• Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Ulster University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Dundee Featured Masters Courses
Cranfield University Featured Masters Courses
FindA University Ltd Featured Masters Courses
"building" AND "physics"×
0 miles

Masters Degrees (Building Physics)

We have 148 Masters Degrees (Building Physics)

  • "building" AND "physics" ×
  • clear all
Showing 1 to 15 of 148
Order by 
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.
The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Building_Engineering_01.pdf
This track of the Master of Science in Building and Architectural Engineers trains Building Engineers that can manage the complexity of building projects, through the application of engineering principles and tools to building design and construction. The programme
focuses on sustainability, energy efficiency and safety issues in the building sector, considering both horizontal (interdisciplinary) and vertical (life cycle-related) integration.
The Building Engineer is a professional with robust scientific and technical skills ready to:
• engineer the architectural design of complex, large and/or special buildings;
• supervise the design integration of all technological and technical parts (building fabric, structure, building systems);
• manage the whole manufacturing and life cycle of building systems and components;
• organize and control the construction and maintenance process.

More specifically, the Building Engineering programme provides students with knowledge and tools necessary to model the detailed physical and structural behaviour of building components and, in particular, of the building envelope, the filter between the interior and exterior environment. Hence, the Building Engineer is able to bring, into multidisciplinary design teams, the necessary skills to design innovative envelope components and assess the related performances in their service life.

Subjects

Some of the key subjects are:
- Engineering Design for Architecture
- Advanced Construction Materials
- Advanced Building Systems Engineering
- Structural modelling and analysis, design of structure
- Earthquake resistant design
- Advanced Building Physics
- Building Energy Modelling and Building Envelope Design
- Multiphysics optimization on Building Envelope

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research in Applied Physics and Materials enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Applied Physics and Materials, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Applied Physics and Materials

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Applied Physics and Materials Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Applied Physics and Materials degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Applied Physics and Materials programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Experimental Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Experimental Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Experimental Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Experimental Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Experimental Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. Read more

The MSc by Research Theoretical Physics enables students to pursue a one year individual programme of research. The MSc by Research would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

As a research student in Theoretical Physics, you will be fully integrated into one of our established research groups and participate in research activities such as seminars, workshops, laboratories, and field work. 

Key Features of Experimental Physics

Swansea is a research led University to which the Physics department makes a significant contribution, meaning that as a Postgraduate Physics Student you will benefit from the knowledge and skills of internationally renowned academics.

The Department received top ratings of 4* and 3* in the 2008 RAE, which classified our research as World-leading or Internationally excellent in terms of its originality, significance and rigour.

The three main research groups within the Department of Physics currently focus on the following areas of research:

Applied Physics and Materials Group

  • Next Generation Solar Cells
  • Materials and Devices for Photodetection
  • Physics of Next Generation Semiconductors
  • Bioelectronics
  • Material Physics
  • Biophysics
  • Novel sensors for medicine 

Atomic, Molecular and Quantum Physics Group

  • Antihydrogen, positronium and positrons
  • Quantum control
  • Cold atoms and quantum optics
  • Nano-scale physics and the life sciences
  • Analytical laser spectroscopy unit
  • Ultrafast Dynamics, Imaging and Microscopy
  • Quantum Computation and Simulation
  • Quantum Control and Optomechanics 

Particle Physics And Cosmology Theory Group

  • Integrability and AdS/CFT
  • Higher spin holography
  • Dense quark matter at strong coupling and gauge/string duality
  • Quantum fields in curved spacetime
  • Theoretical cosmology
  • Amplitudes in gauge and supergravity theories
  • Non-abelian T-duality and supergravity solutions
  • Holography and physics beyond the Standard Model
  • Large-N gauge theories, supersymmetry and duality
  • Lattice studies of strongly interacting systems
  • Lattice QCD at nonzero temperature
  • Dense quark matter and the sign problem
  • High-performance computing

Theoretical Physics Structure

The Physics Department is always keen to attract high-quality postgraduate students to join our research groups.

All Physics Research Degrees take 12 months of study, including the dissertation. For MSc by Research programmes you will be guided by internationally leading researchers through an extended one-year individual research project. There is no taught element.

The MSc by Research in Theoretical Physics degree enables you to pursue a one year individual programme of research and would normally terminate after a year. However, under appropriate circumstances, this first year of research can also be used in a progression to Year 2 of a PhD degree. 

The Theoretical Physics programme has a recommended initial research training module (Science Skills & Research Methods), but otherwise has no taught element and is most suitable for you if you have an existing background in geography or cognate discipline and are looking to pursue a wholly research-based programme of study.

Links with Industry

Our two research groups, Particle Physics Theory (PPT) and Atomic, Molecular and Quantum Physics (AMQP), deliver impact with commercial benefits both nationally and internationally, complemented by a public engagement programme with a global reach. 

Economic impacts are realised by the Department’s Analytical Laser Spectroscopy Unit (ALSU) which, since 1993, has worked with companies developing products eventually sold to customers in the nuclear power industry and military, both in the UK and overseas, and in the global aerospace industry. Computational particle physics work performed by the PPT group has spun-off a computer benchmarking tool, BSMBench, used by several leading software outfits, and has led to the establishment of a start-up company.

The AMQP group’s work on trapping and investigating antihydrogen has generated great media interest and building on this we have developed a significant and on-going programme of public engagement. Activities include the development of a bespoke software simulator (Hands on Antihydrogen) of the antimatter experiment for school students.

Facilities

As a postgraduate student in the Department of Physics you will have access to the following Specialist Facilities:

  • Low-energy positron beam with a high field superconducting magnet for the study of
  • positronium
  • CW and pulsed laser systems
  • Scanning tunnelling electron and nearfield optical microscopes
  • Raman microscope
  • CPU parallel cluster
  • Access to the IBM-built ‘Blue C’ Super computer at Swansea University and is part of the shared use of the teraflop QCDOC facility based in Edinburgh

Research

The results of the Research Excellence Framework (REF) 2014 show that over 80\% of the research outputs from both the experimental and theoretical groups were judged to be world-leading or internationally excellent.

Research groups include:

Atomic, Molecular and Quantum Physics Group

The Atomic, Molecular and Quantum Physics Group comprises academic staff, postdoctoral officers and postgraduate research students. Its work is supported by grants from EPSRC, the EU, The Royal Society, the Higher Education Funding Council for Wales and various industrial and government sources. There are two main fields of research: Atomic, Molecular and Laser Physics and Nanoscale Physics.

Particle Physics And Cosmology Theory Group

The Particle Physics and Cosmology Theory Group has fifteen members of staff, in addition to postdoctoral officers and research students. It is the fourth largest particle physics theory group in the UK, and is supported mainly by STFC, but also has grants from EPSRC, the EU, Royal Society and Leverhulme Trust. The group recently expanded by hiring two theoretical cosmologists (Ivonne Zavala and Gianmassimo Tasinato). There are five main fields of research: Quantum Field Theory, Strings, Lattice Field Theory, Beyond the Standard Model Physics and Theoretical Cosmology.

Applied Physics and Materials Group

The Applied Physics and Materials (APM) Group has been very recently established at our department and is supported by grants from the European Union, Welsh Government, National Science Foundation, Australian Research Council, Welsh European Funding Office, and EPSRC. Its main areas of research range from Biophotonics, covering nano- and micro-structured materials, biomimetics, analyte sensing and light-tissue interaction, over Nanomedicine to Sustainable Advanced Materials, such as Next generation semiconductors, bioelectronic materials and devices, optoelectronics including photodetection, solar energy conversion, advanced electro-optics and transport physics of disordered solids.



Read less
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.

The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Architectural_Engineering_Lecco.pdf
This track of the Master of Science in Building and Architectural Engineering trains Architectural Engineers that can manage and take part in the integrated design process of complex construction projects. An interdisciplinary approach to design and construction, and the related teamwork, are widely recognized as the essential tools to deliver buildings with high performances, reliable sustainability credentials, and a balanced life cycle cost.
The Architectural Engineer is a professional ready to work in complex, multidisciplinary and multi-scalar projects. The programme trains students through two parallel approaches:
- Giving them the tools, from the fields of both engineering and architecture, to be
effective members of design teams;
- Involving them in integrated studios where they can apply the principles of
integrated design to specific projects.

The programme prepares students to approach, among others, the fields of multiscale energy-efficient design, innovative construction technology and refurbishment of existing buildings, with a strong focus on the different scales of intervention (from the city and territory to the building and construction components). The programme is also strongly rooted in the European and Italian tradition which has created cities and buildings celebrated worldwide.

Subjects

- Architectural Design
- History of Architecture
- Building Physics
- Building Services
- Conservation
- Integrated Project Management
- Refurbishment and Energy Retrofit
- Structural Design
- Sustainable Building Technologies
- Sustainable Multidisciplinary Design Process
- Urban Design

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more

As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are a graduate with a degree in a built environment subject or already work in the construction industry and want to upskill for a promotion or new construction role, we will teach you how to analyse the performance of existing buildings and design and model new energy-efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as thermal barriers.

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to the University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

  • Building Environmental Science & Modelling
  • Building Detailed Design & Specification

Job prospects

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

  • Building Surveyor
  • Architectural Technician
  • Mechanical Engineer


Read less
The Integrated Building Systems Design and Operation MSc offers a thorough grounding in the science and engineering of integrated building systems. Read more

The Integrated Building Systems Design and Operation MSc offers a thorough grounding in the science and engineering of integrated building systems. Drawing upon the world-leading research conducted in this field at The Bartlett’s Institute for Environmental Design and Engineering, and exploiting strong industry links, it provides students with the knowledge and skills to be able to excel in relevant industry roles or pursue research at the doctoral level.

About this degree

The programme is informed by the latest research and the evolving needs of the industry. You will learn about integrated building design, advanced modelling and simulation, energy management systems, and performance evaluation. You will develop the expertise to utilise hard-edged engineering methods and quantitative and qualitative tools to test and evolve your designs, integrating quantitative performance considerations.

Students undertake modules to the value of 180 credits.

The programme consists of six compulsory modules (90 credits), two optional modules (30 credits) and a dissertation (60 credits).

Core modules

  • Building Systems Physics
  • Engineered Environmental Elements
  • Building Systems Modelling and Energy Management Systems
  • Building Systems Development and Operation
  • Integrated Building Systems Simulation
  • Integrated Building Design for Health and Wellbeing

Optional modules

  • Indoor Air Quality
  • Light, Lighting and Wellbeing in Buildings
  • Multi-Objective Design Optimisation
  • Building Acoustics
  • Post-Occupancy Evaluation
  • Low-Energy Housing Refit

The list of optional modules is correct for the 2018/19 academic year. Enrolment on modules is subject to availability.

Dissertation/report

All students undertake an independent research project whch culminates in a 10,000-word dissertation.

Teaching and learning

The programme is delivered through a combination of lectures, seminars, tutorials, problem-based learning, hands-on laboratory sessions and project work. Assessment is through a combination of methods; written coursework, group work with a design component, individual and group-based project work, unseen examinations, and by dissertation.

Fieldwork

Students will have the opportunity to participate in a field trip in term one which will include a mix of workshops, seminars and team building activities. 

Students will have the opportunity to participate in site visits throughout the duration of the programme.

The costs of the field trip are covered by the department. Site visits that are within the Transport for London area and which are optional may incur additional transport costs.

Further information on modules and degree structure is available on the department website: Integrated Building Systems Design and Operation MSc

Careers

Successful graduates will be equipped with the skills and knowledge required for engineering and specialist roles in companies that provide engineering, design, planning and consulting services.

Companies that specialise in building services engineering, operations, building controls and energy systems, as well as high-tech companies seeking to deliver disruptive solutions and digital innovation in the built environment will be particularly interested in employing this programme’s graduates, as will public sector agencies and government departments concerned with the built environment, resource efficiency, and energy management.

The programme provides an ideal foundation for further doctoral and industrial research pathways and can lead to a career in research. 

Employability

You will gain strong core knowledge and hands-on experience with monitoring and energy management systems, and applying industry standards. You will use simulation tools including EnergyPlus, DesignBuilder or IES<VE>, and will become familiar with modelling languages like Modelica. These skills are highly sought after in industry.

An advisory group provides guidance to ensure content and project briefs are relevant to industry needs. Guest lecturers will be drawn from industry.

You will gain the confidence to undertake large interdisciplinary projects with many unknowns and uncertainties, learning to coordinate work, integrate across disciplines, and make balanced decisions, thus preparing you for professional life.

Why study this degree at UCL?

The MSc in Integrated Building Systems Design and Operation (IBSDO) offers exceptional university graduates the opportunity to become experts in this innovative and developing discipline. We aspire to generate leaders in technology, delivering high-performance engineered solutions in building systems design.

The IBSDO MSc is delivered by the UCL Institute for Environmental Design and Engineering (IEDE), building upon strong links with industry and multidisciplinary research undertaken at The Bartlett. Teaching is delivered at the Bloomsbury campus and UCL’s new Here East facility in East London: you will benefit from access to the creative hub in Here East and access to modern lab spaces and equipment. 

Accreditation

Accreditation will be sought by the Chartered Institute of Building Services Engineers (CIBSE) as suitable "further learning" to meet the academic requirements for Chartered Engineer (CEng) status.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques. Read more

The other tracks of the programme are Materials Chemistry, Materials Physics, and Theoretical Physics. Upon graduation, you will be able to use the diverse set of skills acquired as part of this track, including computational and numerical techniques.

Programme structure 

The structure is modular. All modules have 20 ECTS. Each specialisation track has two obligatory modules that contain the core material of the field. In addition, there is one thematic module that may be chosen from the other modules offered within this programme or other programmes at the University of Turku. The fourth module consists of freely chosen courses and an obligatory Finnish language and culture course (5 ECTS). An MSc thesis (30 ECTS) in addition to seminar, internship, and project work (10 ECTS) are also required, details of which depend on the specialisation. 

Academic excellence and experience

The aim of the Master’s education is to support you to become an independent expert who can evaluate information critically, plan and execute research projects to find new knowledge, and to solve scientific and technological problems independently and as part of a group.

The Astronomy and Space Physics track includes a solid grounding in theoretical aspects as well as providing opportunities for observational studies (e.g. of supernovae or accreting black holes); the space physics group performs experimental, theoretical and computational research on high-energy phenomena in near-Earth space.

Master's thesis and topics

The Master’s degree programme includes a compulsory thesis component (30 ECTS), which corresponds to six months of full time work. The thesis is to be written up as a report based on a combination of a literature review and an original research project that forms the bulk of the thesis.

The thesis is an independently made research project but the project will be carried out under the guidance of leading researchers in the field at the University of Turku. It is expected that the student will be embedded within an active research group or experimental team, thereby providing ample opportunity to discuss results and exchange ideas in a group setting.

Specialisation tracks

The Master’s Degree Programme of Physical and Chemical Sciences has four tracks. A short description of each specialisation track is given below. You can find more detailed information of tracks from the specific site of each track in this portal (UTU Masters).

Students specialising in Astronomy and Space Physics can choose among three lines of studies: theoretical astrophysics, observational astronomy and space physics. You will acquire knowledge of various astrophysical phenomena and plasma physics, from Solar system to neutron stars and onto galaxies and cosmology. You will also get hands-on experience with observational techniques, space instrumentation, numerical methods and analysis of large data sets.

The studies of Materials Physics and Materials Chemistry give you an ability to understand and to develop the properties of materials from molecules and nanoparticles via metals, magnetic and semiconducting compounds for pharmaceutical and biomaterial applications. After graduation, you will be familiar with the current methodologies, research equipment and modern numerical methods needed to model properties of materials used in research and technology. Note that there is a sister programme (Master’s Degree Programme in Biomedical Sciences) with a specialisation in medicinal chemistry.

In Theoretical physics you can specialise in various fields at the forefront of European and international research such as quantum technologies, fundamentals of quantum physics, quantum information and optics, quantum field theory and cosmology. You will learn rigorous mathematical and numerical methods to model physical phenomena and solve physical problems with several possible interdisciplinary applications also outside physics. Examples are the studies of complex systems, data science, and machine learning.

Competence description

The Master of Science degree provides the skills to work in many different kinds of positions within areas such as research and development, education and management, and industry. The specialisations of Astronomy and Space Physics provide very good data analysis and programming skills, and thus many graduates have gone on to successful careers in the big data and finance sectors

During the master’s program in astronomy and space physics, you will study plasma physics and hydrodynamics, radiative processes, high-energy astrophysics and solar physics, galaxies and cosmology, astrophysical spectroscopy, radio astronomy and X-ray and gamma-ray astronomy, numerical techniques and programming, statistical methods and particle and photons detectors. You will carry-out hands-on exercises in observational techniques, space instrumentation, and analysis of large data sets. You will also be able to remotely use modern observational facilities and to participate in building space-qualified instruments. You may choose among three lines: space physics, observational astrophysics and theoretical astrophysics. These studies will prepare you for a career in research and development in industry or can often lead into PhD studies.

Job options

The prospects for employment at relatively senior levels is excellent for those trained in the physical and chemical sciences. Thanks to the broad scope of the programme, the skills and knowledge developed as part of this education at the University of Turku provide many employment opportunities in different areas.

Many of our graduates choose to continue their education by pursuing PhD studies in Finland or other European countries (e.g., Belgium, Estonia, Germany and Norway). Others have obtained employment in the software and high-tech industries, for example.

Career in research

The Master’s Degree provides eligibility for scientific postgraduate degree studies. Postgraduate degrees are doctoral and licentiate degrees. The University of Turku Graduate School – UTUGS has a Doctoral Programme in Physical and Chemical Sciences, and covers all of the disciplines of this Master Degree programme. Postgraduate degrees can be completed at the University of Turku. Note that in Finland the doctoral studies incur no tuition fees, and PhD students often receive either a salary, or a grant to cover their living expenses. The Master’s programme is a stepping stone for PhD studies.



Read less
This unique multi-disciplinary course is taught by architects, engineers and physicists involved in practice and research. It focuses on the theory and practice of developing low carbon and sustainable buildings. Read more
This unique multi-disciplinary course is taught by architects, engineers and physicists involved in practice and research. It focuses on the theory and practice of developing low carbon and sustainable buildings.

The course includes a number of interlinked modules that simulate the design and development of a sustainable project. This enables students from different disciplines to develop skills and understanding relevant to their own discipline, be it design or consultancy, and in relation to a national and international context.

Why choose this course?

The course is run by the School of Architecture, which is recognised as one of the country's leading schools of architecture and is consistently ranked by The Architect's Journals one of the five best schools in the UK. You will gain an advanced understanding of the key sustainability issues related to buildings enabling them to strategically influence feasibility and design processes within the built environment. The course attracts some of the best students in the field from a diverse range of ages, backgrounds, gender and nationalities. This offers opportunities for interdisciplinary, globally aware teaching and learning.

The range of subjects draws on the research strengths of the teaching staff and enables research to inform the teaching modules. You are encouraged where possible to take part in staff research projects. You will have the opportunity to go on an annual field trip. This is an opportunity to directly experience some of the very best of sustainable design projects in another culture. Previous field trips have been to Germany, Scotland and Denmark. Students from this course have gone on to work in a wide range of occupations from architectural and engineering practices and research consultancies to development work, furniture design, owning and operating electricity utilities, and even carbon trading.

This course in detail

The course is organised on a modular credit system, 60 credits for postgraduate certificate, 120 credits for the postgraduate diploma (9 months full-time, 20 months part-time) and 180 credits for the master's degree (12 months full-time, 24 months part-time).

Modules combine a ratio of taught to self-led study. For example, a module of 20 credits approximates to 200 hours of student effort, up to 36 hours of which will normally be devoted to lectures, seminars, individual tutorials or other staff contact. The remainder of the time is devoted to student-led study and assessment.

Please note: as courses are reviewed regularly, the module list you choose from may vary from that shown below.

The core modules for the MSc and PGDip are:
-Building Physics (20 credits)
-The Sustainable Built Environment (20 credits)
-Post-occupancy Building Evaluation (20 credits)
-Advanced Low Carbon Building Technologies (20 credits)
-Modelling and Passive Strategies (20 credits)
-Sustainable Design in Context (20 credits)

The compulsory modules for the MSc are:
-Research Methods and Design (10 credits)
-MSc Dissertation (50 credits)

Teaching and learning

The teaching and learning methods reflect the wide variety of topics and techniques associated with sustainability, low-carbon and resource efficient design.

Staff-led lectures provide the framework, background and knowledge base, and you are encouraged to probe deeper into the topics by further reading and review. Analysis, synthesis and application of material introduced in the lectures are achieved through professional and staff-led workshops, group and one-to-one tutorials, student-led seminars, case studies, and practical work that anticipates the design project.

The course attracts students from a diverse range of ages, backgrounds, gender and nationalities. This offers opportunities for interdisciplinary, globally aware teaching and learning. You are exposed to a variety of cultural perspectives and issues through the use of international case studies and draw on their diverse strengths through peer learning and group work.

An annual field trip is an opportunity to directly experience some of the very best of sustainable design projects in another culture. Previous field trips have been to Germany, Scotland and Denmark.

The range of subjects draws on the research strengths of the teaching staff and enables research to inform the teaching modules. You are encouraged where possible to take part in staff research projects.

We attract some of the best students in the field, drawn by the integrating basis of the programme and its solid theoretical foundation on expertise within the University.

Careers and professional development

Graduates will possess an advanced understanding of the key sustainability issues related to buildings enabling them to strategically influence feasibility and design processes within the built environment. They will be familiar with a range of models, tools and methods with which to quantify, predict, evaluate and manage building performance, and will be able to use them and switch to other tools based on an understanding from first principles.

Drawing on a working knowledge of how to minimise energy, carbon emissions and resource consumption in buildings through the various stages of their life cycles, they will be able to take account of changing, incomplete and uncertain information related to the environment. They will also have well developed skills in auditing, analysis, reporting and presentation and a thorough understanding of the interdisciplinary subject area.

Students from this course have gone on to work in a wide range of occupations from architectural and engineering practices and research consultancies to development work, furniture design, owning and operating electricity utilities, and even carbon trading.

Read less
Applying the laws of physics in real-life situations, ranging from measuring brain activity to designing new materials and investigating space objects. Read more

Applying the laws of physics in real-life situations, ranging from measuring brain activity to designing new materials and investigating space objects .

Would you rather specialise in pure physics or discover the interface between physics and astronomy, mathematics, chemistry or biology? The choice is yours. At Radboud University, you can choose from six specialisations and within each specialisation you’ll have plenty of room to customise your programme. We guarantee the highest quality for all specialisation programmes, resulting in number one rates by the Dutch ‘Keuzegids Masters’ for three years running.

In your internship(s), you can dive into theoretical physics or perform your own experiments: discover new material properties in Europe’s highest magnetic fields or with unique free electron lasers, study space objects with the telescopes on top of the Huygens Building or unravel brain activity with MRIs. It’s all possible on the Radboud campus. That’s why many international physicists come here to perform their experiments. Take Andre Geim and Konstantin Novoselov, who revealed the amazing properties of graphene in our High Field Magnet Laboratory. In 2010, they received the Nobel Prize in Physics for those discoveries.

See the website http://www.ru.nl/masters/physicsandastronomy

Specialisations of Physics and Astronomy

- Particle and Astrophysics

In this Master’s specialisation you’ll unravel questions like: What are the most elementary particles that the universe consists of? What did our universe look like in the earliest stages of its existence? And how will it evolve? One of the topics is the Higgs particle, which is partially a Nijmegen discovery.

- Physics of Molecules and Materials

This specialisation focuses on the structure and properties of materials. You’ll work at the ‘terra incognita’ between quantum and classical physics, which is of great importance for designing next-generation materials and devices.

- Neuroscience

In this specialisation you’ll use your physics background to understand the communication between neurons in the brain. This fundamental knowledge can be applied in all kinds of devices, including hearing aids or Google glasses.

- Science in Society

This specialisation will equip you with the tools and skills to become a professional intermediary between science and society. You’ll learn to analyse (governmental) science communication and connect scientific knowledge with divergent perspectives and interests of various stakeholders.

- Science, Management and Innovation

This specialisation will teach you what is happening in the world of business and public administration, how innovation is managed in company strategies, how government designs policy and how that interacts with societal challenges.

- Science and Education (in Dutch)

Do you want to become a secondary school teacher in the Netherlands? In this Dutch-taught specialisation you’ll get the necessary didactic background and extensive experience in the classroom.

Why study Physics and Astronomy at Radboud University?

- It’s the best Master’s programme of its kind in the Netherlands, according to the Keuzegids Masters.

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your internship supervisor.

- We have a multidisciplinary approach: you not only can specialise in Physics, but also in astrophysics, biophysics, mathematical physics, chemical physics or materials science.

- You’ll spend one year on research, and thus get an extensive experience in scientific methods.

- Radboud University hosts multiple state-of-the-art research facilities, such as the High Field Magnet Laboratory , FELIX laser laboratory, Nanolab and neuroimaging facilities (MRI, MEG, EEG, TMS). We also participate in the LHC particle accelerator in Geneva, the Pierre Auger Observatory in Argentina and various other large-scale research projects.

- On average, our graduates find a job within 2 months after graduating. A majority of these jobs are PhD positions at universities in the Netherlands and abroad.

Career prospects

All specialisations of this Master’s programme are an excellent preparation for a career in research, either at a university, at an institute or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned to:

- Think in an abstract way

- Solve complex problems

- Make accurate approximations

- Combine theory and experiments

PhD positions

If you would like to have a career in science, it’s possible to apply for a PhD position at Radboud University. Of course, you can also apply at any other university anywhere in the world.

Positions in business or governmental organisations

To get an idea the various career opportunities, a sample of jobs performed by our alumni:

- Actuarial trainee at Talent & Pro

- Consultant at Accenture

- ECO Operations Manager at Ofgem

- Scientist at SRON Netherlands Institute for Space Research

- Technology strategy Manager at Accenture

- Consultant Billing at KPN

- Communications advisor at the Foundation for Fundamental Research on Matter (FOM)

- Systems analysis engineer at Thales

- Technical consultant at UL Transaction Security

- Business analyst at Capgemini

See the website http://www.ru.nl/masters/physicsandastronomy



Read less
Working at a frontier of mathematics that intersects with cutting edge research in physics. Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. Read more

Working at a frontier of mathematics that intersects with cutting edge research in physics.

Mathematicians can benefit from discoveries in physics and conversely mathematics is essential to further excel in the field of physics. History shows us as much. Mathematical physics began with Christiaan Huygens, who is honoured at Radboud University by naming the main building of the Faculty of Science after him. By combining Euclidean geometry and preliminary versions of calculus, he brought major advances to these areas of mathematics as well as to mechanics and optics. The second and greatest mathematical physicist in history, Isaac Newton, invented both the calculus and what we now call Newtonian mechanics and, from his law of gravity, was the first to understand planetary motion on a mathematical basis.

Of course, in the Master’s specialisation in Mathematical Physics we look at modern mathematical physics. The specialisation combines expertise in areas like functional analysis, geometry, and representation theory with research in, for example, quantum physics and integrable systems. You’ll learn how the field is far more than creating mathematics in the service of physicists. It’s also about being inspired by physical phenomena and delving into pure mathematics.

At Radboud University, we have such faith in a multidisciplinary approach between these fields that we created a joint research institute: Institute for Mathematics, Astrophysics and Particle Physics (IMAPP). This unique collaboration has lead to exciting new insights into, for example, quantum gravity and noncommutative geometry. Students thinking of enrolling in this specialisation should be excellent mathematicians as well as have a true passion for physics.

See the website http://www.ru.nl/masters/mathematics/physics

Why study Mathematical Physics at Radboud University?

- This specialisation is one of the few Master’s in the world that lies in the heart of where mathematics and physics intersect and that examines their cross-fertilization.

- You’ll benefit from the closely related Mathematics Master’s specialisations at Radboud University in Algebra and Topology (and, if you like, also from the one in Applied Stochastics).

- Teaching takes place in a stimulating, collegial setting with small groups. This ensures that at Radboud University you’ll get plenty of one-on-one time with your thesis supervisor.

- You partake in the Mastermath programme, meaning you can follow the best mathematics courses, regardless of the university in the Netherlands that offers them. It also allows you to interact with fellow mathematic students all over the country.

- As a Master’s student you’ll get the opportunity to work closely with the mathematicians and physicists of the entire IMAPP research institute.

- More than 85% of our graduates find a job or a gain a PhD position within a few months of graduating. About half of our PhD’s continue their academic careers.

Career prospects

Mathematicians are needed in all industries, including the industrial, banking, technology and service industry and also within management, consultancy and education. A Master’s in Mathematics will show prospective employers that you have perseverance, patience and an eye for detail as well as a high level of analytical and problem-solving skills.

Job positions

The skills learned during your Master’s will help you find jobs even in areas where your specialised mathematical knowledge may initially not seem very relevant. This makes your job opportunities very broad indeed and is why many graduates of a Master’s in Mathematics find work very quickly.

Possible careers for mathematicians include:

- Researcher (at research centres or within corporations)

- Teacher (at all levels from middle school to university)

- Risk model validator

- Consultant

- ICT developer / software developer

- Policy maker

- Analyst

PhD positions

Radboud University annually has a few PhD positions for graduates of a Master’s in Mathematics. A substantial part of our students attain PhD positions, not just at Radboud University, but at universities all over the world.

Our research in this field

The research of members of the Mathematical Physics Department, emphasise operator algebras and noncommutative geometry, Lie theory and representation theory, integrable systems, and quantum field theory. Below, a small sample of the research our members pursue.

Gert Heckman's research concerns algebraic geometry, group theory and symplectic geometry. His work in algebraic geometry and group theory concerns the study of particular ball quotients for complex hyperbolic reflection groups. Basic questions are an interpretation of these ball quotients as images of period maps on certain algebraic geometric moduli spaces. Partial steps have been taken towards a conjecture of Daniel Allcock, linking these ball quotients to certain finite almost simple groups, some even sporadic like the bimonster group.

Erik Koelink's research is focused on the theory of quantum groups, especially at the level of operator algebras, its representation theory and its connections with special functions and integrable systems. Many aspects of the representation theory of quantum groups are motivated by related questions and problems of a group representation theoretical nature.

Klaas Landsman's previous research programme in noncommutative geometry, groupoids, quantisation theory, and the foundations of quantum mechanics (supported from 2002-2008 by a Pioneer grant from NWO), led to two major new research lines:

1. The use of topos theory in clarifying the logical structure of quantum theory, with potential applications to quantum computation as well as to foundational questions.

2. Emergence with applications to the Higgs mechanism and to Schroedinger's Cat (aka as the measurement problem). A first paper in this direction with third year Honours student Robin Reuvers (2013) generated worldwide attention and led to a new collaboration with experimental physicists Andrew Briggs and Andrew Steane at Oxford and philosopher Hans Halvorson at Princeton.

See the website http://www.ru.nl/masters/mathematics/physics



Read less
The Masters in Physics. Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist. Read more

The Masters in Physics: Nuclear Technology provides an understanding of the application of nuclear processes and technology to energy generation, medical physics and environmental monitoring, and at a level appropriate for a professional physicist.

Why this programme

  • Physics and Astronomy at the University of Glasgow is ranked 3rd in Scotland (Complete University Guide 2017).
  • You will gain theoretical, experimental and computational skills necessary to analyse and solve advanced physics problems relevant to the theme of Nuclear Technology, providing an excellent foundation for a career of scientific leadership.
  • You will benefit from direct contact with our group of international experts who will teach you cutting-edge physics and supervise your projects.
  • With a 93% overall student satisfaction in the National Student Survey 2016, Physics and Astronomy at Glasgow continues to meet student expectations combining both teaching excellence and a supportive learning environment.
  • This programme has a September and January intake*. 

*For suitably qualified candidates

Programme structure

Modes of delivery of the MSc Physics: Nuclear Technology include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses include

  • Advanced data analysis
  • Detection and analysis of ionising radiation
  • Environmental radioactivity
  • Imaging and detectors
  • Nuclear power reactors
  • Research skills
  • Extended project

Optional courses include

  • Advanced electromagnetic theory
  • Computational physics laboratory
  • Dynamics, electrodynamics and relativity
  • Energy and environment
  • Medical imaging
  • Nuclear and particle physics
  • Nuclear physics
  • Relativistic quantum fields
  • Statistical mechanics

The programme in Physics: Nuclear technology lasts 1 year and contains a minimum of 180 credits. You will undertake a minimum of 120 credits in Semesters 1 and 2 and be assessed on these courses either via continuous assessment, or unseen examination in the May/June examination diet, or a combination thereof. The remaining 60 credits will take the form of an extended MSc project, carried out on a specific aspect of theoretical, computational or experimental physics which has current or potential application in the areas of nuclear technology, nuclear energy, radiation detection or environmental monitoring. You will conduct this project while embedded within a particular research group – under the direct supervision of a member of academic staff.

Your curriculum will be flexible and tailored to your prior experience and expertise, particular research interests and specific nature of the extended research project topic provisionally identified at the beginning of the MSc programme. Generally, however, courses taken in Semester 1 will focus on building core theoretical and experimental/computational skills relevant to the global challenge theme, while courses taken in Semester 2 will build key research skills (in preparation for the extended project).

Career prospects

Career opportunities in academic research, based in universities, research institutes, observatories and laboratory facilities; industrial research in a wide range of fields including energy and the environmental sector, IT and semiconductors, optics and lasers, materials science, telecommunications, engineering; banking and commerce; higher education.



Read less
Why Surrey?. The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students. Read more

Why Surrey?

The MSc Physics offers you the flexibility to tailor your studies according to your interests, building on the research strengths of our friendly Department, and the supportive environment that we provide for our students.

We collaborate with a variety of partners across the academic, public and industry communities, including the National Physical Laboratory.

Programme overview

You will select modules from a wide range of fundamental and applied physics topics. The application-focused modules are co-taught by practitioners in public service and industry to ensure that students gain real-world insight.

A module in research skills will prepare you to apply your new knowledge and skills in an eleven-week research project undertaken during the summer.

Your chosen research projects can open the door to many careers, not just further research. They will give you tangible experience of working independently and communicating your work effectively and efficiently in written form: key requirements in many professions.

Why not discover more about the subject in our video?

Programme structure

This programme is studied full-time over one academic year. It consists of eight taught modules and a dissertation. Part-time students take the same content over 2 academic years.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The primary aim of the programme is to provide a flexible high quality postgraduate level qualification in physics. It integrates the acquisition of core scientific knowledge with the development of key practical skills in the student’s chosen area of specialisation.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Master's specialisation in Particle and Astrophysics. A physics programme that covers the inner workings of the universe from the smallest to the largest scale. Read more

Master's specialisation in Particle and Astrophysics

A physics programme that covers the inner workings of the universe from the smallest to the largest scale

Although Particle Physics and Astrophysics act on a completely different scale, they both use the laws of physics to study the universe. In this Master’s specialisation you’ll dive into these extreme worlds and unravel questions like: What did our universe look like in the earliest stages of its existence? What are the most elementary particles that the universe consists of? And how will it evolve?

If you are fascinated by the extreme densities, gravities, and magnetic fields that can be found only in space, or by the formation, evolution, and composition of astrophysical objects, you can focus on the Astrophysics branch within this specialisation. Would you rather study particle interactions and take part in the search for new particles – for example during an internship at CERN - then you can choose a programme full of High Energy Physics. And for students with a major interest in the theories and predictions underlying all experimental work, we offer an extensive programme in mathematical or theoretical physics.

Whatever direction you choose, you’ll learn to solve complex problems and think in an abstract way. This means that you’ll be highly appealing to employers in academia and business. Previous students have, for example, found jobs at Shell, ASML, Philips and space research institute SRON.

See the website http://www.ru.nl/masters/physicsandastronomy/particle

Why study Particle and Astrophysics at Radboud University?

- This Master’s specialisation provides you with a thorough background in High Energy Physics, Astrophysics, and Mathematical Physics and the interface between them.

- Apart from the mandatory programme, there’s plenty of room to adapt the programme to your specific interests.

- The programme offers the opportunity to perform theoretical or experimental research.

- During this specialisation it is possible to participate in large-scale research projects, like the Large Hadron Collider at CERN or the LOFAR telescope.

Career prospects

This Master’s specialisation is an excellent preparation for a career in research, either at a university, at an institute (think of ESA and CERN) or at a company. However, many of our students end up in other business or government positions as well. Whatever job you aspire, you can certainly make use of the fact that you have learned:

- Thinking in an abstract way

- Solving complex problems

- Using statistics

- Computer programming

- Giving presentations

Some of our alumni now work as:

- National project manager at EU Universe Awareness

- Actuarial trainee at Talent & Pro

- Associate Private Equity at HAL Investments

- Consultant at Accenture

- ECO Operations Manager at Ofgem

- Scientist at SRON Netherlands Institute for Space Research

- Technology strategy Manager at Accenture

Working at a company

Other previous students have found jobs at for example:

- Shell

- KNMI

- Liander

- NXP

- ASML

- Philips

- McKinsey

- DSM

- Solvay

- Unilever

- AkzoNobel

Researchers in the field of Particle and Astrophysics develop advanced detector techniques that are often also useful for other applications. This resulted in numerous spin-off companies in for example medical equipment and detectors for industrial processes:

- Medipix

- Amsterdam Scientific Instruments

- Omics2Image

- InnoSeis

PhD positions

At Radboud University, there are typically a few PhD positions per year available in the field of Particle and Astrophysics. Many of our students attained a PhD position, not just at Radboud University, but at universities all over the world.

Our approach to this field

In the Particle and Astrophysics specialisation, you’ll discover both the largest and the smallest scales in the universe. Apart from Astrophysics and High Energy Physics, this specialisation is also aimed at the interface between them: experiments and theory related to the Big Bang, general relativity, dark matter, etc. As all relevant research departments are present at Radboud University – and closely work together – you’re free to choose any focus within this specialisation. For example:

- High energy physics

You’ll dive into particle physics and answer questions about the most fundamental building blocks of matter: leptons and quarks. The goal is to understand particle interactions and look for signs of physics beyond the standard model by confronting theoretical predictions with experimental observations.

- Astrophysics

The Astrophysics department concentrates on the physics of compact objects, such as neutron stars and black holes, and the environments in which they occur. This includes understanding the formation and evolution of galaxies. While galaxies may contain of up to a hundred billion stars, most of their mass actually appears to be in the form of unseen ‘dark matter’, whose nature remains one of the greatest mysteries of modern physics.

- Mathematical physics

Research often starts with predictions, based on mathematical models. That’s why we’ll provide you with a theoretical background, including topics such as the properties of our space-time, quantum gravity and noncommutative geometry.

- Observations and theory

The Universe is an excellent laboratory: it tells us how the physical laws work under conditions of ultra-high temperature, pressure, magnetic fields, and gravity. In this specialisation you’ll learn how to decode that information, making use of advanced telescopes and observatories. Moreover, we’ll provide you with a thorough theoretical background in particle and astrophysics. After you’ve got acquainted with both methods, you can choose to focus more on theoretical physics or experimental physics.

- Personal approach

If you’re not yet sure what focus within this specialisation would best fit your interests, you can always ask one of the teachers to help you during your Master’s. Based on the courses that you like and your research ambitions, they can provide you with advice about electives and the internship(s).

See the website http://www.ru.nl/masters/physicsandastronomy/particle



Read less
The Master's degree programme in Applied Physics offers an excellent combination of fundamental research on the one hand, and an open eye to possible industrial applications on the other. Read more
The Master's degree programme in Applied Physics offers an excellent combination of fundamental research on the one hand, and an open eye to possible industrial applications on the other.

The department accommodates excellent teaching and research facilities. Teaching and research are closely related. The research programme of the Department of Applied Physics at the University of Groningen is embedded in the Zernike Institute of Advanced Materials, which belongs to the Times Higher Education top 10 of best materials research institutes in the world. Most of the research is carried out in the same building that accommodates the teaching facilities.

The international environment of the programme, and especially within the research groups, is inspiring and challenging. The Master's degree programme in Applied Physics is open to students who already have a solid background in physics or applied physics, and who are eager to expand their knowledge and experience to obtain a Master's degree in a modern applied physics research environment. The programme focuses on material engineering and device physics.

Why in Groningen?

- Our Institute for Advanced Materials is ranked 5th in the THES world's top 10
- Physics field in Groningen has CHE Excellence Label

Job perspectives

The Master's degree programme in Applied Physics is primarily meant for students who want to become researchers and developers in an industrial environment. However, many graduates continue on to a PhD project after obtaining their Master's degree, either in Groningen or elsewhere.

During the Master's degree, teamwork, communication and presentation are important qualities to be developed. In many cases considerable IT skills are developed as well. These general competences, together with the analytical skills typical of researchers, for example problem-solving abilities, guarantee that graduates are widely employable. Most applied physicists find jobs in an entrepreneurial environment where a strong background in physics is necessary.

Job examples

- R&D in an industrial or entrepreneurial environment
- PhD Research Project

Read less

Show 10 15 30 per page



Cookie Policy    X