• Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
National Film & Television School Featured Masters Courses
Aberdeen University Featured Masters Courses
"bridge" AND "engineering…×
0 miles

Masters Degrees (Bridge Engineering)

We have 76 Masters Degrees (Bridge Engineering)

  • "bridge" AND "engineering" ×
  • clear all
Showing 1 to 15 of 76
Order by 
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
This course will provide you with an in-depth knowledge of how to deliver effective modern water supply, sanitation and other public health interventions in urban and rural areas in low-income and transitional economies. Read more

This course will provide you with an in-depth knowledge of how to deliver effective modern water supply, sanitation and other public health interventions in urban and rural areas in low-income and transitional economies.

Aimed at consultants, and working professionals in national and local government, non-government organisations, international development organisations and public health agencies, it has a strong focus on developing practical and policy skills and addresses the critical future challenges of climate change, population growth and urbanisation. You’ll develop your understanding of technical interventions in water supply, sanitation and solid waste management.

Run in conjunction with the Nuffield Centre for International Health and Development, one of the UK’s preeminent public health research centres, and informed by research undertaken by our Institute for Public Health and Environmental Engineering, this programme will give you the knowledge and skills to identify and deliver investments that will have major benefits for health and development.

Institute for Public Health and Environmental Engineering

Our Institute for Public Health and Environmental Engineering is renowned worldwide for its pioneering work in developing countries. The institute undertakes research in all aspects of the built environment in which the presence of pathogens influences design, including water treatment, solid waste and airborne transmission of disease.

Staff teaching on this course have close working links with a number of key institutions in the field of international development, including UNICEF, the World Bank, the World Health Organization, the Water Supply and Sanitation Collaborative Council, WaterAid, World Vision, the Bill and Melinda Gates Foundation and the African Development Bank.

You’ll also benefit from using our specialist facilities, such as our public health labs with separate areas for solid waste, water and wastewater, and a class II microbiology lab and clean room. We have all the specialist software you’ll need for your programme, and you’ll have access to a dedicated study suite for Masters students.

Accreditation

This degree is accredited by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree.

This course is also accredited by EUR-ACE, the European quality label for engineering degree programmes at Bachelor and Master level.

Course content

A series of compulsory modules will develop your knowledge and skills in a range of areas. You’ll gain an understanding of the wider issues surrounding public health around the world and how they impact on policy and practice, as well as current debates around the complex topics of health, equity and development understand how health policy is shaped and planned.

At the same time, you’ll be introduced to the principles and practice of public health engineering to bridge the gap between theory, policy and practice and explore key technologies in water supply, sanitation, wastewater and solid waste management. You’ll also consider engineering responses to complex emergencies, especially regarding the provision of water supply, sanitary services and shelter.

You’ll build your knowledge of technical issues in water resource and sold waste management, as well as natural wastewater treatment, and undertake an independent research project. Working with your supervisor, you’ll complete this research or design-based project during the summer months at the end of the programme to demonstrate the knowledge and skills you’ve gained.

Want to find out more about your modules?

Take a look at the 2016 Water, Sanitation and Health Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • The Management of WASH Projects 15 credits
  • Engineering for Public Health 15 credits
  • Wastewater and Fecal Sludge Management 15 credits
  • Water Resource Management 15 credits
  • Water Supply 15 credits
  • Solid Waste Management 15 credits
  • Water, Sanitation and Health Engineering Dissertation 60 credits
  • Engineering in Emergencies - MSc 15 credits
  • Key Issues in International Health 15 credits

For more information on typical modules, read Water, Sanitation and Health Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Career opportunities

This programme will equip you with a unique blend of civil engineering and public health policy skills.

As a result, you’ll be ideally placed to take up a senior position in public health ministries and public health departments in countries of the global south, or to work with international development agencies and international non-governmental organisations (NGOs).

Graduates have gone on to work for organisations such as WaterAid Liberia/Sierra Leone, Greater Manchester Waste Disposal Authority and the Center for Disease Control and Prevention.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Environmental Engineering

Graduates of this study program, with its strong practical orientation, typically work with a variety of Environmental technologies processes, from air and water pollution control and residual waste treatment to alternative energy carriers. They are capable of analyzing environmental pollutants and employing the results to develop technical solutions to reduce the impacts on soil, air and water. They may also be responsible for controlling, optimizing and monitoring plants and ensuring compliance with the relevant laws.

Graduates tend to work as process and environmental engineers in the following fields:

Environmental engineering
Natural resources
Renewable energies
Glass industry
Oil industry
Waste and waste water management
Consulting engineers
Paper and paper products
Chemicals

Read less
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. Read more
Professional engineering institutions now require engineers to have at least an MEng or MSc qualification for Chartered Engineer status. And with many high-tech engineering companies now operating pan-European and globally, Master's level qualifications are often considered essential for career development.

Key benefits

This course is accredited by the Institution of Mechanical Engineers (IMechE) , which confirms it meets standards set by the Engineering Council for Professional Engineering Competence (UK-SPEC).

Course detail

The MSc Mechanical Engineering is designed to allow BEng and BSc (Hons) Mechanical Engineering graduates, and those from related disciplines, to top up qualifications through the MSc-route equivalent of an MEng Mechanical Engineering. The Department of Engineering Design and Mathematics has a longstanding reputation for offering IMechE-accredited BEng (Hons) and MEng Mechanical Engineering degrees, alongside a range of MSc programmes in related specialised subjects.

Graduates with an in-depth understanding of engineering design and analysis, and the ability to appreciate the challenges of managing complex operations, are in high demand. This course is designed to meet that demand, and to bridge the skills and knowledge gaps for BEng or BSc graduates, and make them more employable. With its foundations in mechanical engineering, this course is a great opportunity to learn how to develop advanced solutions to engineering problems using the latest computer tools and simulations. It also addresses a need for people who work well in project teams, and an extended piece of independent research is a significant part of the course.

Modules

Core modules include:

• Modelling and Simulation
• Computer Vision and Modern Control
• Innovations in Operations Management
• Masters Group Project

Optional modules include:

• Design of Fluid Systems
• Structural Integrity in Design
• Industrial Applications of Vision and Automation
• Robotics Fundamentals
• Intelligent and Adaptive Systems

Assessment

Assessment is through a combination of examinations and coursework, and your dissertation project.

Careers / Further study

An accredited Master's degree in Mechanical Engineering provides an essential stepping stone for any mechanical engineer aspiring to take their career to the highest level. Mechanical engineers are vital to society and the economy. For example, they're often involved in making maximum use of high-capital plants and operations such as power stations, oil refineries, chemical plants and hospitals.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures. Read more
Develop your knowledge, design and analysis skills, engage with modern challenges in structural engineering and transform your professional profile with this accredited technical MSc in Civil Engineering Structures.

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules and dissertation
-Advanced structural analysis and stability (20 credits)
-Finite element methods (15 credits)
-Dynamics of structures (15 credits)
-Structural reliability and risk (10 credits)
-Design of concrete structures (15 credits)
-Design of steel and composite structures (15 credits)
-Dissertation for MSc degree (Research Skills and Individual Project) (60 credits)

Elective modules - you will be able to study two of the following elective modules:
-Earthquake analysis of structures (15 credits)
-Analysis of steel and concrete structures for blast and fire exposure (15 credits)
-Bridge engineering (15 credits)

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2014 have moved on to jobs and further study working within the following organisations:
-WSP Consultant Engineers
-Tully De'Ath Consultant Civil and Structural Engineers
-SSA Consulting Engineers
-Bradbrook Consulting
-Clarke Nicholls Marcel

Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
There are more than 100,000 vessels in the world’s fleet – designed, built, maintained and managed by naval architects and marine engineers. Read more

There are more than 100,000 vessels in the world’s fleet – designed, built, maintained and managed by naval architects and marine engineers. It’s a growing sector, and it’s growing here in BC. UBC is the only centre for naval architecture and marine engineering study on the Pacific Coast of North America. The university’s MEL in Naval Architecture & Marine Engineering is a unique graduate program that empowers you to develop the sector-relevant cross-disciplinary technical skills in demand by top employers.

The Master of Engineering Leadership (MEL) in Naval Architecture & Marine Engineering is an intensive one-year degree program intended for engineers three to five years or more into their careers. This program combines the engineering and physics of ship design with broad business and leadership training. Strong leadership and business skills are essential for career success. As we developed this program, our industry partners told us that they were looking for engineers who combined sector-specific technical skills with strong leadership skills. 60 per cent of your classes will focus on your technical specialization and will include a technical work experience placement in the summer. The remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

For more recent engineering graduates, UBC also offers a more technical Master of Engineering degree in Naval Architecture and Marine Engineering.

What Makes The Program Unique?

The MEL in Naval Architecture & Marine Engineering degree was developed in close collaboration with industry partners, who told us they need to hire leaders with cross-functional technical and business skills to develop innovative solutions, manage teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Naval Architecture & Marine Engineering program unique and highly relevant in today’s business environment. UBC’s Vancouver campus offers a strategic coastal setting and state-of-the-art research and learning facilities. Program faculty members also maintain vigorous links to the regional marine industry.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

Our graduates will be in high demand locally, nationally and internationally by employers seeking technical experts who can also manage and lead teams. Job opportunities include working as a ship surveyor, in a shipyard engineering position, as a design engineer and as a class society representative.

There is a growing need for talented engineers who can bridge the gap between technical staff and business leaders. Graduates of the MEL program will be highly sought after for their ability to bridge this divide and for their unique combination of leadership and technical sector-specific skills.



Read less
Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Read more

Mission and goals

Graduates in Civil Engineering work in the field of constructions and infrastructures. The subjects taught in the Master’s Degree Program aim at strengthening the basic preparation of the students, providing them, at the same time, with an adequately deepened knowledge of topics central to Civil Engineering. Students can choose their field of specialization in one of the following areas: Geotechnics, Hydraulics, Transportation infrastructures, Structures. Suggested study plans help students define their curriculum. Additionally, a General curriculum is also proposed, aimed at students preferring a wider spectrum formation in Civil Engineering.
The programme includes two tracks taught in English.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Career opportunities

Engineers having obtained the Master’ degree can find career opportunities in the following areas:
1. companies involved in the design and maintainance of civil structures, plants and infrastructures;
2. universities and higher education research institutions;
3. public offices in charge of the design, planning, management and control of urban and land systems;
4. businesses, organizations, consortia and agencies responsible for managing and monitoring civil works and services;
5. service companies for studying the urban and land impact of infrastructures.

They can also work as self-employed professionals.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Civil_Engineering_02.pdf
Civil Engineers deal with structures (e.g. buildings, bridges, tunnels, dams) and infrastructures (such as roads, railways, airports, water supply systems, etc.). The two-year Master of Science in Civil Engineering provides students with a sound preparation on these topics, allowing them to choose a curriculum (or ‘track’) among the five available: General, Geotechnics, Hydraulics, Transport Infrastructures and Structures. The ‘General’ curriculum aims at training civil engineers with a broader range of expertise in the design, implementation and management of civil works of various kinds. ‘Geothecnics’ is devoted to the study of engineering problems involving geomaterials (i.e., soil and rock) and their interaction with civil structures (foundations, tunnels, retaining walls).
‘Hydraulics’ deals with problems concerning water storage, transportation and control (pipelines, sewers, river and coastal erosion control, reservoirs). ‘Transport Infrastructures’ covers various subjects of transportation engineering (road and railway design, airport and harbor design, modeling of transport fluxes). ‘Structures’ is devoted to the analysis and design of civil and industrial structures
(steel and concrete buildings, bridges, etc.). The tracks ‘Geotechnics’ and ‘Structures’ are taught in English.

Subjects

1st year subjects
- Common to the two curricula:
Numerical methods for Civil Engineering; Computational mechanics and Inelastic structural analysis; Theory of structures and Stability of structures; Dynamics of Structures; Advanced Structural design*; Reinforced and prestressed concrete structures*; Advanced computational mechanics*; Mechanics of materials and inelastic constitutive laws*; Fracture mechanics*

- Curriculum Geotechnics:
Groundwater Hydraulics; Engineering Seismology

- Curriculum Structures:
Steel structures*; Computational Structural Analysis*

2nd year subjects
- Common to the two curricula:
Foundations; Geotechnical Modelling and Design; Underground excavations; 1st year subjects marked by * may also be chosen;

- Curriculum Geotechnics:
Slope Stability

- Curriculum Structures:
Earthquake Resistant Design; Bridge Theory and Design; Structural rehabilitation; Precast structures; 1st year subjects marked by * may also be chosen

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/civil-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening… Read more

Program overview

The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening their ability to successfully formulate solutions to current technical problems, and offers a significant independent learning experience in preparation for further graduate study or for continuing professional development at the leading edge of the discipline. The program accommodates applicants with undergraduate degrees in computer engineering or related programs such as electrical engineering or computer science. (Some additional bridge courses may be required for applicants from undergraduate degrees outside of computer engineering).

Plan of study

The degree requires 30 semester credit hours and includes Analytical Topics in Computer Engineering (CMPE-610), two core courses, four graduate electives, two semesters of graduate seminar, and the option of completing either a thesis research or a graduate project. The core courses and graduate electives provide breadth and depth of knowledge. The Computer Engineering Graduate Seminar (CMPE-795) provides students with exposure to a variety of topics presented by researchers from within RIT, industry, and other universities, and guides students to choose either a thesis or project as their culminating experience. The Project/Thesis Initiation Seminar (CMPE-796) guides students to complete their thesis proposal or project execution plan with their faculty adviser.

Students who pursue the thesis option complete nine semester credit hours of thesis research (CMPE-790) to conduct research with a faculty adviser to answer a fundamental science/engineering question that contributes to new knowledge in the field. Students are expected to formulate the problem under the faculty adviser's guidance and conduct extensive quantitative or qualitative analyses with sound methodology. Research findings should be repeatable and generalizable, with sufficient quality to make them publishable in technical conferences and/or journals. Students who pursue the project option take six semester credits of graduate electives directly related to their project deliverables and three semester credits of Graduate Project (CMPE-792) to professionally execute a project under the supervision of a faculty adviser. The project generally addresses an immediate and practical problem, a scholarly undertaking that can have tangible outcomes, where students are expected to give a presentation or demonstration of the final deliverables of the project.

Research tracks/Graduate electives

Students may select four graduate electives from within the following research tracks. Students are encouraged to choose most of their graduate electives within a single research track. At least two of the electives must be from the computer engineering department (computer engineering department courses begin with the prefix CMPE). Courses outside the lists below may be considered with approval from the department of computer engineering. Research tracks are available in the following areas (see website for research track details):
-Computer architecture
-Computer vision and machine intelligence
-Integrated circuits and systems
-Networks and security
-Signal processing, control and embedded systems
-Additional graduate-level math courses

Curriculum

Thesis and project options differ in course sequence, see website for a particular option's module information.

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have an GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS).

Read less
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials. Read more
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials.

The objectives of the program are threefold:

- With the advent of new classes of materials and instruments, the traditional practice of empiricism in the search for and selection of materials is rapidly becoming obsolete. Therefore, the program offers a serious interdisciplinary learning experience in materials studies, crossing over the traditional boundaries of such classical disciplines as chemistry, physics, and electrical, mechanical, and microelectronic engineering.

- The program provides extensive experimental courses in diverse areas of materials-related studies.

- The program explores avenues for introducing greater harmony between industrial expansion and academic training.

Plan of study

A minimum of 30 semester credit hours is required for the completion of the program. This includes five required core courses, graduate electives, and either a thesis or project. The core courses are specially designed to establish a common base of materials-oriented knowledge for students with baccalaureate degrees in chemistry, chemical engineering, electrical engineering, mechanical engineering, physics, and related disciplines, providing a new intellectual identity to those involved in the study of materials.

The program has an emphasis on experimental techniques, with one required experimental course as part of the core. Additional experimental courses are available for students who wish to pursue course work in this area. These courses are organized into appropriate units covering many aspects of the analysis of materials. This aspect of the program enhances a student’s confidence when dealing with materials-related problems.

- Electives

Elective courses may be selected from advanced courses offered by the School of Chemistry and Materials Science or, upon approval, from courses offered by other RIT graduate programs. Elective courses are scheduled on a periodic basis. Transfer credit may be awarded based on academic background beyond the bachelor’s degree or by examination, based on experience.

- Thesis/Project

Students may choose to complete a thesis or a project as the conclusion to their program. Students who pursue the thesis option take two graduate electives, complete nine semester credit hours of research, and produce a thesis paper. The project option includes four graduate electives and a 3 credit hour project.

Admission requirements

To be considered for admission to the MS program in materials science and engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree in chemistry, physics, chemical engineering, electrical engineering, mechanical engineering, or a related field from an accredited college or university,

- Submit official transcripts (in English) from all previously completed undergraduate and graduate course work,

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). A minimum TOEFL score of 575 (paper-based) or 88-89 (Internet-based) is required. A 4.0 is required on the TWE. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org. In addition, upon arrival at RIT, international students are required to take the English language exams, administered by the English Language Center. Individuals scoring below an established minimum will be referred to the center for further evaluation and assistance. These students are required to follow the center’s recommendations regarding language course work. It is important to note that this additional course work may require additional time and financial resources to complete the degree requirements. Successful completion of this course work is a requirement for the program.

Candidates not meeting the general requirements may petition for admission to the program. In such cases, it may be suggested that the necessary background courses be taken at the undergraduate level. However, undergraduate credits that make up deficiencies may not be counted toward the master’s degree.

Any student who wishes to study at the graduate level must first be admitted to the program. However, an applicant may be permitted to take graduate courses as a nonmatriculated student if they meet the general requirements mentioned above.

Additional information

- Part-time study

The program offers courses in the late afternoon and evenings to encourage practicing scientists and engineers to pursue the degree program without interrupting their employment. (This may not apply to courses offered off campus at selected industrial sites.) Students employed full time are normally limited to a maximum of two courses, or 6 semester credit hours, each semester. A student who wishes to register for more than 6 semester credit hours must obtain the permission of his or her adviser.

- Maximum limit on time

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering. Read more
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering.

Course details

You enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You also further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course. The 60-credit dissertation gives you the opportunity to conduct a supervised research project developing original knowledge in a specific area of civil or structural engineering. The programme structure is divided into a combination of 10 and 20-credit taught modules, delivered over two semesters. By successfully completing these modules, you proceed to a 60-credit research project.

Starting salaries for new graduate civil and structural engineers can reach £32,000, increasing to £70,000 when a senior level is reached (prospects.ac.uk, 2015).

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:
-Institution of Civil Engineers
-Institution of Structural Engineers
-Chartered Institution of Highways and Transportation
-Institute of Highway Engineers

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects include:
-Shear strength of composite and non-composite steel beam and concrete slab construction
-Investigation into the self-healing capability of bacterial concrete
-A review of the use of smart materials and technologies in cable stayed bridge construction
-FRP and its use as structural components
-Non-linear modelling of ground performance under seismic conditions

Core modules
-Advanced Geotechnics
-Advanced Project Planning and Visualisation
-Advanced Structural Analysis with Dynamics
-Advanced Structural Design
-Advanced Structural Engineering
-Practical Health and Safety Skills
-Research and Study Skills
-River and Coastal Engineering

MSc only
-Research Project

Modules offered may vary.

Teaching

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning, while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. Some of the modules require using specialised technical software and practical computer-based sessions are timetabled.

In addition to the taught sessions, you undertake a substantive MSc research project.

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations or formal examinations. For your MSc project, you prepare a dissertation.

Employability

The course will equip you with the relevant technical and transferrable skills to pursue a career as a civil/structural engineer or technical manager with leading multidisciplinary consultancies, contractors, as well as research and government organisations.

Read less
In order to succeed and proceed to higher management positions the combination of technical and economic knowledge is gaining importance. Read more
In order to succeed and proceed to higher management positions the combination of technical and economic knowledge is gaining importance. Experience with legal issues is an additionally sought after asset. This proofs that there is an increasing demand for employees with special knowledge in engineering, business management, marketing and jurisprudence.

In future technicians, lawyers and managers will be specialists not only in their field of expertise but also the respective complementary fields such as marketing, business management, law and engineering. In areas where economists, lawyers and engineers work together on the same level, either at the top of small and medium sized companies or in units of big companies, a well qualified engineering manager provides expertise and solutions to bridge existing interfacial gaps. This MSc Program offers graduates from engineering schools the chance to extend and deepen their knowledge of economic and legal issues as well as it provides education in technical sciences for business managers and legal experts.

Contents
The aim of this MSc Program is to develop an advanced understanding of important management principles and practices in connection with developing and implementing engineering projects in order to enable engineering managers to widen their knowledge and understanding of current and future engineering management issues. The combination of theory, praxis and real life cases ensures that the newly gained knowledge can be put directly into practise. In case studies, actual cases from your current working fields are analysed, learned methods applied and put into practice. This will enable active participation in

Production Management
Engineering Informatics
Business Management
Master Thesis


Target Group

This program is intended for persons with a basic knowledge of engineering, intending to interact between technology and economy.

Engineers and other graduates from the field of technology aspiring management positions
Graduates with no specific technical studies having technological knowledge, wanting to broaden and deepen their expertise
Established engineers facing new challenges and responsibilities following promotions to management positions
Persons working as advisors and consultants with a background in science, technology or business studies who need to familiarize themselves with the principles and practices of engineering management

Read less
See the department website - http://www.se.rit.edu/grad. The master of science in software engineering is designed to attract professionals with a formal undergraduate background in software engineering, computer science, or computer engineering and at least one year of professional experience. Read more
See the department website - http://www.se.rit.edu/grad

The master of science in software engineering is designed to attract professionals with a formal undergraduate background in software engineering, computer science, or computer engineering and at least one year of professional experience. The program’s core content ensures that graduates will possess both breadth and depth of knowledge in software engineering. Specialization tracks in software quality and design provide students with the opportunity to match their graduate education with their professional goals.

Plan of study

The program comprises 36 semester credit hours, anchored by either a thesis or a capstone project.

Admission requirements

To be considered for admission to the MS program in software engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution,

- Have a cumulative grade point average of 3.0 or higher (Prospective students from institutions that do not use the GPA scale are expected to demonstrate an equivalent level of academic accomplishment. Formal academic background in software engineering, computer science, or computer engineering is a plus.),

- Submit official transcripts (in English) of all previously completed undergraduate and graduate course work,

- Submit a professional essay (1-4 pages) describing current job (if applicable), relevant experience, and career plans,

- Submit a current resume (including descriptions of significant software projects in which the candidate participated),

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based) or 88 (Internet-based) are required. International applicants must provide Graduate Record Exam (GRE) scores. Domestic students are encouraged to provide GRE scores.

Professional experience developing software is preferred, but candidates without a background in computing will be considered. Additional bridge course work will be required, and may extend time to graduation.

Additional information

- Bridge courses

Based on the evaluation of academic and relevant experience, the graduate program director may require some applicants to successfully complete bridge courses to fill in any gaps in their background. Successful completion of bridge courses is necessary for registration in graduate-level courses.

Read less
This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers. Read more

This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers.

Many graduates from the programme go on to work for consultancies, water utilities, contractors, relief agencies, regulatory bodies and international organisations.

Graduates from the programme also have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

In the past, scholarship students have been accepted from a range of schemes, including: Foreign Office and British Council Chevening, World Bank, Commonwealth, Thames Water, Commonwealth Shared Scholarships, and the Royal Academy of Engineering, together with students from numerous overseas national schemes.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Modes of study

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Download our distance learning PDF to learn more.

Facilities and resources

Laboratories and pilot plants

In recent years, CEHE has benefited from investment in new equipment in both the small centre facility, which primarily supports fieldwork, and a larger, more extensively equipped microbiology and chemistry laboratory.

The laboratories are equipped with recently acquired state-of- the-art analytical equipment including ICP-OES, GC/MS, TOC, Ion Chromatograph, Particle Counter, water quality loggers, Delagua kits and so on, available for fieldwork.

A water and wastewater research pilot plant is located at Thames Water’s Shalford and Godalming Water Treatment Works, just a few kilometres away from the University campus. Over the years, many MSc dissertation projects have been completed at this facility, most of them to assist in the development or testing of relief agency systems.

A parallel wastewater research pilot plant has recently been established, again with the support of Thames Water, at Godalming Sewage Treatment Works.

Library facilities

The University library is currently resourced for books, journals and electronic resources, as the postgraduate programme in Water and Environmental Engineering has been well established over the last decade.

The programme draws on science, engineering and other areas of knowledge, and the overall diversity of academic groups within the University ensures that there are library resources to answer most needs.

The provision of British Standards online has reduced the copyright requirements and the quantity of photocopying required. Passwords are available from the library web pages for all other electronic resources.

CEHE resource centre

Provision is made within CEHE to access a limited range of textbooks, previously completed MSc dissertations, a selected range of journals and software mounted on PCs in the Catchment Modelling Laboratory or available on CD.

Professional Institution resources

Library and learning resources are available at the Institution of Civil Engineers, the Chartered Institution of Water and Environmental Management and other appropriate professional bodies.

All categories of members of the professional institutions are allowed to borrow books from the institution libraries by post, and in some cases to access other services online.

Computing

There are suitable computing facilities available both within the Faculty of Engineering and Physical Sciences and through central university facilities.

Teaching rooms

Teaching is primarily in flat floor teaching rooms, although there are occasions when formal lecture theatre facilities are used. All of the usual academic support materials and systems are available and pre-printed notes are distributed during every lecture.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive and robust understanding of key areas of water and environmental engineering 
  • Skills that will enable students to explore, critically assess and evaluate problems and produce systematic and coherent solutions integrating core engineering science with practical applications both independently and within a team structure
  • An understanding of how this knowledge can be articulated around sustainable development practices
  • A sound base for enhanced communication skills both oral and written
  • A pathway that will prepare graduates for successful careers in the field including, where appropriate, progression to Chartered Engineer status

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less

Show 10 15 30 per page



Cookie Policy    X