• Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
University of Leeds Featured Masters Courses
University of Southampton Featured Masters Courses
University of Leeds Featured Masters Courses
University of London International Programmes Featured Masters Courses
"building" AND "engineeri…×
0 miles

Masters Degrees (Building Engineering)

  • "building" AND "engineering" ×
  • clear all
Showing 1 to 15 of 611
Order by 
The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills. Read more

Mission and goals

The Programme, entirely offered in English, prepares high-level professionals that can work in the field of the built environment, and in particular of high energy performance, low environmental impact buildings, thanks to a multi-disciplinary training and to the acquisition of specialist engineering skills.
The Programme offers two tracks with specific characteristics:
- Architectural Engineering (offered in Lecco), giving students the ability to manage – and take part in – the integrated design process of complex construction projects;
- Building Engineering (offered in Milano Leonardo), giving students the ability to design, model and predict the physical, mechanical, and energy behaviour of complex building components and systems, services and structures.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Career opportunities

The Building and Architectural Engineer is a professional that can effectively practice in complex, multi-disciplinary and multi-scale projects, and in particular in the following fields:
- design of complex new buildings, in particular in the areas of technology, structures, energy efficiency and environmental quality;

- refurbishment and retrofit of existing buildings, in particular in the areas of technology, energy upgrade and structural consolidation;

- management of the multi-disciplinary, multi-scalar design process, with the help of specific design and information tools;

- technological innovation of building components and systems;

- advanced performance modelling of complex building components and systems, services and structures;

- management of global performances, with the goal of reducing the environmental impact of buildings.

More information on the programme website: http://www.ccsarcheng.polimi.it/

Presentation

See http://www.polinternational.polimi.it/uploads/media/Building_Engineering_01.pdf
This track of the Master of Science in Building and Architectural Engineers trains Building Engineers that can manage the complexity of building projects, through the application of engineering principles and tools to building design and construction. The programme
focuses on sustainability, energy efficiency and safety issues in the building sector, considering both horizontal (interdisciplinary) and vertical (life cycle-related) integration.
The Building Engineer is a professional with robust scientific and technical skills ready to:
• engineer the architectural design of complex, large and/or special buildings;
• supervise the design integration of all technological and technical parts (building fabric, structure, building systems);
• manage the whole manufacturing and life cycle of building systems and components;
• organize and control the construction and maintenance process.

More specifically, the Building Engineering programme provides students with knowledge and tools necessary to model the detailed physical and structural behaviour of building components and, in particular, of the building envelope, the filter between the interior and exterior environment. Hence, the Building Engineer is able to bring, into multidisciplinary design teams, the necessary skills to design innovative envelope components and assess the related performances in their service life.

Subjects

Some of the key subjects are:
- Engineering Design for Architecture
- Advanced Construction Materials
- Advanced Building Systems Engineering
- Structural modelling and analysis, design of structure
- Earthquake resistant design
- Advanced Building Physics
- Building Energy Modelling and Building Envelope Design
- Multiphysics optimization on Building Envelope

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/building-and-architectural-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework. Read more
The School of Civil and Building Engineering at Loughborough has an outstanding research reputation, 75% or its research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

This programme is aimed at students training for a research career in energy and related areas, in either academia or industry. It focuses on energy demand reduction in the built environment, examining technical solutions within the wider social and economic context.

The course is closely linked with the London-Loughborough Centre for Doctoral Research in Energy Demand (the ‘LoLo CDT’) and is led by internationally-leading research staff at Loughborough University and the Energy Institute at University College, London.

The programme capitalises on the world-class building energy modelling and monitoring expertise in the Building Energy Research Group and the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design. Students make use of our extensive laboratory and full-scale testing facilities, enriched by site visits, conferences, workshops and seminars by external experts. The programme begins with an intensive residential week studying Energy Demand in Context. Students attend lectures from energy experts in different fields, while working to produce a pathway satisfying the goal of a national 80% emissions reduction by 2050.

This is an intensive but rewarding course for future leaders in energy demand research; we accept approximately ten high calibre students each year.

Key Facts

- Research-led teaching from international experts. This unique programme is taught by acknowledged world experts in the field.

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015.

- The MRes is an integral part of the London-Loughborough Centre for Doctoral Research in Energy Demand, which has just been funded by the Engineering and Physical Sciences Research Council for a further eight years.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Programme modules

- Energy Demand in Context
The aim of this module is to provide an introduction into the many issues of energy demand in the built environment, setting them in the wider context of climate change policy and the history of energy use. Why is energy demand deduction complex? How did we get to where we are? What are the options for the future, and what is your possible role?

- Building Energy Systems and Models
This module will provide students with a thorough understanding of how systems and models of systems work at various levels, from heat transfer in materials and energy systems to the national building stock. They will understand approaches to modelling buildings, systems of energy demands and the influence of people. Students will be taught how to use building energy models and to interpret the results.

- Energy Theory, Measurement and Interpretation
The aims of this module are: to develop students understanding of the principles of measurement in the context of energy demand and associated factors; to explain how to interpret and represent the results accounting for uncertainties and limitations; and to apply this knowledge at different scales from individual components, to building, urban and national scale.

- Research Development and Dissemination
The module aims to provide students with the knowledge and skills needed to devise, plan and disseminate research projects. The module will provide skills in defining research questions and hypotheses; critically reviewing literature; planning a programme of research; communicating to different stakeholders including academia, industry and the public; preparing conference presentations and academic papers; engaging with the public; and producing an MRes Research Dissertation proposal. The module also includes project administration skills including, research ethics and confidentiality.

- Energy Demand: Society Economics and Policy
This module is delivered in the second semester in a series of weekly sessions at UCL. Its aim is to provide a broad understanding of the social, economic, and policy determinants of energy demand, taking into account areas such as pricing and demand, market structure, cost-benefit analysis, social environment and lifestyle, individual attitudes and behaviour, public-private goods, externalities and the policy cycle.

- Quantitative and Qualitative Research Methods
This module will provide students with the grounding in quantitative and qualitative research methods that they need to become effective researchers. The module will provide: skills in statistical analysis and use of the SPSS software; an ability to make informed choices about ways of handling data and to assess the appropriateness of particular analytical procedures; an understanding of questionnaire, interview and focus group design, delivery and analysis; and an ability to critically assess and evaluate the research of others. Whilst case-study applications will be relevant to building energy demand, the skills and knowledge acquired will be generic.

- Energy Demand Studies Research Dissertation
The aims of this module are to train students in the planning, execution and evaluation of a substantive research project; to train them in the art of persuading others of the importance of the research and outcomes and to project their work through academic writing. The dissertation enables students to explore a topic of interest in great depth.

Facilities

MRes students make use of the extensive laboratory facilities and test houses operated by the School of Civil and Building Engineering. The MRes combines measurements in buildings with modelling studies, allowing students to experience at first hand the ‘performance gap’ – the difference between modelling and real world behaviour.

Lectures at University College London provide access to world-class experts in energy economics and the societal context. Our staff pride themselves on their enthusiasm and availability to students, who often comment on this aspect of the course in their feedback.

How you will learn

The programme has a strong student-centred and research focus. Four taught modules set the context and provide subject-specific knowledge, whilst two further modules provide training in relevant research methods. A research dissertation forms half of the total credits and can lead to publishable work.

The MRes in Energy Demand Studies can be studied as a 1-year standalone programme and also forms the first year of the 4-year course for students accepted into the LoLo CDT, who then go on to study for a PhD. The opportunity exists for strong MRes students to join the LoLo Centre at the end of their MRes year.

- Assessment
The MRes is assessed entirely by coursework. A group presentation forms part of the assessment in the initial residential module; with the remainder assessed by an individual essay. Other modules include assessment by presentations and written work, including essays, reports and press releases.

The research project is assessed by a dissertation, an academic paper and a viva at which students present the work to an expert panel.

Careers and further study

Both the School of Civil and Building Engineering and the LoLo CDT have strong links with industry (e.g. Willmott Dixon, B&Q), policy makers (e.g. DECC), and the wider stake-holder community.
Dissertation projects are often linked to our industry sponsors’ interests, which provides a natural pathway to future employment and our visiting Royal Academy Professors and industry partners provide practice-based lectures and workshops.

Scholarships

This is a sought-after course, with a small intake, which ensures students’ access to highly qualified tuition. No scholarships are available for the standalone MRes.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/energy-demand-studies/

Read less
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s. Read more
Surrey were the pioneers of sophisticated ‘micro-satellites’ in the 1980s.

Since then, our sustained programme of building complete satellites, performing mission planning, working with international launch agencies and providing in-orbit operations has kept us at the forefront of the space revolution –utilising new advances in technology to decrease the cost of space exploration.

PROGRAMME OVERVIEW

Our Masters in Space Engineering programme is designed to give you the specialist multidisciplinary knowledge and skills required for a career working with space technology and its applications.

Surrey students have access to all aspects of the design and delivery of spacecraft and payloads, and as a result are very attractive to employers in space-related industries.

As we develop and execute complete space missions, from initial concept to hardware design, manufacturing and testing, to in orbit operations (controlled by our ground station at the Surrey Space Centre), you will have the chance to be involved in, and gain experience of, real space missions.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Space Dynamics and Missions
-Space Systems Design
-Space Robotics and Autonomy
-Satellite Remote Sensing
-RF Systems and Circuit Design
-Space Avionics
-Advanced Guidance, Navigation and Control
-Launch Vehicles and Propulsion
-Advanced Satellite Communication Techniques
-Spacecraft Structures and Mechanisms
-Space Environment and Protection
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin space engineering.
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within space engineering.
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:
- Water and Waste Engineering Principles
The aims of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 3):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Water Distribution and Drainage Systems
The aim of this module is for the student to understand the most important aspects of how to design, construct and maintain piped water distribution, drainage and sewerage systems.

- Short Project
The aim of this module is for participants to be able to undertake extended study of a subject of their own choosing which is related to their Postgraduate Programme to enable them to conduct an independent review and analysis to understand state of art issues or a topic.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships / Bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. You will develop knowledge, expertise and skills in many aspects of water, sanitation and environmental management. The programme focuses on the conditions and aspirations of communities in low- and middle-income countries.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module is for participants to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 2):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Environmental Assessment
The aim of this module is for participants to develop a broad understanding of both the needs for and the mechanisms of environmental assessment and management, with emphasis on aquatic environments, in low and middle-income countries.

- Small-scale Water Supply and Sanitation
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small-scale water supplies and on-site sanitation options for low-income rural and urban communities.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical
Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships and bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE. COURSE AIMS. Building services engineering is an interdisciplinary profession. Read more
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE.

COURSE AIMS
Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment. With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important. In addition, the need to provide an internal environment that balances the comfort needs of the occupants with the functional requirements of the building calls for engineers with a wide range of knowledge and skills.

The aim of this programme is to respond to the worldwide demand for building services engineering managers who have a sound knowledge of engineering and management principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The Building Services Engineering Management course is aimed at professional engineers aspiring to increased management responsibility in the building services sector or who have reached a stage in their careers when they are carrying increasing management responsibility, perhaps in a senior role. Alternatively, the Building Services Engineering course is of particular relevance to engineers who want to develop technical understanding and expertise across the multi-disciplines of Building Services Engineering.

SPECIAL FEATURES

There are several advantages in choosing the Brunel Building Services programme:

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, Area Health Authorities, Local Authorities, the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Who is the Programme Designed For?

Recent engineering and technology graduates, moving into Building Services and related disciplines.
Established engineers and technologists, working in Building Services and faced with the challenge of new areas of responsibility.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in Building Services Engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with Building Services Engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.
The MSc Building Services Engineering Management is particularly aimed at professional engineers who are carrying increasing management responsibility - perhaps in a senior role - or who are aspiring to assume increased management responsibility as part of their future career in the Building Services sector.

COURSE DETAILS - see course web link below.

Read less
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE. COURSE AIMS. Building services engineering is an interdisciplinary profession. Read more
This course is approved by CIBSE and the Energy Institute and accredited by the IMechE.

COURSE AIMS
Building services engineering is an interdisciplinary profession. It involves the specification, design, installation and management of all the engineering services associated with the built environment. With the growing complexity of engineering services in modern buildings and the significance of energy conservation and pollution control, the role of the building services engineer is becoming increasingly important. In addition, the need to provide an internal environment that balances the comfort needs of the occupants with the functional requirements of the building, using increasingly sophisticated technology, calls for engineers with a wide range of knowledge and skills.

The aim of this programme is to respond to the worldwide demand for building services engineers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

The Building Services Engineering programme is designed to develop the knowledge and skills of engineers from a wide variety of disciplines, eg electrical, mechanical or civil, so that they can make a responsible and effective contribution to the process of design, commissioning and management of integrated building services systems. The programme is of value to professionals working or intending to work in the public or private sectors of the industry.

SPECIAL FEATURES
There are several advantages in choosing the Brunel Building Services programme:

Relevance: it is well established within the building services industry, with sponsors of students that include major design and contracting organisations, Area Health Authorities, Local Authorities, the British Council, as well as several national governments.

Applicability: emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Who is the Programme Designed For?

Recent engineering and technology graduates, moving into Building Services and related disciplines.
Established engineers and technologists, working in Building Services and faced with the challenge of new areas of responsibility.
Managers and designers, who need to broaden their experience and require updating.
Lecturers in higher education, moving into or requiring updating in Building Services Engineering.
Others with engineering and technology backgrounds, perhaps working in advisory or consultancy roles, who wish to familiarise themselves with Building Services Engineering. However, choice of course will be dependent upon the type and extent of knowledge and skills required.
The MSc Building Services Engineering is of particular relevance to engineers who want to develop technical understanding and expertise across the multi-disciplines of Building Services Engineering.

COURSE STRUCTURE/DETAILS - See course web link below

Read less
MSc Building Services Engineering can help you to become a Chartered Building Services Engineer. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI,. Read more
MSc Building Services Engineering can help you to become a Chartered Building Services Engineer. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI,

This building services masters degree is a great choice for any engineering graduate looking to take their career to the next level. Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the course receives global recognition and graduates have enjoyed career success with construction firms around the world.

Programme description

The building services engineering profession is a vibrant and important component of both the construction and engineering sectors of industry. The MSc Building Services Engineering is aimed at engineering graduates to enable them to progress towards full chartered (CEng) status.

There is a strong demand for good quality chartered building services engineers who have the wide and multi-disciplinary knowledge that enables them to operate effectively on projects involving diverse technical challenges. Engineers now require a period of postgraduate study after achieving an Honours degree on an accredited BEng programme before they can become eligible for chartered (CEng) status. The MSc Building Services Engineering programme has been designed primarily as a period of further learning to follow an honours degree in building services engineering or environmental engineering.

The programme offers you the opportunity to broaden your knowledge and experience of all technical aspects of building services design as well as providing an understanding of building management.

Assessment

Various methods are used to assess the modules depending on the nature of the module. These include written examination, course work, and oral presentation. Normally there is more than one assessment component in each module.

Professional accreditation

The programme is approved by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute. The MSc and a suitable accredited BEng (Hons) degree will together form the educational base for full CEng status.

Career Opportunities

The design of mechanical and electrical services for buildings of all types is a typical job profile and is carried out within mechanical and electrical design consultancies or within design-and-build construction companies.

Management of building facilities is another common employment destination, or in some cases the management of merchant or naval shipping and associated installations. Equipment manufacturers offer design and marketing opportunities.

Installation and commissioning of equipment and systems also offers technical and management opportunities.

Read less
Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the building services masters degree is a great choice for any engineering graduate looking to take their career to the next level and become a Chartered Building Services Engineer. Read more
Accredited by the Chartered Institution of Building Services Engineers CIBSE and the Energy Institute EI, the building services masters degree is a great choice for any engineering graduate looking to take their career to the next level and become a Chartered Building Services Engineer.

The Building Services Engineering masters receives global recognition and graduates have enjoyed career success with construction firms around the world.

This course has several different available start dates and study methods - please view the relevant web-page for more information:
JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTAB-1617/Building_Services_Engineering_(January)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTA-1718/Building_Services_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00931-1FTAB-1718/Building_Services_Engineering?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P00781-1PTAB-1718/Building_Services_Engineering_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme description

The building services engineering profession is a vibrant and important component of both the construction and engineering sectors of industry. The MSc Building Services Engineering is aimed at engineering graduates to enable them to progress towards full chartered (CEng) status.

There is a strong demand for good quality chartered building services engineers who have the wide and multi-disciplinary knowledge that enables them to operate effectively on projects involving diverse technical challenges. Engineers now require a period of postgraduate study after achieving an Honours degree on an accredited BEng programme before they can become eligible for chartered (CEng) status. The MSc Building Services Engineering programme has been designed primarily as a period of further learning to follow an honours degree in building services engineering or environmental engineering.

The programme offers you the opportunity to broaden your knowledge and experience of all technical aspects of building services design as well as providing an understanding of building management.

Assessment

Various methods are used to assess the modules depending on the nature of the module. These include written examination, course work, and oral presentation. Normally there is more than one assessment component in each module.

Professional accreditation

The programme is approved by the Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute. The MSc and a suitable accredited BEng (Hons) degree will together form the educational base for full CEng status.

Career Opportunities

The design of mechanical and electrical services for buildings of all types is a typical job profile and is carried out within mechanical and electrical design consultancies or within design-and-build construction companies.

Management of building facilities is another common employment destination, or in some cases the management of merchant or naval shipping and associated installations. Equipment manufacturers offer design and marketing opportunities.

Installation and commissioning of equipment and systems also offers technical and management opportunities.

Read less
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. Read more
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide.

- A well respected programme. Many of our participants are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Case Study
The aims of this module are to give participants a basic understanding of a complete project cycle for infrastructure and services; and to consolidate and integrate material contained in earlier modules.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 4):
- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Urban Infrastructure
The aim of this module is for the student to understand the key issues in the planning and conceptual design of infrastructure improvements for low income urban communities.

- Water for Low-Income Communities
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small water supplies for low-income communities.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Low-Cost Sanitation
The aim of this module is to increase the student's knowledge of all aspects of low-cost human excreta disposal.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

Facilities

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

Facilities on campus include our laboratory which houses equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. Although Distance Learners will not normally have access to this equipment they can ask the advice of laboratory staff if they are carrying out fieldwork as part of their dissertation.

How you will learn

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

The programme comprises both compulsory core modules, and optional modules which may be selected. The Case Study module draws together material from across the programme. A research dissertation between 75 and 150 pages long on a chosen topic relevant to interests or career development concludes the programme. Many of the Distance Learning modules have web-based discussion forums, where Distance Learners can choose to interact with each other and Module Tutors.

The method of delivery for the learning materials is mainly portable and paper-based, to suit students who are living or working in areas of the world with poor internet connectivity, or those who travel frequently. We also arrange some webinars which are recorded for students who are unable to participate.

During the programme students build up an excellent library of well-produced bound module notes, additional resources and relevant text books. In addition to the printed version we are developing and planning to provide e-reader versions of some module notes to enhance portability.

- Assessment
For most modules, students are assessed by two written assessments (three items for core modules). The Case Study module relates to a given scenario for which the student has to produce pre-feasibility and feasibility reports. The individual research dissertation module is assessed on the basis of a written dissertation and an oral when a student discusses their submitted dissertation with their supervisor and a second member of staff. For students who cannot visit the UK this oral takes place over Skype.

Careers and further study

NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Distance Learning students already working in these sectors find their new skills to be directly relevant and readily applicable to their jobs.
Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist

Scholarships

On occasion we offer specific full-fee and partial-fee scholarships for distance learning applicants.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Read less
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. Read more
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of water, sanitation and environmental management. The programme focuses on the conditions and aspirations of communities in low- and middle-income countries.

Modules are delivered by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Participants have a mix of nationalities and past experiences, providing opportunities for learning from them and development of a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide.

- Excellent graduate prospects. Many of our participants are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management-dl/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module is for participants to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Environmental Assessment
The aim of this module is for participants to develop a broad understanding of both the needs for and the mechanisms of environmental assessment and management, with emphasis on aquatic environments, in low and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Case Study
The aims of this module are to give participants a basic understanding of a complete project cycle for infrastucture and services; and to consolidate and integrate material contained in earlier modules.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 2):
- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries.

- Water for Low-income Communities
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small water supplies for low-income communities.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Low-cost Sanitation
The aim of this module is to increase the student's knowledge of all aspects of low-cost human excreta disposal.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

Facilities

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

Facilities on campus include our laboratory which houses equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. Although Distance Learners will not normally have access to this equipment they can ask the advice of laboratory staff if they are carrying out fieldwork as part of their dissertation.

How you will learn

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities and the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

The programme comprises both compulsory core modules, and optional modules which may be selected. The Case Study module draws together material from across the programme. A research dissertation between 75 and 150 pages long on a chosen topic relevant to interests or career development concludes the programme. Many of the Distance Learning modules have web-based discussion forums, where Distance Learners can choose to interact with each other and Module Tutors.

The method of delivery for the learning materials is mainly portable and paper-based, to suit students who are living or working in areas of the world with poor internet connectivity, or those who travel frequently. We also arrange some webinars which are recorded for students who are unable to participate.

During the programme students build up an excellent library of well-produced bound module notes, additional resources and relevant text books. In addition to the printed version we are developing and planning to provide e-reader versions of some module notes to enhance portability.

- Assessment
For most modules, students are assessed by two written assessments (three items for core modules). The Case Study module relates to a given scenario for which the student has to produce pre-feasibility and feasibility reports. The individual research dissertation module is assessed on the basis of a written dissertation and an oral when a student discusses their submitted dissertation with their supervisor and a second member of staff. For students who cannot visit the UK this oral takes place over Skype.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Distance Learning students already working in these sectors find their new skills to be directly relevant and readily applicable to their jobs.
Graduate job titles include Technical Manager, Programme Engineer, Water and Sanitation Consultant, Project Manager, Environmental Health Officer and WASH Coordinator.

Scholarships

On occasion we offer specific full-fee and partial-fee scholarships for Distance Learning applicants.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management-dl/

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
Professionals in construction management are at the heart of the delivery phase of buildings and infrastructure in every economy, and play an essential part in the realisation of the physical development aspiration of clients. Read more
Professionals in construction management are at the heart of the delivery phase of buildings and infrastructure in every economy, and play an essential part in the realisation of the physical development aspiration of clients.

Society continues to value and shape the built environment resulting in both public and private investment in construction assets and the successful completion of construction projects. As these projects become more socially and technically complex in a changing world dominated by a concern for sustainability, there has been a growing challenge to develop existing and new skills and expertise in construction management. This challenge is not only national but global as the need for construction management skills continues to grow internationally. Indeed, our student cohorts reflect this global challenge with students from across multiple continents.

This particular programme benefits from being rooted in a long 40 year history of delivery. It has evolved and aligned itself with the challenge above to reinforce it as one of the most long-standing and successful Construction Management Masters programmes of its kind. The programme has and continues to be the flagship of our postgraduate programmes and is heavily subscribed and endorsed by the global construction management community.

The programme is designed for recent graduates from construction and related disciplines and introduces the fundamentals and challenges to contemporary construction management. It is also ideally suited to those who have a strong technical background and need to complement it with requisite management know-how for developing their national and international careers in the construction sector.

Students on the programme significantly benefit from the programmes strong connection with the expertise of the UK’s longest-established research group ‘Construction Technology and Organisation’ and the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

Accreditation of the programme is provided by the UK’s Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

Key facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- Fully accredited by the UK's Royal Institution of Chartered Surveyors (RICS), the Engineering Council and The Chartered Institute of Building (CIOB).

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-management/

Programme modules

Semester one, compulsory modules
- ICT for Construction Projects
This module introduces managers to a wide range of tools and technologies appropriate for their role and projects. The module covers a range of topics including project information flows, e-business, database technologies, emerging technologies, building information modelling technologies, groupware and collaborative systems.

- Research and Communication
The aims of this module are to provide the student with an overview of sources of information in construction; to explain to students how to conduct a literature review and introduce students to the principal methods of investigation in construction research; and provide an opportunity for each student to develop professional and academic skills in oral and written communication.

- Principles of Design and Construction
This module teaches students the fundamental principles of managing a project during the design and construction phases. The module develops knowledge and understanding of the role and principles of the estimating, tendering and planning of construction projects and the importance of health and safety in relation to design and construction activities.

- Principles of Project Management
Students will gain an understanding of construction project management principles and theory. Specific areas covered include management responsibility for running construction projects; contemporary issues facing the construction industry; cultural complexity and the impact of behaviour and motivation on performance; and applying appropriate project management techniques for the different project phases.

- Postgraduate Research Project
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Construction Management.

Option Module (part-time students only)
- Management and Professional Development 1
The aim of this module is to enable students to plan, develop and demonstrate progress against a suitable professional development framework, such that they become equipped with a range of transferable management and professional development skills.

Option Modules One
Choose two from:
- Design Management
This module introduces various Design Management techniques and approaches. These include process mapping techniques for design; ways to analyse and optimise the design process; and students will gain an understanding of the internal workings of a design office and their relationship with the construction team.

- Sustainability in the Built Environment
Students will gain an understanding of sustainability issues that relate to the built environment; ways in which these issues can be managed and effective communication of both strategic and technical information.

- Management of Construction Processes
This module introduces students to cutting edge contemporary management concepts and innovations; complexities of setting up and managing logistics on large construction sites; and essential project management techniques such as risk management.

- Federated 3D Building Information Modelling (BIM)
The creation, deployment and use of aggregated and integrated models are key goals of collaboration through BIM. This module aims to deliver hands-on practical skills on the use of BIM technologies (i.e. design software and collaboration tools) for real-time co-creation and data sharing of federated/aggregated 3D BIM models. The concept of shared situational awareness within design teams/processes will be explored.

Option Modules Two
Choose two from:
- Strategic Management in Construction
The aim of this module is to introduce students to the fundamental concepts of strategic management and the tools for formulating and implementing strategies within the construction sector. The application of strategic management tools to develop appropriate change strategies will be explored and fundamental skills in communication, negotiation and leadership will be developed.

- People and Teams
Students will gain a knowledge and understanding of the key fundamental management principles and theory (such as motivation, teamwork, leadership, task management) and how they can be applied to managing people within the context of the construction project environment. Students will also be able to analyse current theoretical approaches to people management, appreciate importance of ethics and cultural issues and evaluate the key factors driving HRM systems.

- Procurement and Contract Procedure
This module aims to develop students understanding of procurement methods, different forms of contract and contract practice. The module is designed to give students key practical skills including advising clients on appropriate procurement and tendering methods; selecting the most appropriate form of construction contract; and manage a construction contract effectively.

- Business Economics and Finance
Students will gain a sound understanding of macro, meso and micro economics and types, sources and management of finance relating to construction organisations and projects. This will allow students to analyse the policies and operations of construction organisations and projects from an economic perspective to determine likely performance consequences and analyse corporate financial data for investment prospects and business management decisions.

Careers and further study

Graduates are sought after by a wide range of companies including Arup, Atkins, Bauer Technologies, Carillion plc, Eurovia Group, Kier Group, Morgan Sindall, Skanska and Vinci Construction. Many of these organisations engage with the University in both collaborative research and in delivering lectures on the courses. This provides an ideal opportunity for students to engage in discussions about employment opportunities.

Scholarships and bursaries

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/construction-management/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X