• Northumbria University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
University of Glasgow Featured Masters Courses
University College London Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Swansea University Featured Masters Courses
"bridge" AND "engineering…×
0 miles

Masters Degrees (Bridge Engineering)

We have 91 Masters Degrees (Bridge Engineering)

  • "bridge" AND "engineering" ×
  • clear all
Showing 1 to 15 of 91
Order by 
Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management. Read more

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules

Structural Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering and Management Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for bridge analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
  • The ability to design bridge structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
  • The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
  • A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
  • A knowledge and understanding of the common and less common materials used in bridge engineering
  • A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
  • The ability to critically evaluate bridge engineering concepts
  • The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
  • The ability to understand the limitations of bridge analysis methods
  • A knowledge and understanding to work with information that may be uncertain or incomplete
  • A Knowledge and understanding of sustainable development related to bridges
  • The awareness of the commercial, social and environmental impacts associated with bridges
  • An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
  • A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills

  • The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
  • The ability to generate innovative bridge designs (B)
  • The ability to use theory or experimental research to improve design and/or analysis
  • The ability to apply fundamental knowledge to investigate new and emerging technologies
  • Synthesis and critical appraisal of the thoughts of others;

Professional practical skills

  • The awareness of professional and ethical conduct
  • A Knowledge and understanding of bridge engineering in a commercial/business context
  • Ability to use computer software to assist towards bridge analysis
  • Ability to produce a high quality report
  • Ability of carry out technical oral presentations

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner
  • Collect and analyse research data
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
You can access six study streams on this Masters programme. Bridge Engineering. Construction Management. Geotechnical Engineering. Read more

You can access six study streams on this Masters programme:

  • Bridge Engineering
  • Construction Management
  • Geotechnical Engineering
  • Structural Engineering
  • Water Engineering and Environmental Engineering
  • Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

Programme structure

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Educational aims of the programme

  • The Civil Engineering programme aims to provide graduate engineers with:
  • Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
  • It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
  • A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

Programme learning outcomes

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding

  • The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
  • The properties, behaviour and use of relevant materials
  • The management techniques which may be used to achieve civil engineering objectives within that context
  • Some of the roles of management techniques and codes of practice in design
  • The principles and implementation of some advanced design and management techniques specific to civil engineering
  • Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
  • The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
  • The wider multidisciplinary engineering context and its underlying principles
  • Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
  • The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
  • The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills

  • Analyse and solve problems
  • Think strategically
  • Synthesis of complex sets of information
  • Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
  • Select and transfer knowledge and methods from other sectors to construction-based organisation
  • Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
  • Dynthesis and critical appraisal of the thoughts of others

Professional practical skills

  • Awareness of professional and ethical conduct
  • Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
  • Evaluate and integrate information and processes in project work
  • Present information orally to others
  • Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
  • Use concepts and theories to make engineering judgments in the absence of complete data
  • Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills

  • Communicate engineering design, concepts, analysis and data in a clear and effective manner 
  • Collect and analyse research data 
  • Time and resource management planning

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities. Read more

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Infrastructure Engineering Group Modules

Water and Environmental Engineering Group Modules

Dissertation

Modes of study

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get further information about the details of our distance learning programme.

Academic support, facilities and equipment

As part of your learning experience, you will have at your disposal a wide range of relevant software, including ANSYS, ABAQUS, DIANA, SAP 2000, Integer SuperSTRESS, LUSAS, CRISP, MATLAB, PertMaster DRACULA and VISSIM.

Educational aims of the programme

The programme aims to provide graduates with:

  • A comprehensive understanding of engineering mechanics for structural analysis
  • The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
  • The ability to design structures in a variety of construction materials
  • A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
  • The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the. Read more

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:

  • Technical aspects of infrastructure engineering within a social, economic, environmental and political context
  • Factors that affect and drive infrastructure planning and funding
  • Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

The lectures given by our academic staff are complemented by visiting speakers from different infrastructure companies such as Network Rail, Thames Water, Environment Agency, Transport for London, ARUP, KPMG, etc., covering different aspect of infrastructure engineering and management. During the academic year, infrastructure specialists carry out Keynote Lectures focusing on important infrastructure projects and approaches. Past Keynote Speakers include Sir John Armitt, Sir Terry Morgan, Sir Michael Pitt, Sir David Higgins, Keith Clarke, James Stewart, Andrew Wolstenholme, Michele Dix, Humphrey Cadoux-Hudson. A number of field visits are also organised to provide an overview of real-life infrastructure operation and management. Past field visits have taken place to both the National Grid and Network Rail Control Centers.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Infrastructure Engineering and Management Group Modules

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Water and Environmental Engineering Group Modules

Wind Energy Group Modules

Dissertation

Modes of study 

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get full information about our distance learning programme (PDF).

Academic support, facilities and equipment

Modules related to the different groups are taught by a total of 20 full or part-time members of academic staff, as well as a number of visiting lecturers from the industry and government.

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Educational aims of the programme

The programme aims to provide graduates with:

  • The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
  • A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
  • A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
  • A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more

This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

This degree is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who have already acquired a partial CEng-accredited undergraduate first degree and for holders of an IEng-accredited first degree, to meet the educational base for a chartered engineer.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Course structure

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.



Read less
This is a one year full-time or two year part-time postgraduate course designed to provide graduate engineers with specialist understanding in one of. Read more
This is a one year full-time or two year part-time postgraduate course designed to provide graduate engineers with specialist understanding in one of: Environmental Engineering; Structural Engineering; or Transport Engineering. In addition, the course offers students the opportunity to obtain knowledge in complimentary subject areas within Civil Engineering.

Course Organisation:

The MSc course can be undertaken as either a one year full-time or a two-year part-time postgraduate course.

The degree programme is divided into three parts: two semesters of taught courses (September - April inclusive) with an average of 12 lectures per week. A major dissertation is undertaken during the second half of the course (April - September inclusive).

It is possible to work full-time and do the course as a part-time option, providing you have the agreement of your employer.

Course Content:

Candidates must take eleven modules, namely the three mandatory modules (M1, M2 and M3) together with at least four of the modules in their chosen specialisation and four other modules, which in total amounts to 90 ECTS.

In the first semester, candidates pursuing the course full time must take modules M1 and M2 along with four other modules selected from options (including at least two from their selected specialisation), listed below. In the second semester, candidates pursuing the course full time must take module M3 along with four other modules selected from options (including at least 2 from their selected specialisation), also listed below:

Mandatory

M1. Civil Engineering Management (10 ECTS)

M2. Research Methodology (10 ECTS)

M3. (Environmental / Structural / Transport) Engineering Dissertation (30 ECTS)

Environmental Engineering

E1. Engineering Hydrology (5 ECTS)

E2. Environmental Monitoring and Assessment (5 ECTS)

E3. Environmental Processes and Technology (5 ECTS)

E4. Waste and Environmental Management (5 ECTS)

E5. Water Quality and Hydrological Modelling (5 ECTS)

E6. Water Resource Planning ( ECTS)

Structural and Geotechnical Engineering

S1. Geotechnical Engineering (5 ECTS)

S2. Advanced Structural Analysis (5 ECTS)

S3. Structural Dynamics and Earthquake Engineering (5 ECTS)

S4. Bridge Engineering (5 ECTS)

S5. Advanced Concrete Technology (5 ECTS)

S6. Soil-Structure Interaction (5 ECTS)

S7. A Unified Theory of Structures (5 ECTS)

S8. Concrete Durability and Sustainability (5 ECTS)

S9. Advanced Theory of Structures (5 ECTS)

Transport Engineering

T1. Transportation Engineering ( ECTS)

T2. Transport Modelling (5 ECTS)

T3. Highway Engineering (5 ECTS)

T4. Applied Transportation Analysis (5 ECTS)

Common

C1. Renewable Energy 1 (5 ECTS)

C2. Renewable Energy 2 ( ECTS)

C3. Modelling of Civil Engineering Systems (5 ECTS)

C4. Facade Engineering (5 ECTS)

C6. Construction Innovation and Research (5 ECTS)


Some of the module options in either semester may be withdrawn from time to time and some new modules may be included, subject to demand. In addition to passing the prescribed examinations, each student must submit a dissertation on an approved topic relating to their chosen specialisation.

Part Time Option:

For candidates taking the course part-time over two years, during the first year, candidates take seven modules, namely: the mandatory modules M1 and M2 along with five of the module options (including at least two from their chosen specialisation) which amounts to 45 ECTS. During the second year, candidates must complete the compulsory M3 module together with three other module options (including at least two from their chosen specialisation) which amounts to 45 ECTS. During the second year, candidates must complete the compulsory M3 module together with three other module options (including at least two from their chosen specialisation) which amounts to another 45 ECTS. By the end of the course, part-time candidates must have completed at least four of their specialisation module options and four of the other options, amounting to a total of 90 ECTS credits. The part time option runs in parallel with the full time course. Full and part time students attend the same lectures which are typically scheduled Monday-Friday, 9-5pm. During the teaching periods, students taking the part time option are typically required to attend 9-12 hours per week during year 1 and 3-6 hours during year 2.

Assessment:

Examination of course modules and completion of a Major Dissertation.

Read less
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. Read more
This is an accredited masters course in Civil Engineering with a strong focus on Structural Engineering. It is designed for both engineers in employment and students wishing to pursue further study at Masters level covering a range of subjects from advanced structural analysis and design to to global professional development. The course has been developed and will be delivered in collaboration with civil engineering employers. The taught modules specialise in advanced analysis, design and modelling.

Holders of a CEng accredited Bachelor’s degree, can enrol on any of the MSc courses on offer (ECT053, ECT054, and ECT075) provided they meet the entry requirements. This will automatically meet the educational base for Chartered Engineer status.

Holders of an IEng accredited or an overseas Bachelor’s degree, are advised to complete the MSc Civil Engineering (Technical Route), ECT075. Upon completion of their MSc course, they will need to apply for an academic assessment to be formally approved for CEng. They may be required to complete extra modules if their Bachelor degree is deemed to be not technical enough.

WHAT WILL I LEARN?

The MSc in Civil and Structural Engineering is made up of the following modules, each delivered in a separate block with the exception of the Integrating Project and Research Project:
-Computational Mechanics
-Global Professional Development
-Advanced Design Concepts
-Advanced Structural Analysis Concepts
-Soil-structure Interaction
-Experimental Methods for Materials and Structures
-Bridge Engineering
-Integrated Project
-Technical Project

The course can be studied on a full-time (one year), or part-time basis (two years). Tuition is in one-week intensive blocks, with a few weeks' gap in between blocks for individual research and study. Assessment for the taught modules is a mixture of examination and coursework. For part-time students the blocks are spread over two years rather than one.

This is followed by an Integrated Project and an individual Research Project. For full-time students the Integrating Project is normally team-based and investigates a real engineering problem. For part-time students the Integrating Project is chosen to specifically link their work with their studies.

Training in research methods is given in preparation for the Research Project. Research topics are chosen in discussion with academic staff and a wide range of potential areas within civil and structural engineering are available.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This programme of study is ideal for those seeking deeper and more specialist knowledge for employment within the public and private sector, or students wishing to pursue an academic or research-orientated career.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This MSc has been developed in response to the rapid growth and demand in the highways and transportation industry, both in the UK and overseas. Read more
This MSc has been developed in response to the rapid growth and demand in the highways and transportation industry, both in the UK and overseas.

The course will form the basis for ‘Further Learning’ for those graduates with a civil engineering degree (or equivalent) seeking professional qualification as a Chartered Engineer. It provides topical and industry-focused postgraduate education to enhance career opportunities in highways and transportation engineering.

Accreditation for this course is being sought from the Joint Board of Moderators (JBM) for the 2016 intake.

The course has been designed for full time or part time study by the use of ‘one-week blocks’ of teaching.

WHAT WILL I LEARN?

This course comprises of nine topics in total, (listed below)
-Safety engineering
-Geometric and pavement design
-Bridge engineering
-Traffic engineering
-Earthwork engineering
-Transportation planning
-Global Professional Development
-Integrated Project
-Technical project

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Highways and transportation engineering is designed for graduates seeking careers in the highways and transportation sectors, and in the wider civil engineering industry. The vocational nature of this programme aims to provide a sound basis for enhancing a wide range of skills and career opportunities in the construction industry

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Energy Engineering

In the light of dwindling energy resources and volatile energy prices, energy engineering has become an integral economic factor with enormous potential for growth, especially in such fields as energy generation from non-fossil primary energy sources, energy distribution and energy savings. MCI graduates with a specialization in Energy Engineering typically deal with a wide variety of processes, from conventional power plant engineering to the conversion of energy carriers and their various precursors, and decentral energy supply systems. The major in Energy Engineering caters for these market requirements by communicating the relevant knowledge and skills with a combination of in-depth teaching and practical applicability.

Given their interdisciplinary training and the program’s strong practical orientation, graduates are particularly well qualified to work as engineers at the interface with business and management with special reference to the following areas:

Energy trading, energy management & natural resources
Renewable energies
Glass industry
Oil industry
Consulting engineers, consulting & engineering
Paper and paper products
Chemicals
Gas and heating supply industries

Read less
This is an accredited Masters course in Civil Engineering with taught modules covering a range of subjects from advanced design concepts to global professional development. Read more
This is an accredited Masters course in Civil Engineering with taught modules covering a range of subjects from advanced design concepts to global professional development. It is designed for both engineers in employment and students wishing to pursue further study at masters level. The course has been developed and will be delivered in collaboration with civil engineering employers.

A slightly modified version designed specifically for holders of IEng accredited degrees wishing to study a course approved for meeting the requirements for CEng is code ECT075.

Holders of a CEng accredited Bachelor’s degree, can enrol on any of the MSc courses on offer (ECT053, ECT054, and ECT075) provided they meet the entry requirements. This will automatically meet the educational base for Chartered Engineer status.

Holders of an IEng accredited or an overseas Bachelor’s degree, are advised to complete the MSc Civil Engineering (Technical Route), ECT075. Upon completion of their MSc course, they will need to apply for an academic assessment to be formally approved for CEng. They may be required to complete extra modules if their Bachelor degree is deemed to be not technical enough.

WHY CHOOSE THIS COURSE?

Approved as ‘further learning’ by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers.

In-depth modules covering a range of structural concepts to management and contract issues.

Training in research methods is given in preparation for the research project.

This course comprises seven taught modules, plus an integrated project and an individual research project (or a technical project for the IEng version of the course). Each of the taught modules is delivered in one week intensive block. The course been designed for full time or part time study.

WHAT WILL I LEARN?

The MSc in Civil Engineering is made up of the following modules:
-Computational Mechanics
-Global Professional Development
-Advanced Design Concepts
-Construction Contracts and Law
-Soil-structure Interaction
-Experimental Methods for Materials and Structures
-Bridge Engineering
-Integrated Project
-Research Project

The course can be studied on a full-time (one year), or part-time basis (two years). Tuition is in one-week intensive blocks, with a few weeks' gap in between blocks for individual research and study. Assessment for the taught modules is a mixture of examination and coursework. For part-time students the blocks are spread over two years rather than one.

This is followed by an Integrated Project and an individual Research Project. For full-time students the Integrating Project is normally team-based and investigates a real engineering problem. For part-time students the Integrating Project is chosen to specifically link their work with their studies.

Training in research methods is given in preparation for the Research Project. Research topics are chosen in discussion with academic staff and a wide range of potential areas within civil and structural engineering are available.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This programme of study is ideal for those seeking deeper and more specialist knowledge in a broad range of subjects for employment within the public and private sector, or students wishing to pursue an academic or research-orientated career.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
This is an accredited Masters course in Civil Engineering with taught modules covering a range of subjects from advanced design concepts to global professional development. Read more
This is an accredited Masters course in Civil Engineering with taught modules covering a range of subjects from advanced design concepts to global professional development. It is designed for both engineers in employment and students wishing to pursue further study at masters level. The course has been developed and will be delivered in collaboration with civil engineering employers.

Holders of a CEng accredited Bachelor’s degree, can enrol on any of the MSc courses on offer (ECT053, ECT054, and ECT075) provided they meet the entry requirements. This will automatically meet the educational base for Chartered Engineer status.

Holders of an IEng accredited or an overseas Bachelor’s degree, are advised to complete the MSc Civil Engineering (Technical Route), ECT075. Upon completion of their MSc course, they will need to apply for an academic assessment to be formally approved for CEng. They may be required to complete extra modules if their Bachelor degree is deemed to be not technical enough.

WHY CHOOSE THIS COURSE?

Approved as ‘further learning’ by the Institution of Civil Engineers, the Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and the Institute of Highway Engineers.

In-depth modules covering a range of structural concepts to management and contract issues.

Training in research methods is given in preparation for the research project.

This course comprises seven taught modules, plus an integrated project and an individual research project (or a technical project for the IEng version of the course). Each of the taught modules is delivered in one week intensive block. The course been designed for full time or part time study.

WHAT WILL I LEARN?

The MSc in Civil Engineering is made up of the following modules:
-Computational Mechanics
-Global Professional Development
-Advanced Design Concepts
-Construction Contracts and Law
-Soil-structure Interaction
-Experimental Methods for Materials and Structures
-Bridge Engineering
-Integrated Project
-Technical Project

The course can be studied on a full-time (one year), or part-time basis (two years). Tuition is in one-week intensive blocks, with a few weeks' gap in between blocks for individual research and study. Assessment for the taught modules is a mixture of examination and coursework. For part-time students the blocks are spread over two years rather than one.

This is followed by an Integrated Project and an individual Research Project. For full-time students the Integrating Project is normally team-based and investigates a real engineering problem. For part-time students the Integrating Project is chosen to specifically link their work with their studies.

Training in research methods is given in preparation for the Research Project. Research topics are chosen in discussion with academic staff and a wide range of potential areas within civil and structural engineering are available.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

This programme of study is ideal for those seeking deeper and more specialist knowledge in a broad range of subjects for employment within the public and private sector, or students wishing to pursue an academic or research-orientated career.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Our MSc programmes are ideal if you are a graduate or professional in the civil engineering, structural engineering or construction sector and want to deepen and broaden your technical knowledge and understanding of specialised areas. Read more

Our MSc programmes are ideal if you are a graduate or professional in the civil engineering, structural engineering or construction sector and want to deepen and broaden your technical knowledge and understanding of specialised areas.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Civil and Structural Engineering – one year full time
  • MSc Civil and Structural Engineering – two years part time
  • MSc Civil and Structural Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Civil and Structural Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. Our MSc helps you to enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course.

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:

  • Institution of Civil Engineers
  • Institution of Structural Engineers
  • Chartered Institution of Highways and Transportation
  • Institute of Highway Engineers

The two-year MSc Civil and Structural Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as an accredited title.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects include:

  • Shear strength of composite and non-composite steel beam and concrete slab construction
  • Investigation into the self-healing capability of bacterial concrete
  • A review of the use of smart materials and technologies in cable stayed bridge construction
  • FRP and its use as structural components
  • Non-linear modelling of ground performance under seismic conditions

Course structure

Core modules

  • Advanced Geotechnics
  • Advanced Project Planning and Visualisation
  • Advanced Structural Analysis with Dynamics
  • Advanced Structural Design
  • Advanced Structural Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • River and Coastal Engineering

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

The course equips you with the relevant technical and transferrable skills to pursue a career as a civil or structural engineer or technical manager with leading multidisciplinary consultancies or contractors, as well as research and government organisations.



Read less
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Read more
The 21st century calls for graduates with an interdisciplinary training and problem-solving competence in the fields of ecology, energy, resources etc. Process engineering, for example, with such fields as environmental- and energy engineering, is now seen as one of the key disciplines. It deals with the engineering required for a wide range of processes and the transformation of materials, in which raw materials are converted in a series of unit operations into salable intermediate and final products.

One focus of training within the discipline relates to the development and application of various environmental and energy technologies. Both environmental- and energy engineering are classified as green technologies, which have developed at an above-average rate in the last few years. That is due to growing social awareness for sustainability and the finite nature of our resources on the one hand and legal constraints on the other. The latter in particular call for innovative processes and technologies in response to today’s challenges. The Master program in Environmental, Process & Energy Engineering is designed to communicate the knowledge, methodology and problem-solving competence needed to tackle a very wide range of engineering problems in the above mentioned fields. With its commitment to bridge-building between the academic and the business worlds, Management Center Innsbruck also provides essential teaching in the increasingly important horizontal disciplines of law and economics, and the skills needed for today’s labor market.

Major Environmental Engineering

Graduates of this study program, with its strong practical orientation, typically work with a variety of Environmental technologies processes, from air and water pollution control and residual waste treatment to alternative energy carriers. They are capable of analyzing environmental pollutants and employing the results to develop technical solutions to reduce the impacts on soil, air and water. They may also be responsible for controlling, optimizing and monitoring plants and ensuring compliance with the relevant laws.

Graduates tend to work as process and environmental engineers in the following fields:

Environmental engineering
Natural resources
Renewable energies
Glass industry
Oil industry
Waste and waste water management
Consulting engineers
Paper and paper products
Chemicals

Read less

Show 10 15 30 per page



Cookie Policy    X