• Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of York Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Imperial College London Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
University of Greenwich Featured Masters Courses
Cardiff University Featured Masters Courses
"breeding"×
0 miles

Masters Degrees (Breeding)

  • "breeding" ×
  • clear all
Showing 1 to 15 of 55
Order by 
This is an online Master specialisation within the MSc Plant Sciences. Read more

MSc Plant Breeding

This is an online Master specialisation within the MSc Plant Sciences

ONLINE OPEN DAY: 17 MARCH 2016

Would you like to know more about the Master programmes of Wageningen University, join us for the Master online open day on 17 March 2016! During the online open day you can meet the staff and students of the Master programmes, experience Wageningen University and check out the innovative campus. You can also ask your questions about application and admission, scholarships, the education system and much more, all online!

sign up now

http://www.wageningenuniversity.eu/masteronlineopenday

Online Master

The online master specialisation is designed for part-time study (approx. 20 hrs/week) to combine work and study or in the context of Life-Long-Learning. A course-programme of 2 years will be followed by a tailor-made internship and Master thesis. During the courses, you will closely collaborate with lecturers, tutors and fellow distance learning students on a virtual learning platform. The course programme includes two short stays of two weeks, each in Wageningen, for essential practicals that relate to the theory. There may be options to organise the academic internship and Master thesis in your own professional context, either parttime or full-time.

Programme summary

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge of the physiology, ecology and genetics of cultivated plants. The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Your future career

Graduates of the Master Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Student Timo Petter.
After 10 years of practical experience in Allium breeding, Timo subscribed to follow courses of the master Plant Breeding and Genetic Resources. His job at Bejo Zaden brought him to many countries where the breeding company has her trial fields, breeding stations and sales representatives. But as a crop research manager he started to feel the need to improve his knowledge of the theoretical side of his profession: “Although I have not finished my masters yet, I use the knowledge that I have gained from the various courses every day! For a plant breeder, I believe that this master is the best educational programme available in the Netherlands.”

Related on-campus programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology

Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
Plant and animal genetics play an important role in enhancing the world's future supply of food and fibre, especially in this era of climate change. Read more
Plant and animal genetics play an important role in enhancing the world's future supply of food and fibre, especially in this era of climate change.

The Master of Agricultural Science, with a specialisation in Genetics and Breeding, is designed for students who have a broad interest in genetics and its application to either plant and animal breeding or natural resource conservation. This course will provide a solid grounding in the disciplines of genetics and molecular genetics and how these techniques are applied to the theory and practice of modern breeding and conservation of genetic resources.

Key features

Strong industry connections and links with with international centres (AVRDC, ICARDA, ICRISAT and IRRI) including possibility of jointly-supervised thesis research at centres.

Read less
This course offers a thorough grounding in state-of-the-art biotechnology in combination with training in enterprise, commercialisation and intellectual property (IP) protection. Read more
This course offers a thorough grounding in state-of-the-art biotechnology in combination with training in enterprise, commercialisation and intellectual property (IP) protection.

Biotechnology is rapidly becoming central to our lives. The use of plants, animals and bacteria, enhanced by areas such as genetics and genomics, gives rise to new food, fibre and chemical production routes, and new strategies for environmental protection and stewardship, all central requirements as the global population increases over the coming decades.
Genetics and Breeding

The application of biotechnology at core and advanced level to the breeding of animals and plants. Using genes as a basis, the units explore evolutionary genetics and the use of genetics to generate and monitor new traits.

Key features

Offers a thorough grounding in state-of-the-art biotechnology in combination with training in enterprise and commercialisation.
Unique set of specialisations in Biochemistry and Molecular Biology, Environmental Biotechnology, Genetics and Breeding; and Genetics and Genomics.

Utilises the expertise of world-leading research staff in the Faculty of Science and in the UWA Business School - along with Business mentors in biotechnology spin-outs.

Read less
The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology. Read more

MSc Plant Biotechnology

The Plant Biotechnology programme is the combination of different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology) working with a whole new range of techniques and possibilities opened up by modern molecular biology.

Programme summary

Due to rapid technological developments in the genomics, molecular biology and biotechnology, the use of molecular marker technology has accelerated the selection of new plant varieties with many desirable traits. It also facilitates the design, development and management of transgenic plants. At present, plants are increasingly used to produce valuable proteins and secondary metabolites for food and pharmaceutical purposes. New insights into the molecular basis of plant-insect, plant- pathogen and crop-weed relationships enable the development of disease-resistant plants and strategies for integrated pest management. A fundamental approach is combined with the development of tools and technologies to apply in plant breeding, plant pathology, post-harvest quality control, and the production of renewable resources. Besides covering the technological aspects, Plant Biotechnology also deals with the ethical issues and regulatory aspects, including intellectual property rights.

Specialisations

Functional Plant Genomics
Functional genomics aims at understanding the relationship between an organism's genome and its phenotype. The availability of a wide variety of sequenced plant genomes has revolutionised insight into plant genetics. By combining array technology, proteomics, metabolomics and phenomics with bioinformatics, gene expression can be studied to understand the dynamic properties of plants and other organisms.

Plants for Human and Animal Health
Plants are increasingly being used as a safe and inexpensive alternative for the production of valuable proteins and metabolites for food supplements and pharmaceuticals. This specialisation provides a fundamental understanding of how plants can be used for the production of foreign proteins and metabolites. In addition, biomedical aspects such as immunology and food allergy, as well as nutritional genomics and plant metabolomics, can also be studied.

Molecular Plant Breeding and Pathology
Molecular approaches to analyse and modify qualitative and quantitative traits in crops are highly effective in improving crop yield, food quality, disease resistance and abiotic stress tolerance. Molecular plant breeding focuses on the application of genomics and QTL-mapping to enable marker assisted selection of a trait of interest (e.g. productivity, quality). Molecular plant pathology aims to provide a greater understanding of plant-insect, plant-pathogen and crop-weed interactions in addition to developing new technologies for integrated plant health management.These technologies include improved molecular detection of pathogens and transgene methods to introduce resistance genes into crops.

Your future career

The main career focus of graduates in Plant Biotechnology is on research and development positions at universities, research institutes, and biotech- or plant breeding companies. Other job opportunities can be found in the fields of policy, consultancy and communication in agribusiness and both governmental and non-governmental organisations. Over 75% of Plant Biotechnology graduates start their (academic) career with a PhD.

Alumnus Behzad Rashidi.
“I obtained my bachelor degree in the field of agricultural engineering, agronomy and plant breeding, at Isfahan University of Technology, Iran. The curiosity and interest for studying plant biotechnology and great reputation of Wageningen University motivated me to follow the master programme Plant Biotechnology. I got a chance to do my internship at State University of New York at Buffalo, working on biofuel production from microalgae. Working with this small unicellular organism made me even more motivated to continue my research after my master. Now I am doing my PhD in the Plant Breeding department of Wageningen University, working on biorefinery of microalgae.”

Related programmes:
MSc Biotechnology
MSc Molecular Life Sciences
MSc Plant Sciences
MSc Nutrition and Health
MSc Bioinformatics
MSc Biology.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Genomics and Experimental Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics. This programme forms part of the quantitative genetics and genome analysis suite of programmes offering three specialist routes, which also include Human Complex Trait Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Animal Genetic Improvement
Research Proposal
Dissertation

Option courses:

Statistics and Data Analysis
Molecular Phylogenetics
Bioinformatics
Molecular Evolution
Genetics of Human Complex Traits
Quantitative
Genetic Models
Functional Genomic Technologies
Evolution and
Climate Change; Animal Genetic Improvement
Evolutionary Quantitative Genetics

Learning outcomes

An understanding of general concepts in population and quantitative genetics and genomics
A solid grounding in the statistical methods required
In-depth knowledge of animal improvement and complex trait analysis
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The two-year MSc programme Animal Sciences is a continuation of a BSc in Animal Sciences or an equivalent programme in the field of livestock, companion animals and wildlife. Read more

MSc Animal Sciences

The two-year MSc programme Animal Sciences is a continuation of a BSc in Animal Sciences or an equivalent programme in the field of livestock, companion animals and wildlife.

The focus is to deliver skilled professional animal scientists who are well equipped to tackle problems related to sustainable livestock development as well as to the management of livestock and companion animals. The animal-human interaction plays an important role in this study programme. Themes like animal nutrition, animal health, animal welfare, levels of management, genetic diversity and socio-economic factors are all widely discussed.

Programme summary

Humans interact with animals in many different ways, ranging from raising livestock for food to keeping pets for companion. Animal husbandry and livestock development are not only constrained by technical factors, such as feed supply, animal health, management and genetics, but also by infrastructural and socio-economic factors. Consequently, today’s animal scientists need in-depth scientific training combined with a critical attitude towards all factors that limit the sustainable development of animal husbandry. Our individually tailored programme trains students to become expert animal scientists, well-equipped to tackle relevant issues of livestock and animal management.

Specialisations

Within the MSc Animal Sciences you can choose from various specialisations. Each of the specialisations trains you to become an expert in the field. The specialisations in MSc Animal Sciences are:

Animal Breeding and Genetics
Understanding how genetic differences work and how they can be used in a sustainable manner in a wide range of species plays a central role in this specialisation. Students learn how breeding and genetics can contribute to safe and healthy food from animal origin and how it contributes to the health and welfare of animals.

Animal Nutrition
This specialisation deals with the interaction between animals and their nutrition. Students learn about the way animals digest and convert food by studying the nutrient flows and the physiology of the animals in relation to the composition of feeds. They also learn about the effect of feed in relation to health, welfare and behaviour of the animal.

Applied Zoology
Understanding the relationship between structure and function of all systems within the body is the main focus of this specialisation. Students look at organ structures, hormones, bone structure or the immune system of animals and learn how these systems respond to external influences.

Animal Health and Behaviour
Knowledge of the adaptive capacity of animals is required to be able to determine how to keep an animal healthy and how changes affect the animal. Students learn to study behaviour, stress or immune parameters or energy metabolism to determine e.g. which housing system or feed regime is best for animal health and welfare.

Animal Health Management
How can the risk of transmission of infectious diseases be quantified between and within groups of animals? And which factors are of influence on this process? In this specialisation, students learn to combine animal health management at population level with socioeconomic aspects by studying aspects of veterinary epidemiology.

Animal Production Systems
In this specialisation, students will look at animal production systems in relation to the environment worldwide. Students learn about human and animal interaction. They will also study the environmental, economical and social impact that animal production has on the world.

Professional Tracks and International Programmes
In addition to a specialisation, students can choose a professional track that leads to a specific type of career. You can focus on Research, Education, Communication & Policy, or Business & Management. We also offer international programmes that lead to a double master degree, i.e. in Animal Breeding & Genetics, Sustainable Animal Nutrition & Feeding, European Animal Management, or Animal Welfare Assessment.

Your future career

Our graduates work as nutritionists, policymakers, breeding specialists, advisors, managers, researchers or PhD students. They work for feed manufacturing companies, pharmaceutical companies or breeding organisations but also within regional and national governmental organisations, non-governmental organisations or research institutes and universities.

Alumna Linda van Zutphen.
"I work as a Communication Officer for the Research & Development and Quality Affairs department of Nutreco. This company is a global leader in animal nutrition and fish feed. I am involved in marketing and group communication about innovations, quality and sustainability. During my MSc Animal Sciences, I did my internship at Nutreco’s research facility in Spain. The MSc programme provided me with multidisciplinary knowledge on animal production and the skills to apply this. My job gives me the opportunity to combine my scientific background with my passion for communicating about the applications of our research in products for animal health."

Related programmes:
MSc Biology
MSc Forest and Nature Conservation
MSc Aquaculture and Marine Resource Management
MSc Biosystems Engineering
MSc Organic Agriculture.

Read less
Plants provide food, raw materials, and a healthy environment and are the cornerstone for life on earth. Plant Science is key to understanding and enhancing plant life. Read more
Plants provide food, raw materials, and a healthy environment and are the cornerstone for life on earth. Plant Science is key to understanding and enhancing plant life. Research in the Department of Plant Agriculture is divided into four areas: Plant Biochemistry and Physiology, Plant Breeding and Genetics, Plant Production Systems, and Bioproducts.

Plant Biochemistry and Physiology is a broad discipline. Faculty and students in this area study the response of plants to environmental change and plant development at the ecosystem, whole plant, and molecular levels. Students investigate ecologically friendly management strategies, study underlying molecular and biochemical mechanisms for regulating plant development, investigate how plant performance can be optimized in the field or closed environments, and contribute to cultivar development.

Plant Breeding and Genetics has long been a key focus of our faculty and students. Through breeding and biotechnology, Guelph researchers help society by developing new field-crop, fruit, ornamental and vegetable cultivars that are grown in Canada and worldwide. Also, Plant Agriculture faculty and students seek both to understand the fundamental mechanisms that enable plant improvements and to discover novel methodologies and technologies that will be the foundation for future advances..

Crop Production Systems research seeks to develop or test agricultural management strategies for yield improvement and economically and environmentally sound production practices in field and horticultural crops such as ornamentals and turf. Students in this area assist producers and industry in the control of weeds, insects, or plant diseases, and investigate the efficacy of new management protocols for production of high quality crops.

Bioproducts is a multi-disciplinary field and will deal with background sciences ranging from chemical engineering to plant science. Students deal with products and materials made from cellulose, oil, protein, starch and other compounds derived from various plant parts such as seeds, stalks/stovers, hulls and cobs of crop plants. Students will develop their expertise in analytical methods, factors affecting quality of plant-derived raw materials,

Read less
The Animal Science Master's Degree within the Institute of Biological, Environmental and Rural Sciences, Aberystwyth, UK, offers you the opportunity of biological, scientific and professional training in the field of Animal Science. Read more
The Animal Science Master's Degree within the Institute of Biological, Environmental and Rural Sciences, Aberystwyth, UK, offers you the opportunity of biological, scientific and professional training in the field of Animal Science. The Masters Degree in Animal Science will provide you with the knowledge and skills required to pursue leading careers in animal research, development, academia, training, public and private commercial enterprise, advisory work, government agencies and other non-government organisations throughout the world.

The Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth, UK, has over 30 years of experience in teaching at masters level in areas related to Animal Science. The Institute also has an internationally renowned reputation for research in the field of Animal Science. Recently the Institute was awarded the Queen's Anniversary Prize for Higher and Further Education and was among the very best in the 2010 student satisfaction survey. This puts IBERS in a unique position to provide you with the research led high quality post graduate training needed to produce post graduates with the competence to pursue leading careers in a wide range of Animal Science related fields throughout the world.

Key benefits

- Our students have won the “Biology Student of the Year” award at the European Science, Engineering, and Technology (SET) Awards, and the Welsh Ornithologists’ Union Student Prize!

- Our Institute of Biological, Environmental and Rural Sciences (IBERS) received the ''Outstanding Contribution to Innovation and Technology'' award at the 2013 Times Higher Education Awards.

- Our Institute of Biological, Environmental and Rural Sciences (IBERS) in conjunction with Bangor University had the 5th strongest submission in the UK for the Research Excellence Framework assessment (2014).

- Recently the Institute was awarded the Queen's Anniversary Prize for Higher and Further Education, and in 2013, for the sixth year running, was among the top 10 universities in the UK in the Student Satisfaction Survey. This puts IBERS in a unique position to provide you with the research-led, high quality postgraduate training needed to produce post graduates with the competence to pursue leading careers in a wide range of fields related to the Animal Sciences.

See the website http://courses.aber.ac.uk/postgraduate/animal-science-masters/

Suitable for

This degree will suit you:

- If you wish to study a research-led MSc specialising in the science of the management of livestock and horses.
- If you want to have the choice of a wide range of career opportunities, including in scientific research, consultancy services, in the livestock and equine industries as well as in education.
- If you want to use a multidisciplinary approach to explore collaborations with veterinarians, scientists and industrial partners.
- If you want to learn about the latest biotechnologies and their application to livestock and horses

Course detail

The Animal Science Masters Degree within the Institute of Biological, Environmental and Rural Sciences, Aberystwyth, UK, offers you the opportunity of a biological, scientific and professional training in the field of Animal Science. The course will provide you with the knowledge and skills required to pursue leading careers in animal research, development, academia, training, public and private commercial enterprise, advisory work, government agencies, non-government organisations etc throughout the world.

Appropriate management is essential in order to optimise animal welfare. Ensuring good animal welfare is an increasing concern to all those involved in managing and training animals. However, this needs to be balanced against the demands of production (meat, milk), athletic performance (equine sport, racing) or leisure. Through the study of animal biology and its application to nutrition, breeding and animal management, the post graduate in Animal Science will be ideally placed to ensure that these demands of production and welfare are appropriately balanced through the development and implementation of innovative management practices and dissemination of knowledge and advice to practitioners.

Format

The first part of the course is 120 credits of taught material, delivered in 2 semesters running from Sept to June. Part 2 is the dissertation. This is your opportunity to specialise and investigate in depth an area that excites you. Your dissertation can be done in our state of the art laboratories or possibly at another University. Assessment will be by course work such as essays, seminar presentations, case studies, poster presentations and final examinations in January and May.

A range of biological science modules will be taught in the first semester which will cover animal immunology, parasitology, bacteriology, endocrinology, growth and development, animal breeding, genetics, molecular genetics and principles of nutrition. This will provide you with an advanced biological science knowledge which will then be applied in semester 2. In semester 2 you will study statistical methodology in preparation for your Dissertation research, advances in bio and veterinary sciences and be given the choice of modules from a suite of livestock and equine science modules covering subjects such as: livestock or equine reproductive physiology and technology, grassland science, livestock or equine nutrition, equine anatomy, equine behaviour. Throughout the course, especially in the second semester, you will have an opportunity to explore specific areas of your own interest culminating in your research dissertation. In addition to gaining specialised knowledge in Animal Science the course aims to develop your more general skills such as written and oral communication, research skills, data handling and statistics, team work, information technology, problem solving etc.

Core modules

- Infection And Immunity BRM1620
- Research Methodology And Advances In Biosciences BRM5500
- Animal Breeding And Genetics BRM5820
- Research Methodology And Advances In Biosciences BRM5520

Assessment

Assessment will be by course work such as essays, seminar presentations, case studies, poster presentations and final examinations in January and May.

Employability

Every course at Aberystwyth University is designed to enhance your vocational and general employability. The MSc in Animal Science has been designed to meet the increasing demand for suitably qualified personal to work in animal research, development, lecturing, training, public and private commercial enterprise, advisory work, government agencies, as well as non-government organizations throughout the world.

Key Skills and Competencies:

- Study Skills:

You will develop an in-depth knowledge and critical understanding of the key contemporary topics affecting the Animal Sciences. You will master the research process and contribute to the knowledge base of the subject through your dissertation. Throughout this you will encounter many opportunities to develop as a reflective, autonomous researcher, with a wide and expert understanding of the impact these technologies can have.

- Self-Motivation and discipline:

Studying at MSc level requires discipline and self-motivation from every candidate. Though you will have access to the expertise and helpful guidance of staff from IBERS, you are ultimately responsible for devising and completing a sustained programme of scholarly research in pursuit of your Master’s degree. This process will strengthen your skills as a self-sufficient worker, a trait prized by all employers.

- Transferable Skills:

The MSc programme is designed to give you a range of transferable skills that you can apply in a variety of employment contexts. The course is made up of a number of taught modules plus guided independent student centred study. This provides you with a framework which allows you to develop your subject knowledge, through pursuing specific areas of interest and develop your skills of original thought, analysis, interpretation and reasoning. Regular assessment through reports, essays, seminar presentations, précis and case studies will prepare you for the many demands of the modern workplace.

Find out how to apply here https://www.aber.ac.uk/en/postgrad/howtoapply/

Read less
This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. Read more

Introduction

This course provides in-depth study in the chosen specialisation. The course adds significantly to a relevant undergraduate degree through coursework and major research in the approved area of interest within the program. By enhancing the student's knowledge of their chosen field of study through advanced coursework units and extensive, independent research, the Master of Science (Thesis and Coursework) opens up a range of possible career opportunities, depending on the student's area of specialisation.
This is a Research Training Scheme course for domestic students.

Course description, features and facilities

A Master of Science by thesis and coursework degree is suitable for qualified students who wish to undertake further research in any of the following subject areas:

Agricultural Economics;
Agricultural Science;
Animal Science;
Botany;
Climate Studies;
Conservation Biology;
Ecology and Evolution;
Environmental Economics;
Environmental Management;
Environmental Science;
Genetics and Breeding;
Geography;
Geoscience;
Hydrogeology;
Marine Science;
Mineral Geoscience;
Natural Resource Management;
Plant Production Science;
Soil Science and Land Rehabilitation;
Urban and Regional Planning;
Water Management and Hydrology; and
Zoology.

Structure

Key to availability of units:
S1 = Semester 1; S2 = Semester 2; S3 = summer teaching period; N/A = not available in 2015;
NS = non-standard teaching period; OS = offshore teaching period; * = to be advised

All units have a value of six points unless otherwise stated.

Note: Units that are indicated as N/A may be available in 2016 or 2017.

Take unit(s) to the value of 42 points:

S1, S2 SCIE5590 Literature Review and Research Proposal
S1, S2 SCIE5721 Master of Science Thesis (full-time) (36 points)
S1, S2 SCIE5722 Master of Science Thesis (part-time) (36 points)

Take unit(s) to the value of 6 points:

Group A

S1 AGRI5501 Advanced Breeding and Biotechnology in Action 1
NS AGRI5502 Advanced Breeding and Biotechnology in Action 2
S2 AGRI5503 Animal Production Systems
NS AGRI5504 Organic Agriculture
NS BIOL5501 Plant Diversity in WA: Evolution and Conservation
NS BIOL5502 Animal Resource Management
S2 BIOL5503 Sampling Techniques in Wildlife Research
NS BIOL5505 Marine Neuroecology and Behaviour
NS ECON5510 Applied Demand and Production Analysis
NS ECON5511 Climate, Energy and Water Economics
NS ENVT5502 Marine and Coastal Planning and Management
NS ENVT5503 Remediation of Soils and Groundwater
NS ENVT5510 Soil Dynamics
NS ENVT5511 Advanced Geographic Information Systems
NS ENVT5512 Ecosystem Biogeochemistry
NS GEOS5501 Advanced Hydrogeology
NS, S1, S2 GEOS5502 Hydrogeology Industry Placement
NS GEOS5504 Mining Hydrogeology
NS GEOS5505 Multiscale Tectonic Systems
NS MING5501 Applied Structural Geology
NS MING5502 Exploration Targeting
N/A MING5503 Ore Deposit Field Excursion
NS MING5504 Advanced Ore Deposits
NS MING5505 Mineral Exploration Data Analysis
S1, S2 PLNG5510 Advanced Studies in Geography and Planning
NS PLNG5511 Climate Change Policy and Planning
NS PLNG5512 Regional Planning
NS SCIE5500 Scientific Modelling
NS SCIE5505 Global Change and the Marine Environment

Career opportunities

This degree is designed for professionals interested in further study who are seeking to familiarise themselves with recent developments in the field or to enhance their intellectual and research skills.

Read less
Adaptive Organisms focuses on processes at the sub-organism level. Using the latest molecular and physiological tools, we study the adaptations of organisms to environmental stresses. Read more
Adaptive Organisms focuses on processes at the sub-organism level. Using the latest molecular and physiological tools, we study the adaptations of organisms to environmental stresses. The regulatory mechanisms, including genetic constraints, physiological plasticity and the evolutionary history of the responses of organisms are thoroughly explored.
The programme provides a fascinating overview on the adaptability of plants, animals and micro-organisms to sub-optimal conditions, and conveys crucial information for understanding of the effects of environmental change. This information is applied in nature management, but also in biotechnology and breeding programmes.

See the website http://www.ru.nl/masters/biology/organisms

Admission requirements for international students

1. A completed Bachelor's degree in Biology or related area
2. Proficiency in English
In order to take part in this programme, you need to have fluency in both written and spoken English. Non-native speakers of English without a Dutch Bachelor's degree or VWO diploma need one of the following:
- A TOEFL score of >575 (paper based) or >90 (internet based)
- A IELTS score of ≥6.5
- Cambridge Certificate of Advanced English (CAE) or Certificate of Proficiency in English (CPE), with a mark of C or higher

If you don’t meet the academic requirements

If you have not taken the required courses for entry, you will need to catch up in a tailor-made transition programme, depending on your prior education. It may take a maximum of six month and would be evaluated by the examination commission. For more information on transition programmes, please contact Ms. C. Mooren ().

Career prospects

This programme provides you with the qualifications you need to start working on a PhD, or a professional position in the fields of communication, business and management or education. Biologists often continue their research careers in universities, research institutes, pharmaceutical companies and public health authorities. Upon graduation, our students take up positions as researchers or analysts in government departments, research organisations and medical or pharmaceutical companies.

What biologists do:
- Researchers at universities or in companies
- Supervisors of clinical trials
- Consultants
- Lecturers
- Policy coordinators
- Teachers

Where biologists work:
- Research/education
- Health care
- Business services
- Industry
- Government
- Trade

Our approach to this field

Adaptive Organisms focuses on processes at the sub-organism level. Using the latest molecular and physiological tools, we study the adaptations of organisms to environmental stresses. The regulatory mechanisms, including genetic constraints, physiological plasticity and the evolutionary history of the responses of organisms are thoroughly explored.

The programme provides a fascinating overview on the adaptability of plants, animals and micro-organisms to sub-optimal conditions, and conveys crucial information for understanding of the effects of environmental change. This information is applied in nature management, but also in biotechnology and breeding programmes.

Our research in this field

- Rich programme
This M.Sc. programme puts the interactions between organisms into context, and also integrates all levels of organisations - from molecules and cells up to ecosystems and landscapes. This combination of experience results in a rich and coherent MSc. programme of Master's courses and exciting internships with state-of-the-art research institutes. It prepares you for a career in science, both fundamental and applied, but also provides the necessary knowledge for innovative evidence-based applications in nature and water management.

- Personal tutor
Our top scientists are looking forward to taking students them on a challenging and inspiring scientific journey. This programme offers you many opportunities to follow your own interests under the guidance of a personal tutor. Radboud University offers you a multitude of research fields to choose from in close collaboration with the
- academic hospital UMCN St. Radboud;
- Institute for Water and Wetlands Research;
- Nijmegen Centre for Molecular Life Sciences;
- Donders Institute.

This allows you to specialise in a field of personal interest.

See the website http://www.ru.nl/masters/biology/organisms

Read less
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?. Read more
Would you like to be involved in finding solutions to future challenges of food and energy production, such as climate change, population growth and limited energy resources? Are you interested in animal welfare, clean soil, environmental issues or the newest methods in biological and genetic engineering? Would you like to learn about automation and robotics in agriculture?

Join the Master’s Programme in Agricultural Sciences on the Viikki Campus to find solutions for the challenges of today and tomorrow. The University of Helsinki is the only university in Finland to offer academic education in this field.

In the Master’s Programme in Agricultural Sciences, you can pursue studies in plant production sciences, animal science, agrotechnology, or environmental soil science, depending on your interests and previous studies. For further information about the study tracks, see Programme contents.

Upon completing a Master’s degree, you will:
-Be an expert in plant production science, animal science, agrotechnology, or environmental soil science.
-Be able to assess the sustainability and environmental impact of food and energy production.
-Be able to apply biosciences, ecology, chemistry, physics or statistics, depending on your study track, to the future needs of agriculture.
-Have mastered the key issues and future development trends of your field.
-Have mastered state-of-the-art research and analysis methods and techniques.
-Be able to engage in international activities, project work and communication.
-Be able to acquire and interpret scientific research information in your field and present it orally and in writing.
-Have the qualifications to pursue postgraduate studies in a doctoral programme or a career as an expert or entrepreneur.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

The Master’s Programme in Agricultural Sciences comprises four study tracks:
Plant production sciences – plants as sources of food, feed, energy, beauty and wellbeing
During your studies, you will have the opportunity to apply biology to the breeding, cultivation, protection and production ecology of crop or horticultural plants. Producing sufficient food is one of the great challenges facing humanity. Plant production sciences have an important mission in finding solutions to this challenge. Plants are cultivated not only for food and feed, but also for bioenergy, green landscapes and ornamental purposes; plant production sciences seek new, improved solutions for all these purposes.

Animal science – animal health and wellbeing
During your studies, you will become familiar with issues pertaining to the wellbeing, nutrition and breeding of production and hobby animals as well as with the relevant biotechnology. In this study track you will apply biochemistry, animal physiology, genetics and molecular biology for the benefit of sustainable animal production. The Viikki Research Farm, in urban Helsinki, provides plenty of opportunities for hands-on learning!

Agrotechnology – technology with consideration for the environment
This study track provides you with the opportunity to study technologies that are key to agricultural production and the environment, from the basics to the latest innovations. Advances in technology and automation offer new horizons to fearless inventors interested in developing machinery and engineering for the reorganisation, implementation and adjustment of production in accordance with the needs of plants and animals.

Environmental soil science – dig below the surface
These studies allow you to literally dig beneath the surface. The soil is a central factor for the production of renewable natural resources, the diversity of nature, and the quality of water systems. As an expert in environmental soil science you will know how the soil serves as a substrate for plants and affects the quality of food, and how it can be improved.

Selection of the Major

The Master’s Programme in Agricultural Sciences comprises four study tracks, allowing you to focus on a specialisation according to your interests and previous studies: plant production sciences (quota of 40 students), animal science (quota of 25 students), agrotechnology (quota of 15 students), and environmental soil science (quota of 5 students).

You can be admitted to the Master’s Programme in Agricultural Sciences either directly from the relevant Bachelor’s programme or through a separate admissions process. A total of 80 students will be admitted through these two admissions channels.

Programme Structure

With a scope of 120 credits (ECTS), the Master’s programme can be completed in two academic years. The degree comprises:
-60 credits of advanced studies in the selected study track, including your Master’s thesis (30 credits)
-60 credits of other studies from the curriculum of your own or other degree programmes

The study tracks of the Master’s Programme in Agricultural Sciences collaborate across disciplinary boundaries to construct thematic modules around importance topical issues: the bioeconomy, the recycling of nutrients, food systems, and the production and exploitation of genomic information.

You must also complete a personal study plan (PSP). Your studies can also include career orientation and career planning.

Various teaching methods are used in the programme, including lectures, practical exercises, practical laboratory and field courses, practical training, seminars, project work and independent study.

Career Prospects

As a graduate of the Master’s Programme in Agricultural Sciences, you will have the competence to pursue a career or to continue your studies at the doctoral level.

According to the statistics of the Finnish Association of Academic Agronomists, the current employment situation for new graduates is positive. Graduates have found employment in Finland and abroad as experts in the following fields:
-Research and product development (universities, research institutes, companies, industry).
-Administration and expert positions (ministries, supervisory agencies, EU, FAO).
-Business and management (companies).
-Teaching, training and consultation (universities, universities of applied sciences, organisations, development cooperation projects).
-Communication (universities, media, companies, ministries, organisations).
-Entrepreneurship (self-employment).

As a graduate you can apply for doctoral education in Finland or abroad. A doctoral degree can be completed in four years. With a doctoral degree you can pursue a career in the academic world or enter the job market. The qualifications required for some positions may be a doctoral rather than a Master’s degree.

Other admission details

Applications are also accepted from graduates of other University of Helsinki Bachelor’s programmes as well as from graduates of other Finnish or international universities. In these cases, admission will be based on your previous academic performance and the applicability of your previous degree. For the latest admission requirements see the website: https://www.helsinki.fi/en/masters-admission-masters-programme-in-agricultural-sciences-master-of-science-agriculture-and-forestry-2-years/1.2.246.562.20.29558674254

Read less
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Read more
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Study factors affecting animal behaviour, conservation, welfare and their interactions, as well as international zoo management and collaboration. Our partnership with Paignton Zoo gives you regular access to their connections, research and expertise – so you’re primed to make a difference.

Key features

-Delivered in conjunction with the staff at Paignton Zoo and its parent body, the Whitley Wildlife Conservation Trust which also owns Newquay Zoo and Living Coasts.
-Develop your scientific knowledge, professional and technical skills as a conservation biologist. Learn how to manage animal collections for the purpose of education, conservation and wildlife research.
-Study aspects of animal behaviour and ecology, as well as how welfare, housing, nutrition and health all have a part to play in species management.
-Learn to troubleshoot problems at the level of a social group within a particular zoological collection, right up to the level of a species globally. Explore how breeding programmes for endangered species are international in scope.
-Benefit from the knowledge and guidance of Plymouth University’s expert staff with specialisms including the behaviour of captive animals, animal nutrition, the welfare of captive birds and the application of population genetics to captive and natural fish populations.
-Find out how the science of zoos is used to inform government policy. Two of our teaching team are the only academic representatives on the government’s Zoos Expert Committee.
-Get behind-the-scenes insight with a day of study each week with our partners at Paignton Zoo Environmental Park. Deepen your understanding of the business and conservation work of zoos, and how networks and collaborations work between them.
-Access the latest research and information from the Whitley Wildlife Conservation Trust, including information on their co-ordinated breeding programmes for endangered species.
-Be inspired by opportunities to visit a range of zoos in the region – including Dartmoor, Bristol and Newquay – and to travel abroad for research projects. A recent student travelled to Louisiana Zoo for her research project on golden tamarin monkeys.
-Graduates work in zoos as educators, researchers, managers and keepers. Many go on to PhD study or work in further education. Other employers include the European Association for Zoos and Aquaria; the Natural History Unit (BBC); national and international conservation organisations.

Course details

As a full-time student, you’ll study seven modules taking in everything from genetics to environmental enrichment, preventative health to budgeting. We update modules to reflect current thinking and you can specialise within them. If you’re interested in working with tigers, for example, this can be reflected across your work. You’ll be assessed through coursework with practical tasks focused on your future career. Core modules include introduction to zoo organisation, animal conservation, applied animal behaviour and management, animal metabolism and nutrition, animal health and welfare and business management. You’ll then do a final three-month research project of your choice. Previous investigations have included everything from female mate choice in white faced saki monkeys to how peripheral and/or invasive activity affects the behaviour and enclosure use of captive sand tiger sharks.

Core modules
-BIO505 Research Project
-ANIM5006 Contemporary Zoo Management
-BIO5131 Postgraduate Research Skills & Methods
-ANIM5005 Zoo Animal Behaviour and Welfare
-ANIM5007 Small Population Conservation
-ANIM5008 Conservation Ecology and Society
-ANIM5009 Zoo Animal Health, Nutrition and Management

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X