• University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Nottingham Trent University Featured Masters Courses
Cranfield University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Durham University Featured Masters Courses
University of Leeds Featured Masters Courses
"cancer" AND "cell" AND "…×
0 miles

Masters Degrees (Cancer Cell Biology)

We have 123 Masters Degrees (Cancer Cell Biology)

  • "cancer" AND "cell" AND "biology" ×
  • clear all
Showing 1 to 15 of 123
Order by 
On this course, you’ll learn from research scientists at the forefront of cancer research and cancer therapy design, based in the Genome Damage and Stability Centre. Read more
On this course, you’ll learn from research scientists at the forefront of cancer research and cancer therapy design, based in the Genome Damage and Stability Centre.

You’ll receive comprehensive training in the wide range of research skills required for a research career. This gives you a thorough understanding of the molecular basis and cell biology of cancer.

Studying in a research-intensive environment, you’ll gain laboratory, analytical and experimental experience as well as a grounding in the necessary bioinformatics and experimental theory.

How will I study?
You will study core modules, building your understanding of laboratory techniques and theory. You’ll have access to an exciting variety of options allowing you to pursue your interests. You’ll learn in a group through:
-Lectures
-Laboratory work
-Seminars
-Student-led activities

You also work on a more individual basis with your supervisor on the final research project, which sees you tackle real-world problems in a laboratory research group.

We use reports, unseen examinations, essays, problems sets and presentations to assess your work. You’ll also write a dissertation as part of the research project.

Scholarships
Our aim is to ensure that every student who wants to study with us is able to despite financial barriers, so that we continue to attract talented and unique individuals.

Chancellor's International Scholarship (2017)
-25 scholarships of a 50% tuition fee waiver
-Application deadline: 1 May 2017

Geoff Lockwood Scholarship (2017)
-1 scholarship for Postgraduate (taught) of £3,000 fee waive
-Application deadline: 24 July 2017

HESPAL Scholarship (Higher Education Scholarships Scheme for the Palestinian Territories) (2017)
-Two full fee waivers in conjuction with maintenance support from the British Council
-Application deadline: 1 January 2017

Careers
This MSc provides you with a range of transferable skills, knowledge and opportunities to pursue a high-level career in industry or research.

As well as going on to PhDs at Sussex and elsewhere, and to research posts, our graduates have also moved into fields such as publishing and the charity sector.

Read less
Cell-to-cell signalling in development and disease. Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme. Read more

Cell-to-cell signalling in development and disease

Do you have a clear and specific interest in cancer, stem cells or developmental biology? Our Master’s programme Cancer, Stem Cells and Developmental Biology combines research in three areas: oncology, molecular developmental biology and genetics. The focus is on molecular and cellular aspects of development and disease, utilising different model systems (mice, zebrafish, C. elegans, organoids and cell lines). The programme will guide you through the mysteries of embryonic growth, stem cells, signalling, gene regulation, evolution, and development as they relate to health and disease.

The right choice for you?

Given that fundamental developmental processes are so often impacted by disease, an understanding of these processes is vital to the better understanding of disease treatment and prevention. Adult physiology is regulated by developmental genes and mechanisms which, if deregulated, may result in pathological conditions. If you have a specific interest in cancer, stem cells or developmental biology, this Master’s programme is the right choice for you. Cancer, Stem Cells and Developmental Biology offers you international, high ranked research training and education that builds on novel methodology in genomics, proteomics, metabolomics and bioinformatics technology applied to biomedical and developmental systems and processes.

What you’ll learn

In the Cancer, Stem Cells and Developmental Biology programme you will learn to focus on understanding processes underlying cancer and developmental biology using techniques and applications of post-genomic research, including microarray analysis, next generation sequencing, proteomics, metabolomics and advanced microscopy techniques. You explore research questions concerning embryonic growth, stem cells, signaling pathways, gene regulation, evolution and development in relation to health and disease using various model systems. As a Master’s student you will take theory courses and seminars, as well as master classes led by renowned specialists in the field. The courses are interactive, and challenge you to further improve your writing and presenting skills.

Why study Cancer, Stem Cells and Developmental Biology at Utrecht University?

Compared to most other Master’s programmes in cancer and stem cell biology in the Netherlands, in Utrecht we offer:

  • Strong focus on fundamental molecular aspects of disease related questions, particularly questions related to cancer and the use of stem cells in regenerative medicine
  • A unique emphasis on Developmental Biology, a process with many connections to cancer
  • The opportunity to carry out two extensive research projects at renowned research groups
  • An intensive collaboration with national and international research institutes, allowing you to do your internship at prestigious partner institutions all around the world

Career in Cancer, Stem Cells and Developmental Biology

As a MSc graduate trained in both fundamental and disease-oriented aspects of biomedical genetics you are in great demand. You’ll be prepared for PhD study in one of the participating or associated groups. Alternatively, leaving after obtaining your MSc degree you will profit from a solid education in molecular genetics, in addition to your specialised knowledge of developmental biology. You’ll find your way to biotechnology, the pharmaceutical industry or education.



Read less
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. Read more
The MSc in Molecular Cell Biology with Bioinnovation is a unique course aimed at highly-motivated students with an interest in biomedical research in the areas of cancer biology, infection/immunity or molecular neuroscience and entrepreneurial thinking. The course will provide you with a truly interdisciplinary educational experience by combining advanced discipline-specific training with core scientific research, technical expertise and business skills.

Visit the website: http://www.ucc.ie/en/ckr44/

Course Details

A distinctive feature of the MSc in Molecular Cell Biology with Bioinnovation is that you will receive formal innovation and technology commercialisation training through modules from the College of Business and Law at UCC.

With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will select projects with internationally-renowned research groups from the Schools of Biochemistry, Microbiology and Department of Anatomy/Neuroscience, following the completion of discipline-specific modules.

You will not only possess excellent research and technical skills on graduation but also the necessary business development and commercialisation skills for life science innovation.

Format

The course will consist of lectures, tutorials, hands-on workshops and a research dissertation based on individual research.

Core Scientific Modules (25 credits)

- Cell and Molecular Biology
- Human Molecular Genetics and Genetic Engineering Techniques
- Biological and Clinical Perspectives of Human Disease

Scientific Skills-Development Modules (10 credits)

- Biotechniques
- Scientific Communication of Current Topics in Molecular Cell Biology Core Business Modules (10 credits)
- Marketing for High Technology Entrepreneurs
- Technology and Business Planning

Elective modules (5 credits)

- Creativity and Opportunity Recognition
- Innovation Finance
- Intellectual Property Law for High-Tech Entrepreneurs

Research Project (40 credits)

You will select a project offered by internationally-renowned research groups from the Schools of Biochemistry and Cell Biology, Microbiology and Anatomy/Neuroscience. With three primary research themes – cancer biology, infection/immunity and molecular neuroscience, you will complete a six month project based on individual research in one of these themes and compile the results into an MSc dissertation on completion.

You will gain invaluable hands-on, practical experience in experimental design, implementation and data interpretation and develop a wide array of transferable skills, including written and verbal communication; data recording, analysis and presentation; critical evaluation of published material; learning to work collaboratively and independently as well as project and time-management.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page04.html#molecular

Assessment

Taught modules are examined by formal written examination and continuous assessment. The research dissertation for the six-month research project must be submitted by the end of the first academic year of registration for examination by internal and external examiners.

Careers

You will be ideally positioned to enter into a PhD after graduation, but could also pursue a number of career paths including: technology transfer officer within higher education institutions and national agencies, R&D project manager, commercialisation manager within a life science start-up, or development manager within the pharmaceutical sector. The course will also equip you with the skills required to develop your own start-up venture.

A first destination surveys from 2012 - 2014 have revealed that 100% of our graduates are in employment or further education within one-year of completing the MSc in Molecular Cell Biology with Bioinnovation.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. Read more

The Cancer MSc reflects the depth and breadth of research interests, from basic science to translational medicine, within the UCL Cancer Institute. The programme, taught by research scientists and academic clinicians, provides students with an in-depth look at the biology behind the disease processes which lead to cancer.

About this degree

This programme offers a foundation in understanding cancer as a disease process and its associated therapies. Students learn about the approaches taken to predict, detect, monitor and treat cancer, alongside the cutting-edge research methods and techniques used to advance our understanding of this disease and design better treatment strategies.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (60 credits), four specialist modules (60 credits) and a research project (60 credits).

A Postgraduate Diploma (120 credits, full-time nine months) is offered.

A Postgraduate Certificate (60 credits, full-time 12 weeks) is offered.

Core modules

  • Basic Biology and Cancer Genetics
  • Cancer Therapeutics

Specialist modules

  • Behavioural Science and Cancer
  • Biomarkers in Cancer
  • Cancer Clinical Trials
  • Haematological Malignancies and Gene Therapy

Dissertation/report

All MSc students undertake a laboratory project, clinical trials project or systems biology/informatics project, which culminates in a 10,000–12,000 word dissertation and an oral research presentation.

Teaching and learning

Students develop their knowledge and understanding of cancer through lectures, self-study, database mining, wet-lab based practicals, clinical trial evaluations, laboratory training, assigned reading and self-learning. Each taught module is assessed by an unseen written examination and/or coursework. The research project is assessed by the dissertation (75%) and oral presentation (25%).

Further information on modules and degree structure is available on the department website: Cancer MSc

Careers

The knowledge and skills developed will be suitable for those in an industrial or healthcare setting, as well as those individuals contemplating a PhD or medical studies in cancer.

Employability

Skills include critical evaluation of scientific literature, experimental planning and design interpretation of data and results, presentation/public speaking skills, time management, working with a team, working independently and writing for various audiences.

Why study this degree at UCL?

UCL is one of Europe's largest and most productive centres of biomedical science, with an international reputation for leading basic, translational and clinical cancer research.

The UCL Cancer Institute brings together scientists from various disciplines to synergise multidisciplinary research into cancer, whose particular areas of expertise include: the biology of leukaemia, the infectious causes of cancer, the design of drugs that interact with DNA, antibody-directed therapies, the molecular pathology of cancer, signalling pathways in cancer, epigenetic changes in cancer, gene therapy, cancer stem cell biology, early phase clinical trials, and national and international clinical trials in solid tumours and blood cancers.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Cancer Institute

80% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population. Read more
The MSc in Cancer Biology is for students who wish to gain an advanced education and training in the biological sciences, within the context of a disease that affects a large proportion of the global population.

The programme provides training in the modern practical, academic and research skills that are used in academia and industry. Through a combination of lectures, small-group seminars and practical classes, students will apply this training towards the development of new therapies.

The programme culminates with a research project that investigates the molecular and cellular basis of cancer biology or the development of new therapies under the supervision of active cancer research scientists.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/226/cancer-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science and biophysics. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Each one-hour lecture is supplemented by two hours of small-group seminars and workshops in which individual themes are explored in-depth. There are practical classes and mini-projects in which you design, produce and characterise a therapeutic protein with applications in therapy.

In additional to traditional scientific laboratory reports, experience will be gained in a range of scientific writing styles relevant to future employment, such as literature reviews, patent applications, regulatory documents, and patient information suitable for a non-scientific readership.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

BI830 - Science at Work (30 credits)
BI836 - Practical and Applied Research Skills for Advanced Biologists (30 credits)
BI837 - The Molecular and Cellular Basis of Cancer (15 credits)
BI838 - Genomic Stability and Cancer (15 credits)
BI840 - Cancer Therapeutics: From the Laboratory to the Clinic (15 credits)
BI857 - Cancer Research in Focus (15 credits)
BI845 - MSc Project (60 credits)

Assessment

The programme features a combination of examinations and practically focused continuous assessment, which gives you experience within a range of professional activities, eg, report writing, patent applications and public health information. The assessments have been designed to promote employability in a range of professional settings.

Programme aims

This programme aims to:

- provide an excellent quality of postgraduate-level education in the field of cancer, its biology and its treatment

- provide a research-led, inspiring learning environment

- provide a regional postgraduate progression route for the advanced study of a disease that affects a high proportion of the population

- promote engagement with biological research into cancer and inspire you to pursue a scientific career inside or outside of the laboratory

- develop subject specific and transferable skills to maximise employment prospects

- promote an understanding of the impact of scientific research on society and the role for scientists in a range of professions.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/226

Read less
The MRes in Biochemistry and Cell Biology at University College Cork is a research-intensive course designed to maximize a student's hands-on laboratory experience and research skills. Read more

Key Features of the MRes in Biochemistry and Cell Biology

The MRes in Biochemistry and Cell Biology at University College Cork is a research-intensive course designed to maximize a student's hands-on laboratory experience and research skills. The 12-month research project is supervised by an internationally-recognized investigator based in the School of Biochemistry and Cell Biology. Research projects are available in the areas of bioanalysis, bioinformatics, proteomics, cancer biology, cell signaling, gene expression, trafficking, molecular genetics, neurobiology, RNA biology, translational control and synthetic biology. The MRes has a strong focus on presentation and writing skills that are required for a successful research career, including research planning proposal writing. In addition to this, students develop their general and transferable skills in laboratory techniques and safety, research ethics and integrity, information literary, science communication and statistics. Students are also required to attend weekly research seminars presented by both external and internal speakers.

Core and Elective Modules

Students in the MRes programme begin their research projects with a selected supervisor in week two, following a research induction and orientation. In addition to the research component, the following modules must be completed:
- Scientific Communication of Current Topics in Molecular Cell Biology
- Scientific Research Planning and Proposals
Students must also complete one (10-credit) or two (5-credit) electives from several options:
- Scientific Training for Enhanced Postgraduate Studies
- Biotechniques
- Information Literacy Skills
- Scientific Outreach and Communication
- Introduction to Research Ethics
- Statistics and Data Analysis for Postgraduate Research Students

Why choose the MRes in Biochemistry and Cell Biology?

With an emphasis on the individual, the MRes has a dedicated director and experienced academic staff who will help students fulfill their research career ambitions. The School of Biochemistry and Cell Biology is a strong research unit based at University College Cork, Ireland's first 5 star university (QS) and the world's first 'Green Campus'. Recently named 'University of the Year 2016' by The Sunday Times and located within walking distance of Cork city centre, UCC enjoys a great location and a vibrant campus.
Students who complete the MRes will be competitive to secure a PhD position or enter directly into employment within the biotechnology or pharmaceutical sectors. All of the students in our current class have ambitions of continuing on to a PhD.

Read less
Our MSc Cell Biology course will enable you to consider the most exciting current problems in the field under the guidance of leading experts in cell biology. Read more

Our MSc Cell Biology course will enable you to consider the most exciting current problems in the field under the guidance of leading experts in cell biology.

Our understanding of cell biology will undoubtedly help in the quest for treatments for major diseases, including cancer. Our course will give you a unique opportunity to study the mechanisms that define and regulate the function of cells and organisms.

As this is a research-focused master's course, you will take an interactive approach to learning, rather than taking traditional lectures. Through seminars, workshops, small group tutorials and research placements, you will learn the concepts and techniques used in cutting-edge research in cell biology and how knowledge of the field can be applied to various fields of research.

You will be able to apply what you learn to your own research projects, which you can choose from a wide range of areas thanks to the large number of cell biology researchers at Manchester.

Special features

Extensive research experience

Gain significant laboratory experience through placements with leading cell biology researchers.

Teaching and learning

We use a range of teaching and learning methods, including tutorials, workshops, seminars and research placements.

Find out more by visiting the postgraduate teaching and learning page.

Coursework and assessment

We will assess your progress using:

  • written reports on your research projects and tutorials
  • oral presentations
  • written assignments
  • posters
  • multiple choice exams
  • critical assessment of literature
  • online statistics exercises.

Course unit details

The course starts in September and runs for 12 months. You require 180 credits to complete the course, of which:

  • 135 credits are from research projects
  • 45 credits are from transferable skills units.

Research projects

Your projects each run for 18 weeks starting in October and April.

  • Research Placement 1 (65 credits)
  • Research Placement 2 (70 credits)

Transferable skills

45 credits are achieved through completion of activities that develop your transferable skills in essential areas such as experimental design, statistics, bioethics (included in the tutorial and workshop unit) and science communication. Experimental Design and Statistics runs at the start of the year to prepare you for your research projects. Elements of the other units run throughout the year alongside your research projects.

  • Experimental Design and Statistics (15 credits)
  • Tutorial and Workshop (15 credits)
  • Science Communication (15 credits)

Disclaimer: Our units teach the current trends in life sciences. Consequently, details of our units may vary over time. The University therefore reserves the right to make such alterations to units as are found to be necessary. Before accepting your offer of a course, it is essential that you are aware of the current terms on which the offer is based. This includes the units available to you. If in doubt, please contact us.

What our students say

"I thoroughly enjoyed my undergraduate degree at Manchester. It was during my final year that I realised how much I relished being a part of current scientific research while learning a myriad of new skills and techniques. I therefore decided that a research-based master's course was the next step for me.

It is the combination of a fantastic university with a global reputation in research and teaching, and a vibrant city that meant I chose to stay in Manchester for another year."

Sophie Mcentegart

Facilities

You will be able to access a range of facilities throughout the University.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course will provide training in both transferable and subject-specific skills. Your experience of group-based activities and presentations will be valuable in scientific and non-scientific careers.

Your general scientific training will provide you with invaluable skills for a career in academic research, further study (eg PhD study) or in industrial research.

The widespread impact of cell biology on diverse subject areas will provide you with experience in a range of fields and permit you to work within almost any area in the biological sciences.



Read less
The MSc Cancer Cell and Molecular Biology aims to familiarise students with the cell and molecular biology of cancer cells to Masters/Diploma level; to… Read more
The MSc Cancer Cell and Molecular Biology aims to familiarise students with the cell and molecular biology of cancer cells to Masters/Diploma level; to provide training in the theoretical and practical analytical skills currently used in cancer research, and to give students direct experience of research during a research placement project with either a collaborating industrial partner or equivalent research laboratory. The course aims to prepare students for employment as scientists in industry, academia or a research institute either by direct entry or following further study.

Read less
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. Read more
This course offers a wide ranging, in depth knowledge of oral biology in its broadest sense including relevant microbiology and disease processes. It also provides a sound educational background so that you can go on to lead academic oral biology programmes within dental schools.

Why study Oral Biology at Dundee?

This course is specifically designed for individuals who wish to pursue career pathways in academic oral biology, with a focus, though not exclusively, on developing individuals who can deliver and, more importantly, lead oral biology courses within dental schools.

Oral Biology is a significant subject area that is integral to undergraduate and postgraduate dental training worldwide. The scope of Oral Biology includes a range of basic and applied sciences that underpin the practise of dentistry. These subjects include: oral and dental anatomy; craniofacial and dental development; oral physiology; oral neuroscience; oral microbiology. These subjects will be integrated with the relevant disease processes, for example, craniofacial anomalies, dental caries and tooth surface loss.

What's so good about studying Oral Biology at Dundee?

This programme focuses on the research and education experience of the staff in the Dental School in Dundee. Such expertise lies in the fields of craniofacial development and anomalies; pain and jaw muscle control; salivary physiology; cancer biology; microbiology; cariology and tooth surface loss.

In addition it makes use of the extensive resources available for postgraduate programmes: extensive histological collections; virtual microscopy; oral physiology facilities; cell biology and dental materials laboratories.

Who should study this course?

The MSc in Oral Biology is for graduates who wish to pursue a career in academic oral biology. The course will be of particular interest for those wishing to establish themselves as oral biology teachers, innovators and course leaders within a dental school.

Teaching and Assessment

The Dental School is well placed to deliver such a course with an established staff of teaching and research active within oral biology, and its related fields, an in-house e-learning technologist and substantial links to the Centre for Medical Education in the School of Medicine. There will be an opportunity for students to exit with a PGCert in Oral Biology after successful completion of modules 1 -4 or a Diploma in Oral Biology after successful completion of modules 1 - 7.

How you will be taught

The programme will be delivered via a blend of methodologies including: face-to-face lectures / seminars / tutorials; on-line learning; directed and self- directed practical work; self-directed study; journal clubs.
What you will study

The MSc will be taught full-time over one year (September to August). Semester one (Modules 1 – 4) and Semester 2A, 2B (Modules 5 – 8) will provide participants with wide ranging, in-depth knowledge of oral biology, together with focused training in research (lab-base, dissertation or e- Learning) and its associated methodology. The MSc course is built largely on new modules (5) supported by 2 modules run conjointly with the Centre for Medical Education within the Medical School. All modules are compulsory:

Semester 1:

Module 1: Academic skills 1: principles of learning and teaching (15 credits)
Module 2: Cranio-facial development and anomalies (15 credits)
Module 3: Dental and periodontal tissues, development and structure (20 credits)
Module 4: Oral mucosa and disorders (10 credits)

Semesters 2A and 2B

Module 5a: Academic skills 2a: principles of assessment (15 credits)
Module 5b: Academic Skills 2b:educational skills
Module 6: Neuroscience (20 credits)
Module 7: Oral environment and endemic oral disease (20 credits)
Module 8: Project (60 credits)

The project is designed to encourage students to further develop their skills. This could take the form of a supervised laboratory research project, a literature based dissertation or an educational project. The educational project would be based around the development of an innovative learning resource utilising the experience of the dental school learning technologist.

How you will be assessed

Exams on the taught element of the programme will be held at the end of semester one. Essays and assignments will also contribute to the final mark, and the dissertation will be assessed through the production of a thesis and a viva exam.

Careers

The MSc Oral Biology is aimed at dental or science graduates who are either early in their careers or wish to establish themselves as oral biologists within dental schools. Oral Biology is a recognised discipline in many dental schools worldwide. Graduates will have gained sufficient knowledge and skills to enable them to be teachers, innovators and educational leaders in the field. In addition, successful graduates will be well placed to undertake further postgraduate study at PhD level. In some cases, this may possible within the existing research environments within the Dental School, the wider College of Medicine Dentistry and Nursing and the Centre for Anatomy and Human Identification of the University of Dundee.

Read less
This course is suitable if you. wish to pursue research into molecular and cell biology or disease mechanisms at PhD level. want to improve your knowledge and skills to be competitive in the life science jobs market. Read more

This course is suitable if you

  • wish to pursue research into molecular and cell biology or disease mechanisms at PhD level
  • want to improve your knowledge and skills to be competitive in the life science jobs market
  • are currently employed and seeking to improve your career prospects

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography. In addition many of our research facilities such as flow cytometry, confocal microscopy and mass spectrometry are used in taught modules and research projects and our tutors are experts in these techniques.

You gain

  • a detailed and up-to-date understanding of molecular biology and cell biology
  • knowledge of how alterations or defects in cellular processes may lead to disease, such as cellular dysfunction leading to degenerative diseases, cell cycle dys-regulation in cancer, and how mutations result in genetic diseases
  • hands-on expertise in the latest techniques including cell culture, flow cytometry, real-time PCR, immuno-histochemistry and recombinant DNA technology
  • professional skills to further your career in research or the life science industry

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where students are assigned to a tutor who is an active researcher in the biomedical research centre. Typically, taught modules have a mixture of lectures and tutorials and involve a significant amount of laboratory time. Other modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

Tutors complete research within the Biomolecular Sciences Research Centre into cancer, musculoskeletal diseases, human reproduction, neurological disease, medical microbiology and immunological basis of disease. Their work is regularly published in international peer-reviewed journals, showing that the course is underpinned by relevant quality research.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Biomedical laboratory techniques (15 credits)
  • Cell biology (15 credits)
  • Molecular biology (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Biotechnology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)

Assessment

Assessment methods include written examinations and coursework including

  • problem-solving exercises
  • case studies
  • reports from practical work.

Research project assessment includes a written report and viva voce. 

Employability

As a graduate you can find work in the expanding area of life sciences or enter a career in research. You can find careers in areas such as • medical research in universities hospital laboratories or research institutes • private industry.

The course also provides the skills and knowledge for those wishing to do research at PhD level.



Read less
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Read more
The area of cancer immunotherapy considers how to use conventional therapies including surgery, radiation and chemotherapy. Whilst these treatment have served well and new drugs will continue to be designed, clinical trials over the last five years have shown that boosting the body’s immune system, whose main task is to deal with invading pathogens, can help our immune system to destroy tumour cells. Many of the new immunotherapies may be tested in combination with more conventional treatments or tested alone, but investigators and oncologists now believe immunotherapy, initially combined with pharmacological treatments, will soon provide curative therapies and certainly give many patients a new lease of life.

More about this course

Worldwide the incidence of cancer is increasing, and is expected to reach 22 million new cases per year by 2030. In addition to treatments such as radiotherapy and surgery, chemotherapy has a vital role to play in prolonging the lives of patients.

The aims of the Cancer Immunotherapy MSc are to:
-Provide an in-depth understanding of the molecular targets at which the different classes of anticancer drugs are aimed, and of how drug therapies are evolving
-Review the biology of cancer with respect to genetics, pathological considerations, and the molecular changes within cells which are associated with the progression of the disease
-Enhance intellectual and practical skills necessary for the collection, analysis, interpretation and understanding of scientific data
-Deliver a programme of advanced study to equip students for a future career in anti-cancer drug and immunotherapy development
-Cover new areas in immunotherapy (some of which may enhance existing pharmacological therapies including: History of immunotherapy and review of immune system; Monoclonal antibodies in cancer therapy and prevention; DNA vaccines against cancer; Adoptive T cell therapy; Dendritic cell vaccines; Antibodies that stimulate immunity; Adjuvant development for vaccines; Epigenetics and cancer: improving immunotherapy; Immuno-chemotherapy: integration of therapies; Exosomes and Microvesicles (EMVs) in cancer therapy and diagnosis; Dendritic cell vaccine development and Pox virus cancer vaccine vectors; Microbial causes of cancer and vaccination

Students will have access to highly qualified researchers and teachers in pharmacology and immunology, including those at the Cellular and Molecular Immunology Research Centre. Skills gained from research projects are therefore likely to be highly marketable in industry, academia and in the NHS. Students will be encouraged to join the British Society of Immunology and the International Society of Extracellular Vesicles.

Assessment is a combination of coursework, which includes tests and essays, the research project and its oral defence and examination.

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Cancer Immunotherapy (core, 20 credits)
-Cancer Pharmacology (core, 20 credits)
-Cancer: Diagnosis and Therapy (core, 20 credits)
-Molecular Oncology (core, 20 credits)
-Research Project (core, 60 credits)
-Scientific Frameworks for Research (core, 20 credits)

After the course

Students will have many opportunities to work in industry. There are established industries working hard to develop cancer immunotherapies including Bristol-Myers Squibbs, MERCK, AstraZeneca and Roche. There are also an innumerate number of start-up companies appearing including Omnis Pharma, UNUM Therapeutics and Alpine Immune Sciences.

Students will also have ample opportunity for future postgraduate study either within the School of Human Sciences and the Cellular and Molecular Immunology Centre at the MPhil/PhD level or beyond, even with some of our research partners within the UK, Europe and beyond.

Read less
Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans. Read more
Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans.

The Biomedical Sciences (Cancer Biology) MSc programme has been devised to provide knowledge of key aspects of this increasingly important disease area.

You will become familiar with the genetic and cellular changes occurring in both solid and blood-borne cancers, the current and emerging technological approaches for diagnosis of the disease and the effect on pertinent cellular changes on patient prognosis. Studies on populations and the influence of genotypic variation will ensure that you are qualified to make sense of cancer statistics.

You are able to tailor your programme by selecting from a menu of option modules and pursuing a research project in an area ranging from molecular through to cellular or tissue-based aspects of cancer.

During the course you will join our thriving research environment and will have access to excellent laboratory facilities within the Faculty. On successful completion of the course you will be equipped to take forward your career with an in-depth knowledge of this increasingly common disease area.

Modules

The following modules are indicative of what you will study on this course.

Core modules
-ADVANCED CANCER BIOLOGY
-CELL SIGNALLING AND GENETICS
-MOLECULAR SCIENCE AND DIAGNOSTICS
-POSTGRADUATE PROJECT
-POSTGRADUATE RESEARCH METHODS

Option modules
-COMMUNICATING SCIENCE
-EXTENDED POSTGRADUATE PROJECT
-IMMUNOPATHOLOGY
-IMMUNOTHERAPY
-MOLECULAR AND CELLULAR THERAPEUTICS
-SYSTEMS BIOLOGY

Associated careers

After graduation, you will be equipped with the skills and knowledge to pursue a range of cancer-focused careers including appointments in diagnostic laboratories, academic, biotechnological and pharmaceutical research.

As a graduate of this course, you will be ideally placed to play an essential role in both diagnosis and improved care of cancer patients. Opportunities are also available to pursue a career in clinical trials and in areas such as data analysis and public health.

Professional recognition

The course is accredited by the Institute of Biomedical Science (IBMS).

Read less
Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies. Read more

Our MRes Experimental Cancer Medicine master's course will give nurses, doctors and clinical researchers the skills needed to work in early phase clinical studies.

You will learn how to master experimental cancer through a combination of traditional teaching and hands-on learning, spending a year as a member of the Experimental Cancer Medicine Team at The Christie while also taking four structured taught units.

The taught units will see you learn the details of designing and delivering Phase 1 clinical studies, understanding the pre-clinical data required before a clinical programme can commence, and how to optimise early clinical studies to provide evidence for progressing a promising drug into Phase II/III clinical testing.

Alongside the taught elements, you will be allocated to one or more clinical trials that are being conducted by The Christie experimental cancer medicine team. You will have a named trainer and be exposed to tasks required in the setup, delivery, interpretation and audit of a clinical study.

Nursing and physician students will be expected to participate in patient care, including new and follow-on patient clinics, treatment and care-giving episodes with patients.

For clinical trials coordinators, no direct patient contact is envisaged and duties will involve clinical trial setup, protocol amendments, database setup, data entry, costing and billing for clinical research.

You will be able to choose two aspects of your direct clinical trial research experience to write up for your two research projects in a dissertation format. This will give you the skills and knowledge required to critically report medical, scientific and clinically related sciences for peer review.

Aims

The primary purpose of the MRes in Experimental Cancer Medicine is to provide you with the opportunity to work within a premier UK Phase 1 cancer clinical trials unit and, through a mix of taught and experiential learning, master the discipline of Experimental Cancer Medicine.

Special features

Extensive practical experience

You will spend most of your time gaining hands-on experience within The Christie's Experimental Cancer Medicine Team.

Additional course information

Meet the course team

Dr Natalie Cook is a Senior Clinical Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie. She completed a PhD at Cambridge, investigating translational therapeutics and biomarker assay design in pancreatic cancer.

Professor Hughes is Chair of Experimental Cancer Medicine at the University and Strategic Director of the Experimental Cancer Medicine team at The Christie. He is a member of the research strategy group for Manchester Cancer Research Centre. He serves on the Biomarker evaluation review panel for CRUK grant applications.

Professor Hughes was previously Global Vice-President for early clinical development at AstraZeneca, overseeing around 100 Phase 0/1/2 clinical studies. He was previously Global Vice-President for early phase clinical oncology, having been involved in over 200 early phase clinical studies.

Dr Matthew Krebs is a Clinical Senior Lecturer in Experimental Cancer Medicine at the University and Honorary Consultant in Medical Oncology at The Christie.

He has a PhD in circulating biomarkers and postdoctoral experience in single cell and ctDNA molecular profiling. He is Principal Investigator on a portfolio of phase 1 clinical trials and has research interests in clinical development of novel drugs for lung cancer and integration of biomarkers with experimental drug development.

Teaching and learning

Our course is structured around a 2:1 split between clinical-based research projects and taught elements respectively.

Taught course units will predominantly use lectures and workshops.

For the research projects, teaching and learning will take place through one-to-one mentoring from a member of the Experimental Cancer Medicine team.

The clinical and academic experience of contributors to this course will provide you with an exceptional teaching and learning experience.

Coursework and assessment

You will be assessed through oral presentations, single best answer exams, written reports and dissertation.

For each research project, you will write a dissertation of 10,000 to 15,000 words. Examples of suitable practical projects include the following.

Research proposal

  • Compilation of a research proposal to research council/charity
  • Writing a protocol and trial costings for sponsor
  • Research and write a successful expression of interest selected by grant funder for full development

Publication-based/dissertation by publication

  • Writing a clinical study report
  • Authoring a peer-review journal review/original article

Service development/professional report/ report based dissertation

  • Public health report/outbreak report/health needs assessment/health impact assessment
  • Proposal for service development/organisational change
  • Audit/evaluate service delivery/policy
  • Implement recommended change from audit report

Adapted systematic review (qualitative data)

  • Compiling the platform of scientific evidence for a new drug indication from literature
  • Review of alternative research methodologies from literature

Full systematic review that includes data collection (quantitative data)

  • Referral patterns for Phase 1 patients

Qualitative or quantitative empirical research

  • Design, conduct, analyse and report an experiment

Qualitative secondary data analysis/analysis of existing quantitative data

  • Compilation, mining and analysis of existing clinical data sets

Quantitative secondary data analysis/analysis of existing qualitative data/theoretical study/narrative review

  • Policy analysis or discourse analysis/content analysis
  • A critical review of policy using framework analysis

Facilities

Teaching will take place within The Christie NHS Foundation Trust , Withington.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

This course is relevant to physician, nursing and clinical research students who are considering a career in Phase 1 clinical studies.

The course provides a theoretical and experiential learning experience and offers a foundation for roles within other experimental cancer medicine centres within the UK and EU, as well as careers in academia, the pharmaceutical industry, clinical trials management and medicine.

The MRes is ideal for high-calibre graduates and professionals wishing to undertake directly channelled research training in the clinical and medical oncology field.



Read less
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision. Read more
Research in the School of Biosciences revolves around understanding systems and processes in the living cell. It has a strong molecular focus with leading-edge activities that are synergistic with one another and complementary to the teaching provision.

Our expertise in disciplines such as biochemistry, microbiology and biomedical science allows us to exploit technology and develop groundbreaking ideas in the fields of genetics, molecular biology, protein science, biophysics and computational biology. Fields of enquiry encompass a range of molecular processes from cell division, transcription and translation through to molecular motors, molecular diagnostics and the production of biotherapeutics and bioenergy.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1236/cell-biology

About the School of Biosciences

The School of Biosciences is among the best-funded schools of its kind in the UK, with current support from the BBSRC, NERC, MRC, Wellcome Trust, EU, and industry. It has has 38 academic staff, 56 research staff (facility managers, research fellows, postdoctoral researchers and technicians), approximately 100 postgraduate research students and 20 key support staff. The school's vibrant atmosphere has expanded to become a flourishing environment to study for postgraduate degrees in a notably friendly and supportive teaching and research environment.

In addition to research degrees, our key research strengths underpin a range of unique and career-focused taught Master’s programmes that address key issues and challenges within the biosciences and pharmaceutical industries and prepare graduates for future employment.

Course structure

Our research degrees are based around lab-based and computational research projects. MScs are based around one-year research projects (Full Time). Both types of degree are also available on a part-time basis. In all our research degrees you undertake a single, focused, research project from day one, and attend only certain components of our transferable skills modules. Our research degree students are supervised by supervisory teams which comprise their main supervisor(s) as well as supervisory chairs that give independent advice on progression.

Research areas

Research in the School of Biosciences is focused primarily on essential biological processes at the molecular and cellular level, encompassing the disciplines of biochemistry, genetics, biotechnology and biomedical research.

The School’s research has three main themes:

- Protein Science – encompasses researchers involved in industrial biotechnology and synthetic biology, and protein form and function

- Molecular Microbiology – encompasses researchers interested in yeast molecular biology (incorporating the Kent Fungal Group) and microbial pathogenesis

- Biomolecular Medicine – encompasses researchers involved in cell biology, cancer targets and therapies and cytogenomics and bioinformatics.

Each area is led by a senior professor and underpinned by excellent research facilities. The School-led development of the Industrial Biotechnology Centre (IBC), with staff from the other four other schools in the Faculty of Sciences, facilitates and encourages interdisciplinary projects. The School has a strong commitment to translational research, impact and industrial application with a substantial portfolio of enterprise activity and expertise.

Careers

A postgraduate degree in the School of Biosciences is designed to equip our graduates with transferable skills that are highly valued in the workplace. Our research-led ethos ensures that students explore the frontiers of scientific knowledge, and the intensive practical components provide rigorous training in cutting edge technical skills that are used in the modern biosciences while working in areas of world-leading expertise within the School.

Destinations for our graduates include the leading pharmaceutical and biotechnological companies within the UK and leading research institutes both at home and abroad.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply-online/1236

Read less
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. Read more
If you have a Bachelors degree in the biosciences, biochemistry, pharmacy or biological chemistry and you want to develop specialist knowledge in molecular biology then this postgraduate programme is for you. It will allow you to gain new skills and enhance your employability in the pharmaceutical and biotechnology industries or allow you to progress to a research degree.

About the course

The MSc Molecular Biology will give you hands on practical experience of both laboratory and bioinformatics techniques. You will also be trained in molecular biology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you will study two modules:
-Cellular Molecular Biology - This module aims to help you develop a systematic understanding and knowledge of recombinant DNA technology, bioinformatics and associated research methodology.
-Core Genetics and Protein Biology - This module will provide you with an advanced understanding of genetics, proteins, the area of proteomics and the molecular basis of cellular differentiation and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules:
-Molecular Medicine - You will study the areas of protein design, production and engineering, investigating specific examples of products through the use of case studies.
-Molecular Biotechnology - You will gain an in-depth understanding of the application of molecular biological approaches to the characterisation of selected diseases and the design of new drugs for their treatment.

In semester C you will undertake a research project to develop your expertise further. The research project falls into different areas of molecular biology and may include aspects of fermentation biotechnology, cardiovascular molecular biology, cancer, angiogenesis research, diabetes, general cellular molecular biology, bioinformatics, microbial physiology and environmental microbiology.

Why choose this course?

-This course gives in-depth knowledge of molecular biology for biosciences graduates
-It has a strong practical basis giving you training in molecular biology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2016 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

Graduates of the programme will be qualified for research and development positions in the pharmaceutical and biotechnology industries, to progress to a research degree, or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project. All modules are 100% assessed by coursework including in-class tests.
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Molecular Biotechnology
-Molecular Medicine Research
-Biosciences Research Methods for Masters
-Methods and Project

Read less

Show 10 15 30 per page



Cookie Policy    X