courses
"cancer" AND "imaging"×
0 miles

Masters Degrees (Cancer Imaging)

  • "cancer" AND "imaging" ×
  • clear all
Showing 1 to 15 of 41
Order by 
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Read more
Translational Cancer Medicine enables you to gain detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging. Practical experience gained through two six-month laboratory rotations.

Key benefits

- The range of topics including advanced imaging methods is unique for this translational cancer programme

- The sponsoring laboratories and departments all have international standing and have agreed to closely supervise the trainees

- Recently released data from the Higher Education Funding Council for England (Hefce) shows that King’s College London is equal top in England (with Queen Mary, University of London) for its PhD completion rates. This programme will potentially select candidates for the PhD programme within the Division of Cancer Studies

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/translational-cancer-medicine-mres.aspx

Course detail

- Description -

Overview of subjects covered:

• Biomarkers, biostatistics and modelling
• Breast cancer
• Cancer bioinformatics
• Cancer imaging (optical)
• Cancer imaging (PET)
• Clinical trials and translational research
• Gene discovery through to therapeutic applications
• Haemato-oncology and associated genetics/genomics
• Immunology of cancers
• Molecular pathology
• Signal transduction in cancers

- Course purpose -

The programme will provide students with a detailed knowledge and understanding of research methods applied to rational drug design, clinical study design, molecular and cell biology, tumour immunology, genetics and cancer imaging, all of which are relevant to Translational Cancer Research. In addition, practical experience will be gained through two laboratory rotations of six months duration.

- Course format and assessment -

Work with 2 supervisors and their teams, 6 months in each lab

Assignments:

• 30 credit taught module:

2-3 weekly lectures during first 3 months

Throughout the year, students also attend literature reviews and journal clubs that their labs/departments organise and any other internal or external seminars deemed relevant to their projects/assignments.

The assessment for this module is an essay on the fundamentals and the overall concept of Translational Cancer Medicine

• 75 credit laboratory based research project 1:

Assessed by a written dissertation, a seminar presentation and an oral examination

• 75 credit laboratory based research project 2:

Assessed by a draft of a paper of the standard and format required by a scientific journal.

Career prospects

Future PhD studies. Clinical and non-clinical academic careers in cancer medicine.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. Read more
Imaging has contributed to some of the most significant advances in biomedicine and healthcare and this trend is accelerating. This MSc, taught by leading scientists and clinicians, will equip imaging students from all science backgrounds with detailed knowledge of the advanced imaging techniques which provide new insights into cellular, molecular and functional processes, preparing them for a PhD or a career in industry.

Degree information

Imaging is essential for diagnosis of disease and development of novel treatments. This programme focuses on translational medical imaging, and the development and use of preclinical imaging technologies to detect, monitor and prevent illnesses such as cancer, heart diseases and neurodegeneration. Students will undertake an independent research-based project in UCL’s world-class laboratories and develop their communication skills in biomedical science.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (120 credits), and a research dissertation (60 credits). A Postgraduate Diploma (120 credits, full-time) is offered. A Postgraduate Certificate (60 credits, full-time) is offered. There are no optional modules for this programme.

Core modules
-Advanced Biomedical Imaging Techniques I & II
-Practical Preclinical Research (including Home Office Personal Licence)
-Translational Biomedical Imaging of Disease and Therapy I & II
-Science Communication for Biomedicine
-Statistical Methods in Research
-Ethics and Regulation of Research

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of 7,000 words or a manuscript suitable for submission to a peer-reviewed journal.

Teaching and learning
The programme is delivered through a combination of seminars, lectures, laboratory work, site visits and practicals. Assessment is through examination, presentations, essays, practical reports and the dissertation.

Careers

UCL is involved in the dynamic and successful London-based entrepreneurial activity in biomedical imaging. It has a strong track record in placing postgraduates in key positions within industry (e.g. Siemens, Philips, GE Healthcare, GSK, SMEs and start-ups) and at other leading academic institutions with preclinical imaging facilities, including the Universities of Oxford and Cambridge in the UK, and MIT and NIH in the US. This MSc will provide ideal training for students who wish to apply to UCL’s EPSRC Centre for Doctoral Training in Medical Imaging.

Employability
This programme belongs to the School of Life and Medical Sciences; one of the largest and most prestigious aggregations of academics in its field, with a global reputation for teaching informed by cutting-edge research. Our close links with major hospitals and industry allow students to perform significant research projects.

Students will foster an awareness of the commercial opportunities and diverse funding mechanisms for the development of new ideas, technologies and applications using imaging. Our learning methods will prepare students for careers in academic or industrial science, as well as providing transferable skills in presentation, writing, organisation and team work.

The first cohort of students on the Advanced Biomedical Imaging MSc are due to graduate in 2016, therefore no information on graduate destinations is currently available.

Why study this degree at UCL?

UCL offers a world-class environment in medical imaging and hosts several medical and biomedical imaging centres of excellence.

The UCL Centre for Advanced Biomedical Imaging is one of the world’s most advanced imaging centres, with 11 state-of-the-art imaging technologies, and is dedicated to developing imaging techniques of the future. Biomedical imaging is an interdisciplinary field drawing together biology, medicine, physics, engineering, and art.

The MSc is linked to University College London Hospitals (UCLH), including Great Ormond Street Hospital, the UCH Macmillan Cancer Centre and National Hospital for Neurology and Neurosurgery. This will provide an ideal training for further research and applications for a PhD at UCL Centre for Doctoral Training in Medical Imaging.

Read less
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. Read more
If you want to pursue a research career in academia or industry, our MSc Cancer Biology will provide you with the essential advanced skills and knowledge for a role in biopharma, healthcare or cancer research. We offer many opportunities for you to explore medically relevant research in the School of Biological Sciences including hospital-based sessions through our collaboration with local cancer specialists and clinicians.

An important and exciting part of your programme is an extensive independent research project, based in one of our academic research groups using advanced laboratories facilities and bioinformatics tools. There are also opportunities for research projects to take place within an industrial or clinical setting.

Throughout the course, you develop your knowledge in the essential areas of molecular and cellular biology which complement your specialist modules in cancer biology. You gain expertise in areas including:
-Specific cancer types (including breast, prostate, pancreatic and colon cancer)
-Clinical aspects of cancer
-Emerging trends in cancer research

You are also trained in modern research methods and approaches which will develop your skills in complex biological data analysis and specific techniques in cancer research.

Within our School of Biological Sciences, two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you will learn from and work alongside our expert staff as you undertake your own research.

Our expert staff

We have a very strong research team in the area of cancer biology, who are well placed to deliver the specialist teaching on this course.

The team includes the course leader Professor Elena Klenova (molecular oncology and cancer biomarkers), Dr Ralf Zwacka (apoptotic and survival signalling in cancer), Dr Greg Brooke (steroid hormone receptor signalling in cancer), Dr Metodi Metodiev (clinical proteomics and bioinformatics), Dr Pradeepa Madapura (cancer epigenetics), Dr Vladimir Teif (computational and systems biology), Professor Nelson Fernandez (tumour immunology) and Dr Filippo Prischi (structural biology and biophysics of novel drug targets).

External experts also input to your teaching, including guest speakers from hospitals and research institutions, who deliver classes both on-campus and within the hospital environment.

As one of the largest schools at Essex, we offer a lively, friendly and supportive environment with research-led study and high-quality teaching, and you benefit from our academics’ wide range of expertise and research.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology and imaging biological systems. On our course you have the opportunity to:
-Study in an open and friendly department, with shared staff-student social spaces
-Carry out your research project in shared lab space, alongside PhD students and researchers engaged in cutting-edge cancer research
-Learn to use state-of-the-art research facilities, including an advanced microscopy suite, proteomics laboratory, cell culture, bioinformatics and genomics facilities, modern molecular biology laboratories, and protein structure analysis

Your future

Graduates who are skilled in the research methods embedded into your course are in demand from the biotechnology and biomedical research industries in this area of the UK and beyond.

Many of our Masters students progress to study for a PhD, and there are many opportunities within our school leading to a career in science.

We work with our University’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

-Advanced Cancer Biology
-Practical Skills in Cancer Research
-Gene Technology and Synthetic Biology
-Protein Technologies
-Professional Skills and the Business of Molecular Medicine
-Cancer Biology (optional)
-Research Project: MSc Cancer Biology
-Genomics (optional)
-Cell Signalling (optional)
-Molecular Medicine and Biotechnology (optional)
-Human Molecular Genetics (optional)
-Molecular and Developmental Immunology (optional)
-Creating and Growing a New Business Venture (optional)
-Rational Drug Design (optional)

Read less
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments. Read more
This programme aims to provide you with a clear understanding of the scientific basis underlying the principles and practice of clinical oncology and the development, evaluation and implementation of new treatments.

This will be underpinned by a thorough knowledge of cancer biology and pathology, drug development and research methodologies.

This knowledge will provide you with a good grounding in oncology within a clinical setting which will enhance prospects for those wanting to pursue a clinical academic career.

Compulsory Modules

• Ablative Therapies
• Cancer Biology
• Cancer Pharmacology
• Cancer Prevention & Screening
• Drug Development
• Genomic Approaches to Human Diseases
• Imaging
• Paediatric & Adolescent Oncology
• Pathology of Cancer
• Research Methods
• Site Specific Tumour Treatment

Elective Modules

• Biological Therapies
• Molecular Targeted Therapies and Immunotherapy for Blood Cancer

Core Module for MSc

• Dissertation

Barts Cancer Institute is a Cancer Research UK Centre of Excellence and one of the leading cancer institutes in the country.
Based in the heart of London, all our programmes are taught by experts in the field.

To find out more about BCI visit http://www.bci.qmul.ac.uk/study-with-us

Read less
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Read more
Medical imaging is a rapidly developing field of growing importance both in patient management and clinical decision making and in drug development and evaluation. Dramatic developments in imaging both anatomy and molecular processes, especially using Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and Magnetic Resonance Imaging (MRI). Research and development in the field is highly multi-disciplinary with key roles played by computing scientists and mathematicians, chemists, pharmacists, physicists, biologists, and of course clinicians. The Division of Imaging Sciences & Biomedical Engineering hosts a multidisciplinary team of academics directing a wide range of cutting-edge research projects, with an emphasis on translation “from bench to bedside”.

Key benefits

- Access to state of the art preclinical and clinical imaging facilities

- Clinically applied modules

- Two 4 month research projects within the Imaging Sciences’ Wellcome/EPSRC Medical Engineering Centre or CRUK/EPSRC Comprehensive Cancer Imaging Centre

- Research facilities based within a hospital environment enabling basic imaging science to be translated quickly into the clinic

- May constitute first year of a 4-year PhD

Visit the website: http://www.kcl.ac.uk/study/postgraduate/taught-courses/medical-imaging-sciences-mres.aspx

Course detail

- Description -

Medical Imaging Sciences aims to provide graduates of chemistry, physics, computing, mathematics, biology, pharmacy or medicine, with advanced training in the imaging field. Intended mainly as preparation for a PhD, but also serves as training for employment in hospitals and industry. Key components are two research projects, which may be linked around different aspects of a single research area in medical imaging.

- Course purpose -

Medical imaging is a rapidly expanding field that needs input from team members with knowledge and skills in these different areas (chemistry, physics, computing, mathematics, biology, pharmacy, medicine) to achieve its promise in improving patient care. The aim of this MRes programme is to provide students who have graduated in any of these subject areas with advanced training to prepare them to apply their specialist graduate skills in the imaging field. The programme is intended mainly as a preparation for a PhD in the field, at King's or elsewhere, but it also serves as training for employment in hospitals and industry.

- Course format and assessment -

Taught modules are presented in a variety of formats, including lectures, workshops, laboratory practicals, site visits etc. Assessment is based on coursework and examination.

Both research projects are carried out under the supervision of academics within the Division’s five departments (Biomedical Engineering; Cancer Imaging; Cardiovascular Imaging; Imaging Chemistry and Biology and Perinatal Imaging and Health). Some research projects may take place in a collaborating laboratory elsewhere in King's or at a collaborating institution.

Career prospects

Expected destinations are study for PhD, employment (research or service) in the NHS and commercial nuclear medicine services, the pharmaceutical or medical engineering industry.

How to apply: http://www.kcl.ac.uk/study/postgraduate/apply/taught-courses.aspx

About Postgraduate Study at King’s College London:

To study for a postgraduate degree at King’s College London is to study at the city’s most central university and at one of the top 20 universities worldwide (2015/16 QS World Rankings). Graduates will benefit from close connections with the UK’s professional, political, legal, commercial, scientific and cultural life, while the excellent reputation of our MA and MRes programmes ensures our postgraduate alumni are highly sought after by some of the world’s most prestigious employers. We provide graduates with skills that are highly valued in business, government, academia and the professions.

Scholarships & Funding:

All current PGT offer-holders and new PGT applicants are welcome to apply for the scholarships. For more information and to learn how to apply visit: http://www.kcl.ac.uk/study/pg/funding/sources

Free language tuition with the Modern Language Centre:

If you are studying for any postgraduate taught degree at King’s you can take a module from a choice of over 25 languages without any additional cost. Visit: http://www.kcl.ac.uk/mlc

Read less
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. Read more
This exciting new course is designed to equip future scientists with the knowledge to make a difference in the understanding and treatment of cancer. The course will take the mechanistic understanding of cancer biology and apply it to the analysis of risk, prevention, diagnosis, prognosis and therapy. Building on a foundation of the understanding of basic cancer cell biology, translational coverage will consider design of treatment modalities, mechanisms of action of anti-cancer drugs, therapy resistance and biomarker discovery. The course will allow the students to gain expertise and knowledge in therapy, cancer chemoprevention, anti-cancer target discovery, clinical trials, imaging, cancer risk and epidemiology and biostatistics. A key component of the course is a five/six-month research project, which will give students an opportunity to study one of these areas in depth.

Read less
Cancer is a major cause of mortality and morbidity worldwide. Approximately 300,000 people develop the disease each year in the UK. Read more
Cancer is a major cause of mortality and morbidity worldwide. Approximately 300,000 people develop the disease each year in the UK.

Understanding the basis of tumourigenesis and developing new therapies are high priority areas for investment, especially since the economic burden of cancer is increasing. The field of oncology encompasses a wide variety of biological and physical sciences.

The MRes in Oncology draws on the wide range of expertise in research and treatment within the Manchester Cancer Research Centre, the Cancer Research UK (CRUK) Manchester Institute and The Christie NHS Foundation Trust.

This comprises a unique grouping of basic, translational and clinical scientists of national and international renown.

This concentration of expertise offers high quality teaching on clinical and research aspects of cancer care from practising cancer clinicians and researchers, as well as access to an exceptional wide range of research projects.

Projects can be offered in basic cancer biology, translational areas, and in clinical cancer care and imaging.

This programme has both taught and research components and is suitable for those with little or no previous research experience.

Aims

Our MRes course aims to provide postgraduate level training that will equip you with the specialist knowledge and research skills to pursue a research career in the fields of medical and clinical oncology.

You will gain an understanding of the scientific basis of cancer and its treatments, as well as the skills needed to evaluate the potential efficacy of new treatments.

You will also be able to:
-Gain hands-on research experience
-Work with world-renowned experts
-Use state-of-the-art research equipment
-Publish your work and attend national and international conferences
-Be taught by speakers at the forefront of national and international cancer research
-Undertake laboratory or clinical-based research projects at the Christie Hospital site, the largest cancer centre in Europe with some of the UK's leading cancer researchers
-Enhance your research skills and gain confidence in your research abilities

Special features

This is one of only a handful of MRes Oncology courses that are available in the UK.

As such, it is expected that there will be a high demand for places on this course.

Unlike many other oncology courses, ours has both clinical and research elements, making it suitable for both medical undergraduates and graduates, as well as biomedical science graduates.

Teaching and learning

Our MRes is structured around a 2:1 split between laboratory/clinical-based research projects and taught elements.

Laboratory and clinical research experience is gained through two research placements, one lasting approximately ten weeks (October to December) and the second lasting approximately 25 weeks (January to August).

You may choose to carry out one project for both placements, which most students do, or separate projects for each placement.
Most research placements are based at the Christie site, either within the hospital or the CRUK Manchester Institute. Projects are also available on the Central Manchester University Hospitals site. A list of available projects will be provided to offer holders.

Coursework and assessment

Students are assessed through oral presentations, single best answer exams, written reports and a dissertation.

Read less
Please note. this programme is only available to home/EU students. Mammography exists in a changing professional environment and requires practitioners to continually update and review clinical practice. Read more
Please note: this programme is only available to home/EU students.

Choose Kingston's Radiography: Medical Imaging (Mammography) MSc

Mammography exists in a changing professional environment and requires practitioners to continually update and review clinical practice. These courses provide a flexible framework to prepare you for advanced practice by studying topics relevant to your needs and those of your clinical departments.

You may be granted credits for your previous academic and professional qualification through Accreditation of Prior Experiential Learning (APEL) scheme. You can take individual modules as 'free standing' as part of your continuing professional development (CPD). An independent work-based learning module enables you to study around your individual CPD and workplace needs.

What will you study?

You will study modules relating to breast cancer diagnosis, treatment and care; management; supervisory and assessment roles; quality issues; research methods and ethics; as well as taking a module of independent study to meet a particular professional need or interest.

Some of the modules are developed in partnership with the Jarvis National Breast Screening Training Centre and South West London (St George's) National Breast Screening Training Centre.

Assessment

Case studies; research protocols; dissertation; essays; portfolios; practical assessment; OSCE; reflective log book.

Course structure

The postgraduate admissions administrator will help you choose the most suitable combination of modules depending on your needs. Some of the modules are developed in partnership with a range of healthcare providers.

Please note that this is an indicative list of modules and is not intended as a definitive list.

Available modules
-Research and Evidence Based Practice in Healthcare (for PgDip)
-Dissertation (for MSc)
-Advanced Practice - Negotiated Independent Work Based Learning
-Advanced Principles and Practice of Breast Interventional Techniques
-Clinical Breast Examination and Client Communication
-Contemporary Practice In Breast Cancer Genetics and Diagnosis
-Cross-sectional Imaging - Diagnostic
-Interpretation and Reporting in Mammography
-PACS (Picture Archiving and Communication System) Administration
-Ultrasound of the Breast
-Management of Resources and Quality within Healthcare
-Professional Practice in Mammography 1 ^
-Professional Practice in Mammography 2 ^
-Practice Education and Mentorship+

Read less
Our research aims to enhance understanding of disease processes in animals and to translate that understanding into improved therapies for both animal and human disease. Read more

Research profile

Our research aims to enhance understanding of disease processes in animals and to translate that understanding into improved therapies for both animal and human disease.

Research focuses on:

the improvement of health and welfare of domestic animal species;
the protection of public health;
alleviation of human poverty (in the context of tropical diseases).
providing holistic solutions to global challenges in human and veterinary medicine and the livestock industry.
Most of our research is carried out within The Roslin Institute, which is incorporated with the School and is the major centre of research.

Training and support

Studentships are of 3 or 4 years duration and students will be expected to complete a novel piece of research which will advance our understanding of the field. To help them in this goal, students will be assigned a principal and assistant supervisor, both of whom will be active scientists at the Institute.

Student progress is monitored in accordance with School Postgraduate (PG) regulations by a PhD thesis committee (which includes an independent external assessor and chair). There is also dedicated secretarial support to assist these committees and the students with regard to University and Institute matters.

All student matters are overseen by the Schools PG studies committee. An active staff:student liaison committee and a social committee, which is headed by our postgraduate liaison officer, provide additional support.

Students are expected to attend a number of generic training courses offered by the Transkills Programme of the University and to participate in regular seminars and laboratory progress meetings. All students will also be expected to present their data at national and international meetings throughout their period of study.

Facilities

The Veterinary Campus at Easter Bush includes the new “state-of- the-art” Roslin Institute Building, the Small Animal and Large Animal Hospitals, the Riddell-Swan Cancer Imaging Centre as well as the New Vet School. Our facilities include: rodent, bird and livestock animal units and associated lab areas; comprehensive bioinformatic and genomic capability; a range of bioimaging facilities; extensive molecular biology and cell biology labs; café and auditorium where we regularly host workshops and invited speakers.

Read less
The Royal (Dick) School of Veterinary Studies (R(D)SVS) Clinical Training Programmes provide an opportunity for qualified veterinary surgeons to undertake a period of advanced clinical training in a variety of disciplines under the guidance and supervision of Royal College of Veterinary Surgeons, European and American veterinary specialists. Read more

Research profile

The Royal (Dick) School of Veterinary Studies (R(D)SVS) Clinical Training Programmes provide an opportunity for qualified veterinary surgeons to undertake a period of advanced clinical training in a variety of disciplines under the guidance and supervision of Royal College of Veterinary Surgeons, European and American veterinary specialists.

Our Senior Clinical Training Programmes (residencies) are designed to train research-literate clinicians with specialist knowledge and expertise in their chosen field thereby giving them the opportunity to pursue career goals in teaching, research, clinical service and/or specialist practice. The majority of our programmes are approved by the relevant UK and European Colleges (see individual programmes).

The most recent UK RAE results confirm the College as the UK’s top research medical school and its top research veterinary medical school.

Our research aims to enhance understanding of disease processes in animals and to translate that understanding into improved therapies for both animal and human disease.

Facilities

The Royal (Dick) School of Veterinary Studies offers state of the art clinical facilities for the treatment of large and small animals in the Small Animal and Large Animal Hospitals and the Riddell-Swan Cancer Imaging Centre, with diagnostic support from our on-site Veterinary Pathology Unit.

The School also has excellent large and small animal and exotics first opinion practices as well as a working dairy farm.

How to apply

Applicants must email us before applying for this programme:


Read less
Radiography exists in a changing professional environment and requires practitioners to continually update and review clinical practice. Read more
Radiography exists in a changing professional environment and requires practitioners to continually update and review clinical practice. This course provides a flexible framework to prepare you for advanced practice by studying topics relevant to your needs and those of your clinical departments.

You may be granted credits for your previous academic and professional qualification through Accreditation of Prior Experiential Learning (APEL) scheme. An independent work-based learning module enables you to study around your individual CPD and workplace needs.

What will you study?

You will study modules relating to clinical roles, management, supervisory and assessment roles, quality issues, research methods and ethics, as well as taking a module of independent study to meet a particular professional need or interest.

Assessment

Case studies; research protocols; dissertation; essays; portfolios; practical assessment; OSCE; reflective log book.

Course structure

The postgraduate admissions administrator will help you to choose the most suitable combination of modules depending on your needs.

Please note that this is an indicative list of modules and is not intended as a definitive list.

Available modules
-Research and Evidence Based Practice in Healthcare (for PgDip)
-Dissertation (for MSc)
-Advanced Principles and Practice of Breast Interventional Techniques
-Advanced Practice - Negotiated Independent Work Based Learning
-Clinical Breast Examination and Client Communication
-Contemporary Practice In Breast Cancer Genetics and Diagnosis
-Cross-sectional Imaging - Diagnostic
-Interpretation and Reporting in Mammography
-Professional Practice in Mammography 1 ^
-Professional Practice in Mammography 2 ^
-Ultrasound of the Breast
-Management of Resources and Quality within Healthcare
-Practice Education and Mentorship+
-PACS (Picture Archiving and Communication System) Administration

Read less
As a practising therapeutic radiographer, this unique programme allows you to quickly and easily obtain a full masters qualification. Read more
As a practising therapeutic radiographer, this unique programme allows you to quickly and easily obtain a full masters qualification.

Having an MSc Radiotherapy will enable you to meet the standards expected by the profession and greatly enhance your career prospects.

To apply you must already have the Postgraduate Diploma in Radiotherapy from the University of Liverpool, or a pre-registration Postgraduate Diploma from a different UK university that confers eligibility to apply for registration as a therapeutic radiographer with the Health and Care Professions Council (HCPC). You should also have 12 to 18 months clinical work experience.

The MSc consists of one 60 credit dissertation. Your learning starts with a four day block workshop, which runs in September and January each year. You then complete your independent research project under the guidance of an appropriate supervisor. You can liaise with your research supervior to develop a study plan that works for you both e.g. face to face meetings, online meetings or a combination.

The Directorate staff have a very wide range of expertise including medical physics in radiotherapy, computer treatment planning, imaging in radiotherapy, general cancer care and strategic planning of cancer services locally and nationally. The Directorate also has its own CTSim, treatment planning system, a patient management information system and a virtual environment in radiotherapy (VERT) system. These facilities will allow supervisors to support students on the MSc in Radiotherapy in a diverse range of dissertations.

Completion of the MSc must be achievable within 6 years of the start of your pre-registration Postgraduate Diploma programme.

Why Radiotherapy?

Unique programmes

We are the only Russell Group University delivering Radiotherapy education programmes.

Clinical Placement Sites

Our clinical palcement sites are second to none. We have three Internationally renowned cancer centres: The Christie NHS Foundation Trust, the Clatterbridge Cancer Centre and Rosemere Cancer Centre.

Clinical and Academic experience

We use real, 21st century radiotherapy technologies.

State of the art facilities

Our state-of-the-art facilities include a CT scanner, Virtual Reality Radiotherapy Suite, Human Anatomy Resource Centre, Oncology Management System and Eclipse Treatment Planning System.

Successful students present work at national and international conferences

The best poster award at the annual Society and College of Radiographers Conference in 2015 went to a recent graduate of the MSc Radiotherapy. The poster was also accepted for the multi-disciplinary annual conference of the European Society for Radiotherapy and Oncology in 2015.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Clinical Science (Medical Physics) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Clinical Science (Medical Physics) at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Medical physicists fill a special niche in the health industry. The role includes opportunities for laboratory work, basic and applied research, management and teaching, which offers a uniquely diverse career path. In addition there is satisfaction in contributing directly to patient treatment and care.

This three-year programme in Clinical Science (Medical Physics), hosted by the College of Medicine, builds on an existing collaboration with the NHS in providing the primary route for attaining the professional title of Clinical Scientist in the field of Medical Physics.

Key Features of MSc in Clinical Science (Medical Physics)

The Clinical Science (Medical Physics) programme is accredited by the NHS and provides the academic component of the Scientist Training Programme for medical physics trainees, within the Modernising Scientific Careers framework defined by the UK Department of Health, and offers students the chance to specialise in either radiotherapy physics or radiation safety. This Master’s degree in Clinical Science (Medical Physics) is only suitable for trainees sponsored by an NHS or an equivalent health care provider.

The MSc in Clinical Science (Medical Physics) is modular in structure, supporting integration of the trainee within the workplace. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits of taught-course elements and a project that is worth 60 credits and culminates in a written dissertation.

The Clinical Science (Medical Physics) MSc is accredited by the Department of Health.

Modules

Modules on the Clinical Science (Medical Physics) MSc typically include:

• Introduction to Clinical Science
• Medical Imaging
• Nuclear Medicine and Diagnostic Imaging
• Radiation Protection
• Radiotherapy Physics
• Research Methods
• Advanced Radiotherapy
• Specialist Radiotherapy
• Advanced Radiation Safety
• Specialist Radiation Safety

Careers

The MSc in Clinical Science (Medical Physics) provides the main route for the professional qualification of Clinical Scientist in Medical Physics.

Additionally, the need for specific expertise in the use of medical radiation is enshrined in law. The Ionising Radiation (Medical Exposure) Regulations (IRMER) 2000 defines the role of Medical Physics Expert, required within any clinical context where radiation is being administered, either a diagnostic or therapeutic.

Links with industry

The close working relationship between Swansea University and the NHS in Wales, through the All-Wales Training Consortium for Medical Physics and Clinical Engineering, provides the ideal circumstances for collaborative teaching and research. The Consortium is recognised by the Welsh Government. A significant proportion of the teaching is delivered by NHS Clinical Scientists and other medical staff.

Facilities

The close proximity of Swansea University to Singleton Hospital, belonging to one of the largest health providers in Wales, Abertawe Bro Morgannwg University (ABMU) health board, as well as the Velindre NHS Trust, a strongly academic cancer treatment centre, provide access to modern equipment, and the highest quality teaching and research.

The Institute of Life Science (ILS) Clinical Imaging Suite has recently been completed and overlaps the University and Singleton Hospital campuses. It features adjoined 3T MRI and high-resolution CT imaging. ILS has clinical research of social importance as a focus, through links with NHS and industrial partners.

Research

Swansea University offers a vibrant environment in medically-oriented research. The Colleges of Medicine has strong research links with the NHS, spearheaded by several recent multimillion pound developments, including the Institute of Life Science (ILS) and the Centre for NanoHealth (CNH).

The University provides high-quality support for MSc student research projects. Students in turn make valuable progress in their project area, which has led to publications in the international literature or has instigated further research, including the continuation of research at the doctoral level.
The College of Medicine provides an important focus in clinical research and we have the experience of interacting with medical academics and industry in placing students in a wide variety of research projects.

Medical academics have instigated projects examining and developing bioeffect planning tools for intensity modulated radiotherapy and proton therapy and devices for improving safety in radiotherapy. Industry partners have utilised students in the evaluation of the safety of ventricular-assist devices, intense-pulsed-light epilators and in the development of novel MRI spectroscopic methods. The student join teams that are solving research problems at the cutting-edge of medical science.

Read less
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas. Read more
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas.

The Programme draws on the world-class research and teaching in experimental therapeutics at Oxford University and offers a unique opportunity to gain an understanding of the principles that underpin clinical research and to translate this into good clinical and research practice.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-experimental-therapeutics

The first deadline for applications is Friday 20 January 2017

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For details see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Programme details

The MSc in Experimental Therapeutics is a part-time course consisting of six modules and a research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration for the MSc is not more than two years.

Programme modules:

- The Structure of Clinical Trials and Experimental Therapeutics
- Drug Development, Pharmacokinetics and Imaging
- Pharmacodynamics, Biomarkers and Personalised Therapy
- Adverse Drug Reactions, Drug Interactions, and Pharmacovigilance
- How to do Research on Therapeutic Interventions: Protocol Preparation
- Biological Therapeutics

Course aims

The aim of the MSc programme is to provide students with the necessary training and practical experience to enable them to understand the principles that underpin clinical research, and to enable them to translate that understanding into good clinical and research practice.

By the end of the MSc programme, students should understand the following core principles:

- Development, marketing and regulations of drugs
- Pharmaceutical factors that affect drug therapy
- Pharmacokinetics, pharmacogenetics and pharmacodynamics
- Adverse drug reactions, drug interactions, and pharmacovigilance
- Designing phase I, II and III clinical trials for a range of novel therapeutic interventions (and imaging agents).
- Application of statistics to medicine
- Laboratory assays used to support trial end-points
- Use of non-invasive imaging in drug development
- Application of analytical techniques

By the end of the programme, students should be equipped to:

- demonstrate a knowledge of the principles, methods and techniques for solving clinical research problems and translate this into good clinical and research practice
- apply skills gained in techniques and practical experience from across the medical and biological sciences
- develop skills in managing research-based work in experimental therapeutics
- carry out an extended research project involving a literature review, problem specification and analysis in experimental therapeutics and write a short dissertation

Guidance from the UK Royal College of Physician's Faculty of Pharmaceutical Medicine

The Faculty have confirmed that if enrolled for Pharmaceutical Medicine Specialty Training (PMST), trainees may be able to use knowledge provided by Experimental Therapeutics modules to cover aspects of a module of the PMST curriculum. Trainees are advised to discuss this with their Educational Supervisor.

Experimental Therapeutics modules may also be used to provide those pursuing the Faculty's Diploma in Pharmaceutical Medicine (DPM) with the necessary knowledge required to cover the Diploma syllabus. Applicants for the DPM exam are advised to read the DPM syllabus and rules and regulations.

Members of the Faculty of Pharmaceutical Medicine who are registered in the Faculty's CPD scheme can count participation in Experimental Therapeutics modules towards their CPD record. Non-members may wish to obtain further advice about CPD credit from their Royal College or Faculty.

Assessment methods

To complete the MSc, students need to:

Attend the six modules and complete an assessed written assignment for each module.
Complete a dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Dissertation:
The dissertation is founded on a research project that builds on material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

The following are topics of dissertations completed by previous students on the course:

- The outcomes of non-surgical management of tubal pregnancy; a 6 month study of the South East London population

- Analysis of the predictive and prognostic factors of outcome in a cohort of patients prospectively treated with perioperative chemotherapy for adenocarcinoma of the stomach or of the gastroesophageal junction

- Evolution of mineral and bone disorder in early Chronic Kidney Disease (CKD): the role of FGF23 and vitamin D

- Survey of patients' knowledge and perception of the adverse drug reporting scheme (yellow cards) in primary care

- The predictive role of ERCC1 status in oxaliplatin based Neoadjuvant for metastatic colorectal cancer (CRC) to the liver

- Endothelial Pathophysiology in Dengue - Dextran studies during acute infection

- Literature review of the use of thalidomide in cancer

- An investigation into the phenotypical and functional characteristics of mesenchymal stem cells for clinical application

- Identification of genetic variants that cause capecitabine and bevacizumab toxicity

- Bridging the evidence gap in geriatric medicines via modelling and simulations

Teaching methods

The class-based modules will include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules will be a requirement for study. Some non-classroom activities will be provided at laboratory facilities elsewhere in the University. The course will include taught material on research skills. A virtual learning environment (VLE) will provide between-module support.

The taught modules will include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work aims to develop the students' knowledge and understanding of the subject.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford

Read less
This course is for therapeutic radiographers and will enable you to develop your professional knowledge and enhance your clinical and research skills. Read more
This course is for therapeutic radiographers and will enable you to develop your professional knowledge and enhance your clinical and research skills. The modules on this course have been selected with the development and progression of the therapeutic radiography profession in mind.

Teaching, learning and assessment

The teaching and assessment strategies will enable you to develop your full potential by recognising and building on prior knowledge and experience and by facilitating development of subject-related and transferable skills. There are various forms of assessment including case study analysis, portfolio of evidence of practice, essays, written examination and a project containing evidence of research methods and analysis will be used to monitor your progress. Class sizes for attendance based modules are normally around 8-10 students. This ensures that students receive excellent support from tutors and benefit from sharing experiences with peers.

Teaching hours and attendance

Each module which you study on campus will require you to attend classes and carry out independent work. Your attendance at QMU will depend on which module you are studying.

Links with industry/professional bodies

On graduation you will be accredited by the Society and College of Radiographers.

Modules

The full MSc Radiotherapy award of 180 credits will require study of two modules of 90 credits - Research Methods (30 credits), a project (60 credits), and the remaining 90 credits to be taken from the following modules:

30 credits (distance learning): Emerging Technologies in Radiotherapy/ Management of Prostate Cancer/ Management of Breast Cancer

30 credits: Radiotherapy Verification and Analysis/Decision Taking in Radiotherapy Planning for Palliative Cancers/Decision Taking in Radiotherapy Planning for Breast Cancer/ The Principles of Gynaecological Brachytherapy/ The Clinical Practice of Vaginal Vault Brachytherapy/Planning and Delivery of Gynaecological Brachytherapy/ Ultrasound Localisation Procedures for Intrauterine Brachytherapy Insertions/ 3-D Computerised Tomography (CT) Treatment Planning for Vaginal Vault Brachytherapy/ Imaging Modalities (Computed Tomography, Magnetic Resonance Imaging, Positron Emission Tomography for Therapeutic Radiographers/Image Interpretation and Pattern Recognition for Therapeutic Radiographers (choice of Abdomen/Pelvis – Thorax/CNS-Head/ Neck)/Independent Study/ Current Developments

15 credits : The Principals of Gynaecological Brachytherapy/Leading in Healthcare/Managing Change in Healthcare/Independent Study

Careers

This course is part of continuing professional development and is designed to improve the delivery of the service. Gaining this qualification may enhance your career prospects within the profession of radiography.

Quick Facts

- This course is accredited by the Society and College of Radiographers.
- The course offers advanced practice modules.
- The course offers a flexible approach to learning.

Read less

Show 10 15 30 per page



Cookie Policy    X