• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Birmingham Featured Masters Courses
"cancer" AND "chemotherap…×
0 miles

Masters Degrees (Cancer Chemotherapy)

We have 9 Masters Degrees (Cancer Chemotherapy)

  • "cancer" AND "chemotherapy" ×
  • clear all
Showing 1 to 9 of 9
Order by 
OVERVIEW. The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Read more

OVERVIEW

The MSc in Cancer Medicine will provide students with new knowledge of how precision medicine can improve and shape future healthcare. Students will gain hands-on experience of molecular techniques and the equipment/devices used in a modern molecular laboratory; the course will provide training in laboratory and research skills that are applicable across multiple scientific disciplines in a supportive learning environment. Students will be able to evaluate how novel therapeutic approaches can be used to stratify patients into treatment groups for better clinical management (stratified / precision medicine). They will observe the delivery of precision medicine through tours of the Northern Ireland Cancer Centre.

There are optional modules in the second semester allowing students to explore.the fundamental principles of Carcinogenesis and the translational approaches (including cutting edge technologies) which allow cancer scientists and clinicians to advance our understanding and treatment of cancers. The Precision Cancer Medicine stream provides a comprehensive overview of the current understanding of the Hallmarks of Cancer from the role of genetic/epigenetic alterations, cell cycle control and metastases/angiogenesis to the development of applications to help diagnose cancers earlier, improve treatments, rationally design clinical trials and reduce chemotherapy drug resistance.

The Radiation Oncology stream will develop skills in understanding the biological principles of radiotherapy and its clinical applications in the treatment of cancer. This will include the physical and chemical basis of radiation interactions and the biological consequences of radiation exposures. Clinical aspects of Radiation Oncology will be covered including principle of advanced radiotherapy delivery, cancer imaging techniques and biomarker discovery.

Importantly, both streams show how our improved understanding of the molecular processes driving cancer growth and spread can be ‘translated’ through research-intensive MSc projects to improve the treatment and survival of cancer patients.

For further information email  or send us a message on WhatsApp

CANCER MEDICINE HIGHLIGHTS

The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

GLOBAL OPPORTUNITIES

INDUSTRY LINKS

  • The strong links between us and the biotech and biopharmaceutical sectors provides a stimulating translational environment, while also expanding your career opportunities.

WORLD CLASS FACILITIES

  • The Programme will be taught in the Centre for Cancer Research & Cell Biology a purpose-built institute at the heart of the Health Sciences Campus, boasting state-of-the-art research facilities

INTERNATIONALLY RENOWNED EXPERTS

  • We have an international reputation in this area, achieved through; high-impact peer review publications; significant international research funding and the establishment of successful spin-out companies.

COURSE STRUCTURE

Semester 1

Research Translational: from Concept to Commercialisation (Full Year)

  • This module covers the principles of disease biology and new technological developments that increase our understanding of disease processes. It develops an appreciation of the importance of innovation, business awareness and leadership skills in the translation of discovery science to clinical implementation.

Diagnosis and Treatment (Semester 1)

  • This module provides a comprehensive overview of the diagnosis and treatment of the common solid and haematological malignancies, including breast, ovarian, genitourinary and gastrointestinal cancers as well as the leukaemias. An overview of the common diagnostic pathways in clinical practice will be provided, and this will including gaining an understanding of imaging modalities and histopathological techniques in routine use. 

Cancer Biology (Semester 1)

  • This module provides a comprehensive overview of the fundamental principles of carcinogenesis highlighting how normal control processes are bypassed during tumour formation. The pathogenic mechanisms to be discussed will range from genomic alterations in key gene families, to epigenetic mechanisms of gene control, alterations in kinase activities or protein turnover, or activation of aberrant phenotypes such as invasion and angiogenesis.Semester 2

Students will make a selection from the following modules:

  • Precision Cancer Stream
  • Cancer Genetics & Genomics
  • Translational Cancer Medicine

OR

  • Radiation Oncology and Medical Physics (ROMP)
  • Biology of Radiotherapy

Clinical Radiation

Building on the biological basis of radiotherapy, this module will develop knowledge and skills in understanding clinical radiotherapy and medical imaging. Through the delivery of a multidisciplinary taught programme, students will cover clinical tumour and normal tissue biology, radiological imaging and the design of radiotherapy treatment plans. This will develop the clinical rationale for radiotherapy in the treatment of cancer and highlight emerging treatment combinations and techniques for biomarker discovery in radiation oncology.Biology and Imaging

Research Project

You will undertake a project in the Centre for Cancer Research and Cell Biology.

Dissertation

This module comprises the write-up contribution to the overall research element of the programme, with the Research Project (SCM 8067). The Dissertation will represent the student’s personal studies in the literature, a description of their experimental execution of their project, data presentation, analysis and interpretation, followed by critical discussion and conclusions.

For further information email  or send us a message on WhatsApp



Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research. Read more

Our MRes Oncology course will enable you to develop the skills and knowledge you need to prepare for a career in cancer research.

Cancer is a major cause of mortality and morbidity worldwide. Approximately 300,000 people develop the disease each year in the UK.

Understanding the basis of tumourigenesis and developing new therapies are high priority areas for investment, especially since the economic burden of cancer is increasing. The field of oncology encompasses a wide variety of biological and physical sciences.

You will learn from renowned basic, translational and clinical scientists at the Manchester Cancer Research Centre, the Cancer Research UK (CRUK) Manchester Institute and The Christie NHS Foundation Trust, with a focus on developing practical research skills.

Our course covers the clinical and research aspects of cancer care, and you will have access to an exceptionally wide range of research projects in basic cancer biology, translational areas and clinical cancer care and imaging.

This MRes has both taught and research components and is suitable for those with little or no previous research experience.

Aims

Our MRes course aims to provide postgraduate level training that will equip you with the specialist knowledge and research skills to pursue a research career in the fields of medical and clinical oncology.

You will gain an understanding of the scientific basis of cancer and its treatments, as well as the skills needed to evaluate the potential efficacy of new treatments.

This course also offers the potential to:

  • gain hands-on research experience;
  • work with world-renowned experts;
  • use state-of-the-art research equipment;
  • publish your work and attend national and international conferences;
  • be taught by speakers at the forefront of national and international cancer research;
  • undertake laboratory or clinical-based research projects at the Christie Hospital site, the largest cancer centre in Europe with some of the UK's leading cancer researchers;
  • enhance your research skills and gain confidence in your research abilities.

Special features

Clinical and research components

This is one of only a handful of MRes Oncology courses in the UK. Unlike many other oncology courses, ours has both clinical and research elements, making it suitable for both medical undergraduates and graduates, as well as biomedical science graduates.

Teaching and learning

Our MRes is structured around a 2:1 split between laboratory/clinical-based research projects and taught elements.

Laboratory and clinical research experience is gained through two research placements, one lasting approximately ten weeks (October to December) and the second lasting approximately 25 weeks (January to August).

You may choose to carry out one project for both placements, which most students do, or separate projects for each placement.

Most research placements are based at the Christie site, either within the hospital, the Manchester Cancer Research Centre or CRUK Manchester Institute premises. Projects are also available on the Central Manchester University Hospitals and University Hospital of South Manchester sites.

A list of available projects will be provided to offer holders in August.

Coursework and assessment

Students are assessed through oral presentations, single best answer exams, written reports and a dissertation.

Course unit details

The course features the following components:

  • Research Methods course unit - 15 credits
  • Clinical Masterclass course unit - 15 credits
  • Lecture Series course unit - 15 credits
  • Tutorial course unit - 15 credits
  • Two research placements (1 x 10 week - 30 credits; 1 x 25 week - 90 credits)

The  Research Methods  course unit covers topics relating to:

  • Critical analysis of scientific/medical research and literature
  • Information management
  • Study design
  • Basic statistical analysis
  • Ethics, fraud, plagiarism and medical and academic misconduct
  • Presentation skills
  • Scientific writing and publishing skills

The  Clinical Masterclass  course unit provides a truly multidisciplinary foundation in the key issues in oncology. Delivery is by lectures and site tours and these classes will offer the student the chance to debate with internationally recognised experts in their field. Areas covered include: 

  • Cancer epidemiology, screening and prevention
  • Diagnosis
  • Chemotherapy
  • Radiotherapy
  • Hormonal therapy
  • Surgery

Following attendance at these classes, you will be able to understand how cancer is diagnosed and the principles of cancer surgery, radiotherapy and chemotherapy.

The  Lecture Series  course unit comprises two intensive one-week courses, one in November and the other in February. The November course covers the biological basis of chemotherapy, pharmacology and cancer biology. The February course covers the biological basis of radiotherapy and translational aspects of cancer research, including biomarkers and new technologies.

The  Tutorial  course unit allows students to choose from a selection of clinical and academic oncology topics. The unit aims to improve ability to interpret and criticise literature as well as improve verbal communication skills in a small group setting. 



Read less
The use of chemotherapeutic agents to target and kill cancer cells is a central strategy in the treatment of cancers. This course describes the nature of the disease at the systems, cellular and molecular levels, and focuses on the drugs which are used to treat different cancers and on how they work. Read more
The use of chemotherapeutic agents to target and kill cancer cells is a central strategy in the treatment of cancers. This course describes the nature of the disease at the systems, cellular and molecular levels, and focuses on the drugs which are used to treat different cancers and on how they work.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of this course are to:
-Provide you with an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving;
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease;
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data;
deliver a programme of advanced study to equip you for a future career in anti-cancer drug development.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Medical Genetics (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)
-Advanced Drug Formulation Technologies (option, 20 credits)
-Bioinformatics and Molecular Modelling (option, 20 credits)
-Drug Discovery Technology (option, 20 credits)

After the course

This course is primarily designed for those wishing to pursue a career in anti-cancer drug development, whether in academia or within the pharmaceutical industry. The programme provides an excellent basis for further research or study.

Moving to one campus

Between 2016 and 2020 we're investing £125 million in the London Metropolitan University campus, moving all of our activity to our current Holloway campus in Islington, north London. This will mean the teaching location of some courses will change over time.

Whether you will be affected will depend on the duration of your course, when you start and your mode of study. The earliest moves affecting new students will be in September 2017. This may mean you begin your course at one location, but over the duration of the course you are relocated to one of our other campuses. Our intention is that no full-time student will change campus more than once during a course of typical duration.

All students will benefit from our move to one campus, which will allow us to develop state-of-the-art facilities, flexible teaching areas and stunning social spaces.

Read less
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. Read more
This M.Sc. program in Translational Oncology will provide high-quality training for basic scientists and clinicians in the theoretical and practical aspects of the causes and treatment of cancer. A major focus of the programme is the cellular genetic and epigenetic basis of cancer. The course also covers the scientific and clinical challenges pertinent to the management of site specific cancers, and all aspects of cancer treatment from standard therapies to 'individualised' molecular targeted therapies. The focus of the course is research led teaching in the practical aspects of translational cancer research. This innovative M.Sc. program in Translational Oncology is aimed at scientists and doctors in training who wish to:

Develop their research skills
Broaden their expertise in oncology
Develop advanced knowledge in specific areas of scientific, translational and clinical oncology.

The proposed course will offer an opportunity for graduates from a variety of backgrounds to specifically train in translational oncology in advance of undertaking an MD or PhD. Modules are taught using a variety of methods including lectures, tutorials, workshops and laboratory practicals. Lectures are provided by leaders in the field of translational oncology from both scientific and medical backgrounds. The core modules are Cellular and Molecular Oncology, Cancer Epigenetics, Disease Specific Cancers, Radiation / Chemotherapy and Molecular Targeted Therapies, Tumour Immunology, Molecular Pathology and Imaging, Clinical Statsitics and Research Skills. Students can tailor the course to their interests with optional modules in Obesity, metabolism and Cancer, Gemomic Instability, Cancer Drug Development, Tumour Microenvironment, Clinical Pharmacology, and Surgical Oncology and Economics. Students will be required to submit a dissertation based on an emperical research project conducted in one of the many oncology groups located within or affiliated with Trinity College Dublin and the Institute of Molecular Medicine. Opportunities for national and international placements to conduct research projects will also be available in collaborating universities, hospitals and industry.

All applicants should provide two academic or clinical references confirming their eligibility and suitability for the course, before their application can be considered. Applicants should also include a 500 word personal statement addressing why they are interested in the course, their suitability for the programme and how it will impact on their future career development. Applications for admission to the course should be made through the online system no later than July 31st. Late applications will be considered provided places are available.

Read less
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. Read more
This course provides advanced training in modern organic and medicinal chemistry from conception to production of novel drugs. It enables you to understand and experience the way modern small molecule medicine is developing. You will gain hands-on experience of working within a medicinal chemistry team during your research project.

The course is suitable if you have a background in the chemical or pharmaceutical sciences. It includes 120 credits of taught modules and a 60 credit practical project.

Themes include drug design, metabolism and toxicology with an understanding of synthetic organic chemistry. Building on University research strengths, specialist topics include bio-imaging and modern approaches to chemotherapy. You will develop expertise in drug design as practised in the pharmaceutical industry and in academia.

You will also gain knowledge of modern and experimental therapies developing in the Northern Institute for Cancer Research.

Delivery

The course is delivered through the School of Chemistry in collaboration with the Northern Institute of Cancer Research and the Faculty of Medical Sciences. The School will provide personal study support throughout your course.

Your work is in chemistry and biology laboratories using modern analytical equipment with access to computer clusters, specialist computer software, online resources, an extensive library and dedicated study areas. All teaching takes place at the university's campus in the centre of Newcastle upon Tyne.

Facilities

The School of Chemistry has modern teaching and research facilities along with major research strengths in drug and medicinal chemistry. Our new teaching laboratories, costing £1.9 million, have recently opened.

Read less
The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas. Read more

The Department of Oncology and the Department for Continuing Education’s CPD Centre offer a part-time MSc in Experimental and Translational Therapeutics that brings together some of Oxford's leading clinicians and scientists to deliver an advanced modular programme designed for those in full-time employment, both in the UK and overseas.

The Programme draws on the world-class research and teaching in experimental therapeutics at Oxford University and offers a unique opportunity to gain an understanding of the principles that underpin clinical research and to translate this into good clinical and research practice.

Visit the website https://www.conted.ox.ac.uk/about/msc-in-experimental-therapeutics

The deadline for applications is Friday 15 June 2018

If your application is completed by this January deadline and you fulfil the eligibility criteria, you will be automatically considered for a graduate scholarship. For details see: http://www.ox.ac.uk/admissions/graduate/fees-and-funding/graduate-scholarships.

Programme details

The MSc in Experimental and Translational Therapeutics is a part-time course consisting of six modules and a research project and dissertation. The programme is normally completed in two to three years. Students are full members of the University of Oxford and are matriculated as members of an Oxford college.

The modules in this programme can also be taken as individual short courses. It is possible to transfer credit from up to three previously completed modules into the MSc programme, if the time elapsed between commencement of the accredited module(s) and registration for the MSc is not more than two years.

Programme modules:

- The Structure of Clinical Trials and Experimental Therapeutics

- Drug Development, Pharmacokinetics and Imaging

- Pharmacodynamics, Biomarkers and Personalised Therapy

- Adverse Drug Reactions, Drug Interactions, and Pharmacovigilance

- How to do Research on Therapeutic Interventions: Protocol Preparation

- Biological Therapeutics

Course aims

The aim of the MSc programme is to provide students with the necessary training and practical experience to enable them to understand the principles that underpin clinical research, and to enable them to translate that understanding into good clinical and research practice.

By the end of the MSc programme, students should understand the following core principles:

- Development, marketing and regulations of drugs

- Pharmaceutical factors that affect drug therapy

- Pharmacokinetics, pharmacogenetics and pharmacodynamics

- Adverse drug reactions, drug interactions, and pharmacovigilance

- Designing phase I, II and III clinical trials for a range of novel therapeutic interventions (and imaging agents).

- Application of statistics to medicine

- Laboratory assays used to support trial end-points

- Use of non-invasive imaging in drug development

- Application of analytical techniques

By the end of the programme, students should be equipped to:

- demonstrate a knowledge of the principles, methods and techniques for solving clinical research problems and translate this into good clinical and research practice

- apply skills gained in techniques and practical experience from across the medical and biological sciences

- develop skills in managing research-based work in experimental therapeutics

- carry out an extended research project involving a literature review, problem specification and analysis in experimental therapeutics and write a short dissertation

Guidance from the UK Royal College of Physician's Faculty of Pharmaceutical Medicine

The Faculty have confirmed that if enrolled for Pharmaceutical Medicine Specialty Training (PMST), trainees may be able to use knowledge provided by Experimental Therapeutics modules to cover aspects of a module of the PMST curriculum. Trainees are advised to discuss this with their Educational Supervisor.

Experimental Therapeutics modules may also be used to provide those pursuing the Faculty's Diploma in Pharmaceutical Medicine (DPM) with the necessary knowledge required to cover the Diploma syllabus. Applicants for the DPM exam are advised to read the DPM syllabus and rules and regulations.

Members of the Faculty of Pharmaceutical Medicine who are registered in the Faculty's CPD scheme can count participation in Experimental Therapeutics modules towards their CPD record. Non-members may wish to obtain further advice about CPD credit from their Royal College or Faculty.

Assessment methods

To complete the MSc, students need to:

Attend the six modules and complete an assessed written assignment for each module.

Complete a dissertation on a topic chosen in consultation with a supervisor and the Course Director.

Dissertation:

The dissertation is founded on a research project that builds on material studied in the taught modules. The dissertation should normally not exceed 15,000 words.

The project will normally be supervised by an academic supervisor from the University of Oxford, and an employer-based mentor.

The following are topics of dissertations completed by previous students on the course:

- The outcomes of non-surgical management of tubal pregnancy; a 6 month study of the South East London population

- Analysis of the predictive and prognostic factors of outcome in a cohort of patients prospectively treated with perioperative chemotherapy for adenocarcinoma of the stomach or of the gastroesophageal junction

- Evolution of mineral and bone disorder in early Chronic Kidney Disease (CKD): the role of FGF23 and vitamin D

- Survey of patients' knowledge and perception of the adverse drug reporting scheme (yellow cards) in primary care

- The predictive role of ERCC1 status in oxaliplatin based Neoadjuvant for metastatic colorectal cancer (CRC) to the liver

- Endothelial Pathophysiology in Dengue - Dextran studies during acute infection

- Literature review of the use of thalidomide in cancer

- An investigation into the phenotypical and functional characteristics of mesenchymal stem cells for clinical application

- Identification of genetic variants that cause capecitabine and bevacizumab toxicity

- Bridging the evidence gap in geriatric medicines via modelling and simulations

Teaching methods

The class-based modules will include a period of preparatory study, a week of intensive face-to-face lectures and tutorials, followed by a period for assignment work. Attendance at modules will be a requirement for study. Some non-classroom activities will be provided at laboratory facilities elsewhere in the University. The course will include taught material on research skills. A virtual learning environment (VLE) will provide between-module support.

The taught modules will include group work, discussions, guest lectures, and interaction and feedback with tutors and lecturers. Practical work aims to develop the students' knowledge and understanding of the subject.

Find out how to apply here - http://www.ox.ac.uk/admissions/graduate/applying-to-oxford



Read less
This higher degree is aimed at clinical professionals from all backgrounds involved in the delivery of acute, chronic, and integrated pain services in primary or secondary care. Read more

This higher degree is aimed at clinical professionals from all backgrounds involved in the delivery of acute, chronic, and integrated pain services in primary or secondary care. Combining cutting-edge research with an international reputation for clinical excellence, the UCL Pain Management MSc is ideal for anyone wanting to improve the lives of people living with pain while also accelerating their own career.

About this degree

Students will learn:

  • Research methods and ethical principles underpinning pain research
  • Health economics and social impact of pain
  • Clinical governance of pain services
  • Pathophysiology of pain
  • Pharmacology of pain and therapeutics
  • Managing pain in cancer patients including post-chemotherapy pain
  • Management of headache and abdominopelvic/urogenital pain
  • Managing pain in children and adolescents
  • Strategies for the self-management of pain
  • Neuromodulation for chronic pain
  • Pain management with mental health, substance misuse and multiple morbidity
  • Community pain management strategies

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits), and a research dissertation (60 credits).

A Postgraduate Diploma (120 credits, eight core modules) is offered.

A Postgraduate Certificate (60 credits, four core modules) is offered.

Core modules

  • Introduction to Pain: Economics, Evidence Delivery (15 credits)
  • Acute Pain (15 credits)
  • Chronic Pain (15 credits)
  • Pain in Cancer Patients (15 credits)
  • Headache, Paediatric Pain & Abdominopelvic Pain (15 credits)
  • Strategies for the Self-Management of Pain (15 credits)
  • Neuromodulation (15 credits)
  • Pain in the Community (15 credits)

Optional modules

There are no optional modules for this programme.

Dissertation/report

Successful completion of the MSc requires a 5,000 to 8,000-word dissertation on a topic that is relevant to the candidate's own clinical practice and has been covered, at least superficially, at some point in the programme. The options for the dissertation will be discussed with each student but can include, where possible, joining clinical research at the UCLH Pain Management Centre, study in-depth of topics, preparing for higher (doctoral) research, etc. Students will have two supervisors and a mentor.

Teaching and learning

This programme is delivered via a specially-designed online learning environment with additional workshops and discussions to support students on the journey towards making a real difference for people living with pain. 

Assessment is based on reflective practice, video presentation, and short written assignments. 

Placement

Clinical placement is not a required component of the programme. However, for students wishing to see practice in the UK or specialist pain management practice at UCLH, short clinical placements can be arranged. The Pain Management Centre at UCLH is busy and accommodates a large number students and specialist trainees. Therefore, please consider your goals for any placement in advance. 

Further information on modules and degree structure is available on the department website: Pain Management MSc

Funding

For a comprehensive list of funding opportunities available at UCL visit the Scholarships and Funding website.

In addition to the funding options available from UCL Scholarships and Funding, a small number of bursaries are available to reduce the programme fees by up to £4,000. Candidates interested in applying for a bursary should indicate this in their application. Applicants will then be asked for further information if their application is successful.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

This programme is the ideal solution for:

  • Nurses and allied health professionals wishing to pursue senior (Band 7+) roles in the NHS
  • General practitioners involved in the delivery of chronic pain services
  • Junior doctors wishing to develop and demonstrate clinical interest in pain management and/or the pain component of training in anaethesia
  • International doctors wishing to develop their expertise in pain management
  • Osteopaths and chiropractors with an interest in pain management.

Employability

Combining academic excellence with UCL's reputation as London's global university and our strong links to industry, the prospects for graduates of this programme are excellent. Whether you wish to continue with patient care in the NHS or private sector, pursue doctoral research, or work in industry and innovation, this programme will equips students not only with the knowledge and skills but also the networking links and opportunities to take their career to the next level.

Why study this degree at UCL?

This exciting programme will provide graduates with the knowledge and opportunities to accelerate their careers in pain management. This is ideal for anyone pursuing a senior clinical position, health management role, or research and development or industry career.

Beginning with the socio-economic impact and moving from acute to chronic pain states before arriving at more complex pain conditions and interventions, this programme develops the knowledge and core skills required of an advanced pain practitioner.

With innovative modules on managing pain in the community and UCLH's international expertise on headache and abdominopelvic pain, students are exposed to unique learning opportunities. 

Recognising the growing specialist field of neuromodulation, we have developed among the world's first modules dedicated to the subject. This gives students the knowledge to develop their own services or care for patients with devices already in place.

The programme is delivered via a specially-desinged online learning environment. Recognising that the subject matter is often academically and emotionally demanding, optional workshops with programme tutors are available at the Bloomsbury campus and via video conferencing. In addition, online small-group tutorials supplement the online learning content.

Our flexible design allows students from all over the country, and world, to share their experiences and learning styles to enrich each other's academic experience. This is the only UK-based pain management degree offering students the choice of fully online or blended delivery.

UCL and UCL Hospitals (UCLH) Pain Management Centre has an international reputation for both cutting-edge research and innovative clinical services. Students on this programme will benefit from teaching from global experts at an institution that consistently delivers world-class research output. Graduates can expect to be academically confident and ideally placed to pursue doctoral (PhD) level study with UCL upon completion.



Read less
Engineering organisms and processes to generate the products of the future. Many everyday products are generated using biological processes. Read more

Engineering organisms and processes to generate the products of the future

Many everyday products are generated using biological processes. Foods such as bread, yoghurt and beer rely upon microscopic organisms to generate their structure and flavour. Many drugs are made using cells, such as insulin used to treat diabetes and many anticancer chemotherapy drugs. In the future, more products will be made using biological processes as they are typically ‘greener’ than traditional chemical processes – they are less energy intensive and generate fewer harmful chemical by-products. Biological processes are also responsible for many environmentally-friendly biofuels, which aim to reduce fossil fuel use.

Biological processes are key to many UK companies, from small contract manufacturers of protein and DNA drugs to large companies making fuels, commodity chemicals, foods and plastics. Biochemical engineering is an area that is essential to UK, European and Worldwide industrial development.

This is a highly multidisciplinary subject, requiring the integration of engineering and bioscience knowledge. If you are interested in pursuing a career in industrial biotechnology, biochemical engineering, biotechnology or bioprocessing, then this programme will provide you with the basic knowledge and skills required. Optional modules expand your horizons to include specific product areas (such as pharmaceuticals) and other skills required for a career in the area (such as business skills).

Birmingham is a friendly School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

It has a first-class reputation in learning, teaching and research, and is highly placed in both The Guardian and The Times league tables. 

Course details

Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June. 

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches

There are numerous optional modules available across three themes: 

  • Biopharmaceutical development and manufacture
  • Food processing
  • Business skills for the process industries

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

Related links

Learning and teaching

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.  

For the first eight months you have lectures, tutorials and laboratory work. Topics include:

  • Fermentation and cell culture
  • Bioseparations
  • Process monitoring and control
  • Systems and synthetic biology approaches
  • Biopharmaceutical development and manufacture

You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X