• Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
King’s College London Featured Masters Courses
University of Kent Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
"building" AND "science"×
0 miles

Masters Degrees (Building Science)

  • "building" AND "science" ×
  • clear all
Showing 1 to 15 of 839
Order by 
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.
The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Building_Engineering_01.pdf
This track of the Master of Science in Building and Architectural Engineers trains Building Engineers that can manage the complexity of building projects, through the application of engineering principles and tools to building design and construction. The programme
focuses on sustainability, energy efficiency and safety issues in the building sector, considering both horizontal (interdisciplinary) and vertical (life cycle-related) integration.
The Building Engineer is a professional with robust scientific and technical skills ready to:
• engineer the architectural design of complex, large and/or special buildings;
• supervise the design integration of all technological and technical parts (building fabric, structure, building systems);
• manage the whole manufacturing and life cycle of building systems and components;
• organize and control the construction and maintenance process.

More specifically, the Building Engineering programme provides students with knowledge and tools necessary to model the detailed physical and structural behaviour of building components and, in particular, of the building envelope, the filter between the interior and exterior environment. Hence, the Building Engineer is able to bring, into multidisciplinary design teams, the necessary skills to design innovative envelope components and assess the related performances in their service life.

Subjects

Some of the key subjects are:
- Engineering Design for Architecture
- Advanced Construction Materials
- Advanced Building Systems Engineering
- Structural modelling and analysis, design of structure
- Earthquake resistant design
- Advanced Building Physics
- Building Energy Modelling and Building Envelope Design
- Multiphysics optimization on Building Envelope

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
This program helps to enhance the knowledge and competencies of building services and related professionals engaged in complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment. Read more
This program helps to enhance the knowledge and competencies of building services and related professionals engaged in complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment.

Program Objectives

Ever since the first appearance of the term ‘Intelligent Buildings’ in US in the early 1980s, it has grown into a major area of study for design and management professionals involved in major modern urban building projects. The start of the twenty-first century is witnessing rapid developments in intelligent building design technology and management. Building services engineers have to deal with complex multi-disciplinary building projects that involve the provision of effective and efficient solutions to an ever-evolving urban built environment. The provision of a quality and up-to-date postgraduate level program such as this MSc program helps to enhance the knowledge and competencies of professionals who are engaged in intelligent building projects in modern metropolises such as Hong Kong and major cities in Mainland China. The program aims to contribute towards the sustainability of today’s urban built environment.

The MSc program in Intelligent Building Technology and Management is a postgraduate degree program designed for professionals in the building services industry. They can be mechanical engineers, electrical engineers, building services engineers, civil engineers, architects and other building operation professionals who wish to pursue comprehensive studies in intelligent building design, operation and facilities management. Our program consists of core courses that equip students with the basic theme and foundation on intelligent building technology and management concepts, and a variety of electives that cover topics from safety and health issues, risk management, energy management, to impact analysis and use of advanced building materials, indoor air quality, facility management, etc. The program aims to provide a balance between both frontier technology updates and management strategies, in both a quantitative and qualitative way.

Curriculum

All students are required to take a total of 30 credits to complete the MSc(IBTM) program. The program consists of two core courses that all students are required to take. The remaining credits will be taken from the elective courses. Subject to the approval of the Program Director, students may take a maximum of nine credits of non-IBTM courses, which may include a maximum of six credits of CIEM courses from the MSc program in Civil Infrastructural Engineering and Management and a maximum of six credits of MESF or MECH courses offered by the Department of Mechanical and Aerospace Engineering as partial fulfillment of the graduation requirement.

Core Courses
-IBTM 5010 Intelligent Building Facility Management
-IBTM 5050 Intelligent Building System

Elective Courses
-IBTM 5150 Advanced HVAC Systems
-IBTM 5200 Advanced Energy Conversion Systems
-IBTM 5260 Architectural Acoustics and Audio Systems
-IBTM 5300 Computational Methods in Building Environment Design
-IBTM 5330 Energy Management in Buildings
-IBTM 5430 Indoor Air Quality Technology and Management
-IBTM 5460 Materials in Built Environment
-IBTM 5470 Mechanical Vibration
-IBTM 5500 Occupational Safety and Health Issues in Buildings
-IBTM 5530 Risk Management and Decision-Making in Intelligent Building
-IBTM 5550 Financial Assessment of Intelligent Building Systems
-IBTM 5620 Electrical Facilities in Intelligent Buildings
-IBTM 6010 Special Topics in Intelligent Building Systems *
-IBTM 6010A Special Topics in Intelligent Building Systems: Leadership & System Design
-IBTM 6010B Special topics in Intelligent Building Systems: Mechanical Vibration
-IBTM 6010C Special Topics in Intelligent Building Systems: Entrepreneurship and Smart Building Technologies
-IBTM 6010D Special Topics in Intelligent Building Systems: Micro Sensors for Smart Buildings
-IBTM 6950 Independent Studies *

All Core and Elective courses carry 3 credits each, except IBTM 6950 which is worth 3 or 6 credits.

* A maximum of six credits of IBTM 6010 and a maximum of six credits of IBTM 6950 (which may be taken once only) may be counted toward the graduation requirement.

** Courses are offered subject to needs and availability.

Facilities

Students can enjoy library support, computer support, sports facilities, and email account at no extra cost. Upon graduation, students could also apply for related alumni services.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Data Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

MSc in Data Science aims to equip students with a solid grounding in data science concepts and technologies for extracting information and constructing knowledge from data. Students of the MSc Data Science will study the computational principles, methods, and systems for a variety of real world applications that require mathematical foundations, programming skills, critical thinking, and ingenuity. Development of research skills will be an essential element of the Data Science programme so that students can bring a critical perspective to current data science discipline and apply this to future developments in a rapidly changing technological environment.

Key Features of the MSc Data Science

The MSc Data Science programme focuses on three core technical themes: data mining, machine learning, and visualisation. Data mining is fundamental to data science and the students will learn how to mine both structured data and unstructured data. Students will gain practical data mining experience and will gain a systematic understanding of the fundamental concepts of analysing complex and heterogeneous data. They will be able to manipulate large heterogeneous datasets, from storage to processing, be able to extract information from large datasets, gain experience of data mining algorithms and techniques, and be able to apply them in real world applications. Machine learning has proven to be an effective and exciting technology for data and it is of high value when it comes to employment. Students of the Data Science programme will learn the fundamentals of both conventional and state-of-the-art machine learning techniques, be able to apply the methods and techniques to synthesise solutions using machine learning, and will have the necessary practical skills to apply their understanding to big data problems. We will train students to explore a variety visualisation concepts and techniques for data analysis. Students will be able to apply important concepts in data visualisation, information visualisation, and visual analytics to support data process and knowledge discovery. The students of the Data Science programme also learn important mathematical concepts and methods required by a data scientist. A specifically designed module that is accessible to students with different background will cover the basics of algebra, optimisation techniques, statistics, and so on. More advanced mathematical concepts are integrated in individual modules where necessary.

The MSc Data Science programme delivers the practical components using a number of programming languages and software packages, such as Hadoop, Python, Matlab, C++, OpenGL, OpenCV, and Spark. Students will also be exposed to a range of closely related subject areas, including pattern recognition, high performance computing, GPU processing, computer vision, human computer interaction, and software validation and verification. The delivery of both core and optional modules leverage on the research strength and capacity in the department. The modules are delivered by lecturers who are actively engaged in world leading researches in this field. Students of the Data Science programme will benefit from state-of-the-art materials and contents, and will work on individual degree projects that can be research-led or application driven.

Modules

Modules for the MSc Data Science programme include:

- Visual Analytics
- Data Science Research Methods and Seminars
- Big Data and Data Mining
- Big Data and Machine Learning
- Mathematical Skills for Data Scientists
- Data Visualization
- Human Computer Interaction
- High Performance Computing in C/C++
- Graphics Processor Programming
- Computer Vision and Pattern Recognition
- Modelling and Verification Techniques
- Operating Systems and Architectures

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Career Destinations

- Data Analyst
- Data mining Developer
- Machine Learning Developer
- Visual Analytics Developer
- Visualisation Developer
- Visual Computing Software Developer
- Database Developer
- Data Science Researcher
- Computer Vision Developer
- Medical Computing Developer
- Informatics Developer
- Software Engineer

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The MSc in Computer Science course is for you if you are a graduate from one of a wide range of disciplines and are looking to change direction or because of the needs of your chosen career, require a solid foundation in Computer Science.

As the use of computers and computer based systems continues to grow in all aspects of life, at home and at work, it is apparent that there will be for years to come a need for many people who can combine a knowledge of Computer Science, the discipline that underlies Information Technology, and degree level knowledge in a wide variety of other disciplines.

Over the duration of the MSc Computer Science course you will study a variety of modules taught by academic staff that are part of internationally renowned research groups. The course is also regularly updated to ensure that it keeps pace with the rapid developments in Computer Science.

Key Features of Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Computer Science MSc

Modules for the MSc in Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15].

Student Profile

“I chose the MSc Computer Science as a conversion from my previous War and Society degree, primarily employment opportunities. The course was by no means easy for me coming from an arts background, and the first few weeks I felt a little over my head, but thanks to the truly stimulating content from the syllabus and the high quality of the teaching within the department I soon caught up and began to thrive on the course. My project revolved around a comparative study of the Haskell Web-Framework Yesod and ASP.NET. During the completion of this I picked up many of the skills that I now use on an everyday basis in my role at Kinspeed (A Sheffield based Software House). Since starting work I have been able to apply many of the skills I obtained during my time at Swansea and have no doubt that choosing to study the MSc Computer Science at Swansea was one of the better decisions of my life.”

Chris Swires

Research

The results of the Research Excellence Framework (REF) 2014 show that Swansea Computer Science ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Read less
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Theoretical Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Computer Science is at the cutting edge of modern technology, is developing rapidly, and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Theoretical Computer Science enables students to pursue a one year individual programme of research. The
Theoretical Computer Science programme would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

As a student of the Theoretical Computer Science MSc by Research programme, you will be fully integrated into one of our established computer science research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Key Features of Theoretical Computer Science

The Department of Computer Science is amongst the top 25 in the UK, with a growing reputation in research both nationally and internationally in computer science. It is home to world class researchers, excellent teaching programmes and fine laboratory facilities.

All postgraduate Computer Science programmes will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. The Department of Computer Science also strongly encourages students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships or College of Science Postgraduate Scholarships to study Advanced Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

On the MSc in Advanced Computer Science course you will be thoroughly prepared for a career in IT or related industries. The Advanced Computer Science course is for you if you are a Computer Science graduate or if you have gained experience of computing and programming in a different first degree. Willingness to work hard and an ability to problem solve are equally important for this MSc in Advanced Computer Science. The MSc in Advanced Computer Science course will develop the skills and knowledge you have gained from your first degree by broadening and deepening your knowledge of Computer Science through a variety of advanced modules and material. The MSc in Advanced Computer Science is accredited by the British Computer Society.

Key Features of Advanced Computer Science MSc

• We are top in the UK for career prospects*
• We are 3rd in the UK for teaching quality**
• 5th in the UK overall*
• 7th in the UK for student satisfaction with 98% [National Student Survey 2016]
• 7th in the UK overall and Top in Wales*
• High employability prospects - we are 8th in the UK for graduate prospects*
• 92% in graduate employment or further study six months after leaving University [HESA data 2014/15]
• UK TOP 20 for Research Excellence [Research Excellence Framework 2014]
• Our Project Fair allows students to present their work to local industry
• Strong links with industry
• £31m Computational Foundry for computer and mathematical sciences will provide the most up-to-date and high quality teaching facilities featuring world-leading experimental set-ups, devices and prototypes to accelerate innovation and ensure students will be ready for exciting and successful careers. (From September 2018)

*Guardian University Guide 2017
**Times & Sunday Times University Guide 2016

Modules of Advanced Computer Science MSc

Modules for the MSc in Advanced Computer Science include Computer Science Project Research Methods but please visit our course page for more information.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Careers

All Computer Science courses will provide you the transferable skills and knowledge to help you take advantage of the excellent employment and career development prospects in an ever growing and changing computing and ICT industry.

94% of our Postgraduate Taught Graduates of Computer Science were in professional level work or study [DLHE 14/15]

Student Profile

Francesca Madeddu, originally from Italy, completed an outstanding Master’s thesis (which earned her a distinction) investigating interaction with augmented reality on mobile devices. More specifically, she investigated how to interact with virtual Egyptian artefacts placed in real scenes. The final game was deployed at Swansea's Egypt Centre last year and was evaluated by volunteers working at the museum. A Master’s thesis does not often lead to a publication. However, part of Francesca's research was written up as an extended abstract and presented at Computer Graphics and Visual Computing (CGVC), a Eurographics UK conference for visual computing last year. An exceptional achievement!

Read less
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Computer Science at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

As an MSc by Research Computer Science student you will be guided by internationally leading researchers in the field of computer science and will carry out a large individual research project. Computer Science is at the cutting edge of modern technology, and is developing rapidly and Swansea Computer Science graduates enjoy excellent employment prospects.

Computer Science now plays a part in almost every aspect of our lives - science, engineering, the media, entertainment, travel, commerce and industry, public services and the home.

The MSc by Research Computer Science degree enables you to pursue a one year individual programme of research in the field of computer science and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree.

The MSc by Research programmes including Computer Science MSc by Research all have a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in biosciences or cognate discipline and are looking to pursue a wholly research-based programme of study.

As a student of the MSc by Research Computer Science programme you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work.

Facilities

The Department of Computer Science is well equipped for teaching, and is continually upgrading its laboratories to ensure equipment is up-to-date – equipment is never more than three years old, and rarely more than two. Currently, our Computer Science students use three fully networked laboratories: one, running Windows; another running Linux; and a project laboratory, containing specialised equipment. These laboratories support a wide range of software, including the programming languages Java, C# and the .net framework, C, C++, Haskell and Prolog among many; integrated programme development environments such as Visual Studio and Netbeans; the widely-used Microsoft Office package; web access tools; and many special purpose software tools including graphical rendering and image manipulation tools; expert system production tools; concurrent system modelling tools; World Wide Web authoring tools; and databases.

As part of the expansion of the Department of Computer Science, we are building the Computational Foundry on our Bay Campus for computer science and mathematical science.

Research

The results of the Research Excellence Framework (REF) 2014 show that we lead Wales in the field of Computer Science and are in the UK Top 20.

We are ranked 11th in the UK for percentage of world-leading research, and 1st in Wales for research excellence. 40% of our submitted research assessed as world-leading quality (4*).

Links with Industry

Each spring, Computer Science students prepare and present a poster about their project at a project fair – usually together with a system or software demonstration. We also strongly encourage students to create CVs and business cards to take along to the fair, as businesses and employers visit to view the range of projects and make contact with the graduating students.

Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
A unique course, the only one of its kind in the UK, designed to fast track you into the industry. Quick Facts. 2 Year Course. Full-time. Read more
A unique course, the only one of its kind in the UK, designed to fast track you into the industry.

Quick Facts:

2 Year Course
Full-time
Course runs Jan-Dec each year
Next intake: January 2017
NFTS Scholarships available for UK Students

Visit the website https://nfts.co.uk/our-courses/masters/directing-producing-science-natural-history

APPLICATION DEADLINE: 13 OCT 2016

COURSE OVERVIEW

New technology and a greater variety of formats are challenging the traditional boundaries of Science and Natural History Programming and driving greater audience demand. British production companies are at the forefront of leading innovation in formats and high-end content, with growing opportunities to work with North American and international broadcasters.

This course will give you:

- The skills to direct science and natural history productions.
- The know-how to produce entire shows.
- A practical working knowledge of current science and natural history television production methods.
- The ability to generate science and natural history programme ideas and formats.
- Knowledge of how the business works and current trends, including co-productions etc.
- The confidence and know-how to pitch those ideas to commissioning editors.
- Brilliant industry contacts and relevant skills for building a sustainable career as a Producer/Director.
- Access to NFTS's Masterclasses lead by major creative figures from film, television and games.

The National Film and Television School’s Science and Natural History Masters* focuses on developing Producers and Directors. Therefore, as part of the course students will be exposed to the development and production challenges of specialist factual genres, such as Landmark and Blue Chip (interchangeable terms for high budget, high production value programming mainly used in a pure wildlife context), mini landmarks, Children’s, People and Nature, Live, Expedition films, Magazine formats, Obs-doc etc. In addition there will be a focus on promoting cross-genre ideas to foster creativity.

Editorial policy and standards, together with codes of practice relating to science and the filming of animals, and Health and Safety will be fully explored.

Students will gain practical experience in both the research and development of programming of this type whilst also developing a body of work that showcases their practical film making skills and innovation within the genre.

* Subject to Validation

CURRICULUM

Below is an indicative list of the topics covered on the course:

- Audiences, and the genres of science and natural history films: differences and overlaps
- Editorial and production values in science and natural history programmes
- The documentary tradition
- Principles of storytelling and film narrative
- Finding stories: research
- Story Development
- Treatments and Proposal Writing / Pitching and packaging the concept
- The film process, from script to screen
- Writing techniques
- Wildlife Behaviour
- Finding and working with Talent and Presenters
- Guidelines for Filming Animals
- Editorial Policy and Standards
- Digital Content and Social Media Extensions
- Formatting
- Short form storytelling
- Directing the camera to capture a ‘scene’
- Working with graphics and VFX
- Pitch Reel / Sizzle Reels
- Outside Broadcasts
- Production and Post Production Workflow (logging, DITs etc)
- Health and Safety
- The History of Science and Wildlife Filmmaking
- The Business: how programmes are financed. International co-production
- International Markets and Programming
- Marketplace trends
- Managing a career

In addition, students will be exposed to specialist science and natural history filming techniques, such as: thermal, Slow Motion, underwater, Macro & Micro filming, drones, timelapse, rigs etc.

There is a strong emphasis on professional practice. This means that student projects will be expected to measure up to scientific scrutiny, as well as exhibition and broadcast standards.

The structure of the course follows the chronological steps of a Science or Natural History Television production. Injected into this timeline will be specifically tailored modules taught by top television professionals, with experience of different subgenres or appropriate specialist techniques, eg cinematography or VFX. Students also get the chance to pitch their Science and Natural History programme ideas to broadcasters like the BBC, National Geographic and Discovery.

NFTS students are engaged in more productions as part of the curriculum than any of our competitors. Unlike other schools, all production costs are met by the School and productions are given cash production budgets.

PLACEMENT

Each student will complete a minimum of 10 days work experience.

NFTS BENEFITS

Science & Natural History course participants will have full access to the NFTS’ optional creative stimulus strands, including: Cinema Club, Screen Arts and NFTS Masterclasses - these strands see major creative figures from film, television and games screening their work and discussing with students in the campus cinema. Recent speakers include David Fincher (Director, Seven, Gone Girl), Graham Linehan (The IT Crowd, Father Ted), Abi Morgan (Suffragette, The Hour), Christopher Nolan (Interstellar, The Dark Knight) and Hamish Hamilton (Director, Super Bowl XLVIII).

ENTRY REQUIREMENTS

If you are lively and imaginative, then this is the course for you! Applicants must be able to demonstrate their passion, commitment and talent for developing a career in Television.

Typically applicants will have a proven interest in science and natural history, which, typically, may involve a background in Physics, Chemistry, combined Natural Sciences, Zoology, Biology, Psychology, Mathematics etc.

APPLY WITH

- A short proposal for a science or natural history television programme – no more than one A4 typed page
- Optional: A DVD containing samples of your work specifying your exact role in each. This work need not be in the science and natural history area, as some applicants may not have a film or other programme-making background.

HOW TO APPLY

You can apply directly to us at the NFTS by clicking on the link below:

APPLY FOR DIRECTING & PRODUCING SCIENCE & NATURAL HISTORY COURSE - https://nfts.co.uk/user/login?destination=node/9%3Fnid%3D2023

You can apply online, or download a word document of the application form to submit via email
When selecting your course, please ensure that you have read the entry requirements and details of the supporting materials that should accompany your application.

TIMING YOUR APPLICATION

We are happy to receive applications 24/7 and 365 days a year up until the deadline. That said, there is no particular advantage to submitting your application very early. The important thing is that your application shows us your latest work and tell us about your most recent filmmaking experiences.

Read less
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE. COURSE AIMS. Building services engineering is an interdisciplinary profession. Read more
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE.

COURSE AIMS
Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment. With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important. In addition, the need to provide an internal environment that balances the comfort needs of the occupants with the functional requirements of the building calls for engineers with a wide range of knowledge and skills.

The aim of this programme is to respond to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The Building Services Engineering Management course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility, perhaps in a senior role. Alternatively, the Building Services Engineering course is of particular relevance to engineers who want to develop technical understanding and expertise across the multi-disciplines of Building Services Engineering.

SPECIAL FEATURES

There are several advantages in choosing the Brunel Building Services programme:

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, Area Health Authorities, Local Authorities, the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Who is the Programme Designed For?

Recent engineering and technology graduates, moving into Building Services and related disciplines.
Established engineers and technologists, working in Building Services and faced with the challenge of new areas of responsibility.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in Building Services Engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with Building Services Engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.
The MSc Building Services Engineering Management is particularly aimed at professional engineers who are carrying increasing management responsibility - perhaps in a senior role - or who are aspiring to assume increased management responsibility as part of their future career in the Building Services sector.

COURSE DETAILS - see course web link below.

Read less
The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Read more

Mission and Goals

The programme aims at preparing engineers to develop and use information technology tools so as to satisfy the widest variety of applications. Compared to the Bachelor of Science, Master of Science students acquire greater ability to model and solve complex problems, integrating different advanced skills and technologies. The programme comprises three tracks: Communication and Society Engineering, Sound and Music Engineering, Data Engineering.

The teaching language is English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Career Opportunities

The information technology engineer operates mainly in companies manufacturing and distributing information technology and robotics equipment and systems, companies providing products and services with a high information technology content, private organisations and public administration using information technology to plan, design, manage, decide, produce and administrate.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Computer_science_and_engineering_CO_01.pdf
The Master of Science programme in Computer Science and Engineering aims at training engineers able to develop and use information technology tools so as to satisfy the widest variety of applications. Four tracks are available, corresponding to four main cultural areas. The “Communication and Society Engineering” track focuses on the integration of computer science and communication skills, for designing, implementing, presenting and evaluating innovative multimedia applications. The methodologies for the management of data, such as data mining, pattern recognition, information retrieval, constitute the core of the “Data Engineering” track. The “ICT Engineering, Business and Innovation” track aims at building professional profiles that combine a solid computer science background with managerial capabilities, through a selection of computer science and management courses, integrated with a broad cross-disciplinary project, carried out in collaboration with companies and Management Engineering students and professors. Finally, the “Sound and Music Engineering” track (in collaboration with the “Giuseppe Verdi” Music Conservatory of Como) focuses on the concepts and processes that are behind generation, analysis, manipulation/ processing, transport, access, coding and rendering of audio and musical signals. The programme is taught in English.

Subjects

Key subjects available:
Multimedia Interactive Applications for Web and Mobile Devices, Computer Graphics and Applications, Advanced Software Engineering, Advanced Computer Architectures, Performance Evaluation of Computer Systems, Multimedia Information Retrieval, Multimedia Signal Processing, Sound Analysis, Synthesis and Processing, Electronics and Electroacoustic.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/computer-science-and-engineering/computer-science-and-engineering-track-como/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.

The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architectural_Engineering_Lecco.pdf
This track of the Master of Science in Building and Architectural Engineering trains Architectural Engineers that can manage and take part in the integrated design process of complex construction projects. An interdisciplinary approach to design and construction, and the related teamwork, are widely recognized as the essential tools to deliver buildings with high performances, reliable sustainability credentials, and a balanced life cycle cost.
The Architectural Engineer is a professional ready to work in complex, multidisciplinary and multi-scalar projects. The programme trains students through two parallel approaches:
- Giving them the tools, from the fields of both engineering and architecture, to be
effective members of design teams;
- Involving them in integrated studios where they can apply the principles of
integrated design to specific projects.

The programme prepares students to approach, among others, the fields of multiscale energy-efficient design, innovative construction technology and refurbishment of existing buildings, with a strong focus on the different scales of intervention (from the city and territory to the building and construction components). The programme is also strongly rooted in the European and Italian tradition which has created cities and buildings celebrated worldwide.

Subjects

- Architectural Design
- History of Architecture
- Building Physics
- Building Services
- Conservation
- Integrated Project Management
- Refurbishment and Energy Retrofit
- Structural Design
- Sustainable Building Technologies
- Sustainable Multidisciplinary Design Process
- Urban Design

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X