• Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Northampton Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Imperial College London Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Bath Featured Masters Courses
"breeding"×
0 miles

Masters Degrees (Breeding)

We have 64 Masters Degrees (Breeding)

  • "breeding" ×
  • clear all
Showing 1 to 15 of 64
Order by 
Be in demand. There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate. Read more

Be in demand

There is a shortage of applied plant breeders in New Zealand and overseas - you will be in demand in the industry. Many graduates have employment before they graduate.

Find out more about the Master of Science parent structure.

When you study the Master of Science (Plant Breeding) at Massey University you will become a member of a significant international scientific community responsible for global food security.

This plant breeding major is a unique qualification in New Zealand. This course will provide you with training in quantitative genetics & applied plant breeding methods, multisite experimental design, data analysis & interpretation, application of molecular tools in plant breeding and visits to field programs & interaction with applied plant breeders.

Take advantage of our globally-renowned expertise

This course will be taught by highly-skilled internationally-recognised and active researchers with expertise in; plant genetic resources, quantitative genetics, applied plant breeding, plant molecular biology, evolutionary biology, systematics and taxonomy and plant physiology. During the course of your studies you will visit applied field programs and learn from practicing scientists and experienced field breeders.

A multi-disciplinary approach

The modern plant breeder is one who has not only to have a good understanding of genetics and plant breeding methods, but also know how to apply new tools such as molecular marker technologies and also interact with other significant disciplines such as agronomy, plant protection, plant physiology. This is why our course takes a multi-disciplinary approach. The students are taught the importance of a team approach to plant breeding. They are also given a global prospective of the significance of the international plant breeding community responsible for food security of the human population.

World-class equipment and facilities

As a plant breeding student you will have access to Massey’s world-leading equipment and facilities such as our extensive glasshouses and farms, moleculAar labs, the Dame Ella Campbell Herbarium, the Palynology Laboratory, Plant Growth Unit, Seed Testing Services, Massey Genome Service and the Manawatu Microscopy and Imaging Centre.

Relevant and topical

We work to ensure that our teaching fits with the changing environment, which means that you will emerge with a relevant qualification valued by potential employers. 

During the course of your study you will get the opportunity to visit and work with organisations working on plant breeding, like the AgResearch Grasslands Research Centre, Plant & Food and SCION. Some of our students are able to conduct their projects at these organisations whilst undertaking their postgraduate study, benefiting their career and gaining real-word experience in the process. Masters and PhD students from Massey are often co-supervised by experienced scientists from these organisations, most of which are physically located very close to Massey’s Manawatu campus.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Completing this course will also provide you with the opportunity of undertaking a PhD.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, undertaking research, improving scientific skills and also presenting scientific information to an audience.

Complete in 2 years

Massey University’s Master of Science is primarily a 240 credit master qualification. This is made up of 120 credits of taught courses and a 120 credit research project.

Or if you have already completed the BSc (Hons) or PGDipSc you can conduct a 120 credit thesis to achieve your masters qualification.



Read less
Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Read more

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge on the physiology, ecology and genetics of cultivated plants.

The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Study programme

This online master's specialisation is designed as a part-time study. The approximate workload is 20 hours per week and gives the student the flexibility to combine work and study. The programme is therefore also suitable for employees who want to continue their education in the sense of life-long-learning.

The general structure is a 2 year part time course-programme followed by a tailor-made internship and master's thesis agreement of 1 or 2 years. Read more about the programme.

Your future career

Graduates from the master's Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach.

Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations. Read more stories of Wageningen University & Research graduates.

Related on-campus programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Genomics and Experimental Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics. This programme forms part of the quantitative genetics and genome analysis suite of programmes offering three specialist routes, which also include Human Complex Trait Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Animal Genetic Improvement
  • Quantitative Genetic Models
  • Research Proposal
  • Dissertation

Option courses:

  • Molecular Phylogenetics
  • Bioinformatics
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Functional Genomic Technologies
  • Evolutionary Quantitative Genetics

Learning outcomes

  • An understanding of general concepts in population and quantitative genetics and genomics
  • A solid grounding in the statistical methods required
  • In-depth knowledge of animal improvement and complex trait analysis
  • Development of independent research skills through individual mini- and maxi-research projects
  • Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
  • Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we cannot do without plants.

Study Programme

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. It not only covers the technological aspects of crop production, but also deals with important environmental, quality, health and socio-economic aspects. Interdisciplinarity is a hallmark of the programme.

On the programme of Plant Sciences page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Sciences are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels, based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biosystems Engineering

MSc Biotechnology 

MSc Biology 

MSc Forest and Nature Conservation

MSc Organic Agriculture

MSc Plant Biotechnology



Read less
Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. Read more

Plants form the basis of life as they convert sunlight into an inexhaustible source of food and renewable raw materials. Plants also have a stabilising effect in (agro) ecosystems, a landscape function and ornamental value. In a nutshell, we can't do without plants. Modern molecular biology has opened up a whole new range of techniques and possibilities to scientists working in the different fields of the classical plant sciences (e.g. plant physiology, plant breeding, plant pathology). The combination of these disciplines forms a challenging domain: Plant Biotechnology.

Study programme

Plant Biotechnology aims to impart understanding of the basic principles of the plant sciences and molecular biology, as well as the integration of these disciplines, to provide healthy plants in a safe environment for food, non-food, feed and health applications. Besides covering the technological aspects, Plant Biotechnology also deals with the most important environmental, quality, health, socio-economic and infrastructural aspects.

On the programme of Plant Biotechnology page you can find the general outline of the programme and more detailed information about courses, theses and internships.

Specialisations

Within the master's programme you can choose one of the following Specialisations to meet your personal interests.

Your future career

Graduates in Plant Biotechnology are university-trained professionals. Their main career focus will be on research and development positions at universities, research institutes and biotech or agribusiness companies. Read more about career perspectives and opportunities after finishing the programme.

Related programmes:

MSc Biotechnology 

MSc Molecular Life Sciences 

MSc Plant Sciences

MSc Nutrition and Health

MSc Bioinformatics 

MSc Biology 



Read less
Our MSc in Animal Science provides students with the research-led, high quality postgraduate teaching, education and professional training required to pursue leading careers in a wide range of Animal Science related fields throughout the world. Read more

About the course

Our MSc in Animal Science provides students with the research-led, high quality postgraduate teaching, education and professional training required to pursue leading careers in a wide range of Animal Science related fields throughout the world. Throughout this course you will be able to use a multidisciplinary approach to explore collaborations with veterinarians, scientists and the industry, learning about the latest scientific advances in the field of animal science. Through a strong emphasis on student centred study you will encounter many opportunities to develop your skills in original thought, analysis, interpretation and reasoning; as well as encouraging you, where appropriate, to pursue your own specific areas of interest. As such you will develop into a reflective, autonomous researcher. On graduation you will be ideally placed to ensure that the demands of production and welfare are appropriately balanced through the development and implementation of innovative management practices and dissemination
of knowledge and advice to practitioners.

Why study MSc Animal Science at Aberystwyth University?

The Institute of Biological, Environmental and Rural Sciences (IBERS) has an internationally renowned reputation for teaching and research in animal sciences.

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. IBERS has previously been awarded the Queen's Anniversary Prize for Higher and Further Education. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. Our joint submission with Bangor University to the most recent Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, and 97% of our research is internationally recognised with 76% judged as world-leading in terms of research impact.

Opportunity to attend conferences with lectures from international animal science experts.

Undertake a challenging course taught by enthusiastic, helpful and research-active staff, and further enhanced by contributions from experts and academics, many of whom are of international renown.

IBERS has an equine teaching yard and the only dedicated and fully licensed equine research yard in the UK outside of veterinary colleges.

IBERS has 1000 ha of farmland, a 400 cow dairy unit, upland and lowland sheep and beef units and a flock of layer hens.

Course structure and content

This course can be studied one year full-time or up to 24 months part-time. When studied full-time, the course is divided into three semesters. During the first two semesters, students complete 120 taught credits (six 20 credit modules), which are delivered primarily through lectures, practicals, field trips, workshops, and seminars.

During the final semester (June to September), you will complete your master’s dissertation and will arrange your level of contact with your assigned dissertation supervisor.

Core modules:

Animal Breeding and Genetics
Infection and Immunity
Research Methods in the Biosciences
Dissertation

Optional modules:

Equine Nutrition or Livestock Nutrition
Equine Reproductive Physiology and Breeding Technology
Grassland Science
Livestock Production Science
Understanding Equine Action: from Anatomy to Behaviour

Assessment

Depending on the modules chosen, assessment is via a mix of written assignments (essays, reports, case studies, research projects, research critiques, research proposals, critical reviews, and abstracts), written examinations, seminar presentations, and online assignments.

Successful submission of the dissertation in the final semester leads to the award of an MSc.

Skills

This course will empower you to:

Advance your specialised knowledge in Animal Science
Enhance your problem-solving and data handling skills
Develop study and research skills
Develop and sustain a self-initiated programme of study
Develop your skills of original thought, analysis, evaluation, interpretation and reasoning
Enhance your communication skills
Work effectively independently and as part of a team

Careers

Our Animal Science students often progress to careers in:

Academia
Scientific research and development
Public and private commercial enterprise
Scientific publishing
Animal nutrition
Animal welfare
Teaching and training
Animal breeding
Consultancy and advisory work
Laboratory work
Government agencies and non-government organisations
All throughout the world.


Many of our previous graduates have also progressed to PhDs or veterinary medicine.

Read less
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Read more
This course examines crop improvement through advances in resource use efficiency, crop protection and modern crop improvement and breeding techniques. Focusing upon the understanding of plant to crop systems, and with an emphasis on research training, the course is ideally suited to those wishing to pursue careers in research institutes, plant breeding, agro-industry and advance to higher research degree (PhD) study.

The course consists of a number of taught modules and a major research project.

Specialist facilities for plant work include modern glasshouses and controlled environment growth rooms in which plants and tissue cultures can be raised. The laboratories contain a wide range of modern equipment including ultracentrifuges, apparatus for radioisotope studies, gas liquid chromatography and spectrophotometry. A number of experimental plots containing arable and horticultural crops are available for use by students, particularly in relation to their projects. Crop Science fieldwork is carried out as part of the normal arable rotation on the farm, which is within easy reach of the laboratories.

The School also has a Tropical Crops Research Unit - computer controlled glasshouses are available for research on a range of tropical species.

Links with industry further enhance the course by providing valuable industry knowledge and experience and relating the subject to commercial practice

Scholarships may be available -please see our web-site.
.

Read less
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Read more
Are you passionate about animal welfare and keen to shape the management of the zoos of the future? Students from over 20 nationalities have chosen our unique programme, the first of its kind in the world. Study factors affecting animal behaviour, conservation, welfare and their interactions, as well as international zoo management and collaboration. Our partnership with Paignton Zoo gives you regular access to their connections, research and expertise – so you’re primed to make a difference.

Key features

-Delivered in conjunction with the staff at Paignton Zoo and its parent body, the Whitley Wildlife Conservation Trust which also owns Newquay Zoo and Living Coasts.
-Develop your scientific knowledge, professional and technical skills as a conservation biologist. Learn how to manage animal collections for the purpose of education, conservation and wildlife research.
-Study aspects of animal behaviour and ecology, as well as how welfare, housing, nutrition and health all have a part to play in species management.
-Learn to troubleshoot problems at the level of a social group within a particular zoological collection, right up to the level of a species globally. Explore how breeding programmes for endangered species are international in scope.
-Benefit from the knowledge and guidance of Plymouth University’s expert staff with specialisms including the behaviour of captive animals, animal nutrition, the welfare of captive birds and the application of population genetics to captive and natural fish populations.
-Find out how the science of zoos is used to inform government policy. Two of our teaching team are the only academic representatives on the government’s Zoos Expert Committee.
-Get behind-the-scenes insight with a day of study each week with our partners at Paignton Zoo Environmental Park. Deepen your understanding of the business and conservation work of zoos, and how networks and collaborations work between them.
-Access the latest research and information from the Whitley Wildlife Conservation Trust, including information on their co-ordinated breeding programmes for endangered species.
-Be inspired by opportunities to visit a range of zoos in the region – including Dartmoor, Bristol and Newquay – and to travel abroad for research projects. A recent student travelled to Louisiana Zoo for her research project on golden tamarin monkeys.
-Graduates work in zoos as educators, researchers, managers and keepers. Many go on to PhD study or work in further education. Other employers include the European Association for Zoos and Aquaria; the Natural History Unit (BBC); national and international conservation organisations.

Course details

As a full-time student, you’ll study seven modules taking in everything from genetics to environmental enrichment, preventative health to budgeting. We update modules to reflect current thinking and you can specialise within them. If you’re interested in working with tigers, for example, this can be reflected across your work. You’ll be assessed through coursework with practical tasks focused on your future career. Core modules include introduction to zoo organisation, animal conservation, applied animal behaviour and management, animal metabolism and nutrition, animal health and welfare and business management. You’ll then do a final three-month research project of your choice. Previous investigations have included everything from female mate choice in white faced saki monkeys to how peripheral and/or invasive activity affects the behaviour and enclosure use of captive sand tiger sharks.

Core modules
-BIO505 Research Project
-ANIM5006 Contemporary Zoo Management
-BIO5131 Postgraduate Research Skills & Methods
-ANIM5005 Zoo Animal Behaviour and Welfare
-ANIM5007 Small Population Conservation
-ANIM5008 Conservation Ecology and Society
-ANIM5009 Zoo Animal Health, Nutrition and Management

Every postgraduate taught course has a detailed programme specification document describing the programme aims, the programme structure, the teaching and learning methods, the learning outcomes and the rules of assessment.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses

  • Population and Quantitative Genetics
  • Genetic Interpretation
  • Statistics and Data Analysis
  • Linkage and Association in Genome Analysis
  • Research Proposal
  • Dissertation

Option courses (selected according to degree specialisation):

  • Quantitative Genetic Models
  • Molecular Evolution
  • Genetics of Human Complex Traits
  • Animal Genetic Improvement
  • Functional Genomic Technologies
  • Molecular Phylogenetics
  • Bioinformatics
  • Evolutionary Quantitative Genetics

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.



Read less
The Masters Degree in Equine Science at Aberystwyth is a long established, internationally recognised course and will provide you with a research-led, high quality postgraduate teaching and education, allowing you to acquire the advanced subject knowledge and professional skills required to enter the top careers in the equine industry and related professions. Read more

About the course

The Masters Degree in Equine Science at Aberystwyth is a long established, internationally recognised course and will provide you with a research-led, high quality postgraduate teaching and education, allowing you to acquire the advanced subject knowledge and professional skills required to enter the top careers in the equine industry and related professions. Throughout this course, you will be able to use a multidisciplinary approach to explore collaborations with veterinarians, scientists and industrial partners, and you will learn about the latest scientific advances and their application to horses. Through a strong emphasis on student centred study you will encounter many opportunities to develop your skills in original thought, analysis, interpretation and reasoning; as well as encouraging you, where appropriate, to pursue your own specific areas of interest. As such you will develop into a reflective, autonomous researcher. On graduation you will have a wide and expert understanding of animal, in particular equine, biology and its applications.

Why study Equine Science at Aberystwyth University?

The Institute of Biological, Rural and Environmental Sciences (IBERS) at Aberystwyth University is the longest-established provider of equine related higher education in the UK. Our MSc in Equine Science was established in 1978.

IBERS has an internationally renowned reputation for teaching and research in equine science.

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. Our joint submission with Bangor University to the most recent Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, and 97% of our research is internationally recognised with 76% judged as world-leading in terms of research impact.

Opportunity to attend conferences with lectures from international animal science experts

Undertake a challenging course taught by enthusiastic, helpful and research-active staff, and further enhanced by contributions from equine experts and academics, many of whom are of international renown

IBERS has an equine teaching yard and the only dedicated and fully licensed equine research yard in UK outside of veterinary colleges

Course structure and content

This course can be studied one year full-time or up to 24 months part-time. When studied full-time, the course is divided into three semesters. During the first two semesters, students complete 120 taught credits (six 20 credit modules), which are delivered primarily through lectures, practicals, workshops and seminars.

During the final semester (June to September), you will complete your master’s dissertation and will arrange your level of contact with your assigned dissertation supervisor.

Core modules:

Equine Nutrition
Equine Reproductive Physiology and Breeding Technology
Animal Breding and genetics
Infection and Immunity
Understanding Equine Action: from Anatomy to Behaviour
Research Methods in the Biosciences
Dissertation

Assessment

Assessment is via a mix of written assignments (case studies, essays, research projects, critical reviews and abstracts), written examinations, seminar presentations, online assignments and scientific posters. Successful submission of the dissertation in the final semester leads to the award of an MSc.

Skills

This course will empower you to:

Develop an in-depth knowledge of the key contemporary topics affecting the Equine Sciences
Enhance your problem-solving and data handling skills
Develop study and research skills
Develop and sustain a self-initiated programme of study
Develop your skills of original thought, analysis, evaluation, interpretation and reasoning
Enhance your communication skills
Work effectively independently and as part of a team

Careers

This course will prepare you for a wide range of careers within the equine industry.

Our graduates often progress to careers in:

Academia
Scientific research and development
Public and private commercial enterprise
Scientific publishing
Equine/ animal nutrition
Equine/ animal welfare
Teaching and training
Equine/ animal breeding
Consultancy and advisory work
Laboratory work
Government agencies and non-government organisations
All throughout the world.
Many of our previous graduates have also progressed to PhDs or veterinary medicine.

Read less
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. Read more
Crop agriculture provides mankind’s increasing population with foods, fibres and fuel. This MSc will provide you with knowledge and practical skills focused on how crops are improved, grown and managed. You’ll gain a combination of practical skills and academic understanding to develop a critical and creative mindset.

Through lectures, small-group interactive workshops, practicals, tutorials, field and site visits, you’ll learn the principles of crop production and explore the latest advances in integrated pest, disease and weed management. You’ll gain an understanding of the importance of the soil for nutrition and water uptake, modern techniques of plant breeding, and how crop trials are designed and analysed. You’ll undertake eight core modules:
-Crop Physiology & Production
-Advances in Crop Protection
-Soil, Water & Plant Mineral Nutrition
-Climate Change
-Organic & Low Input Systems
-Cereal, Oilseed & Root Crop Agronomy
-Introduction to BASIS – Crop Protection
-Plant Breeding & Trial Design for Registration, and up to two further options.

You’ll also complete a dissertation based on a placement at a host organisation or on a topic related to sustainable crop production that interests you.

Our graduates have taken jobs in technical agronomy, crop trialing and agricultural consultancy for industry specialists such as Bayer Crop Science, Agrovista and Agrinig (Nigeria). They’ve also progressed to leading roles in marketing, sales, policy development and professional consultancy.

Read less
The Masters Degree in Livestock Science offers biological, scientific and professional training that will provide you with the knowledge and skills required to pursue leading careers in the livestock industries, in scientific research, in consultancy services, and in education. Read more

About the course

The Masters Degree in Livestock Science offers biological, scientific and professional training that will provide you with the knowledge and skills required to pursue leading careers in the livestock industries, in scientific research, in consultancy services, and in education. Livestock Science remains central to meeting the challenge of food security. Satisfying the demands of food quality and quantity can only be met by the development and implementation of innovative concepts and ideas by suitably well-qualified postgraduates, who will also then drive forward these exciting developments in livestock science and production.

Why study MSc Livestock Science at Aberystwyth University?

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. IBERS has previously been awarded the Queen's Anniversary Prize for Higher and Further Education. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. Our joint submission with Bangor University to the most recent Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, and 97% of our research is internationally recognised with 76% judged as world-leading in terms of research impact.

The Institute of Biological, Rural and Environmental Sciences at Aberystwyth University has 1000 ha of farmland, a 400 cow dairy unit, upland and lowland sheep and beef units and a flock of layer hens.

IBERS livestock-related research was worth in excess of £20 million in the last 5 years.

IBERS received the ''Outstanding Contribution to Innovation and Technology'' award at the 2013 Times Higher Education Awards

Course structure and content

This course can be studied one year full-time or up to 24 months part-time. When studied full-time, the course is divided into three semesters. During the first two semesters, students complete 120 taught credits (six 20 credit modules), which are delivered primarily through lectures, practicals, field trips, workshops, and seminars.

During the final semester (June to September), you will complete your master’s dissertation and will arrange your level of contact with your assigned dissertation supervisor.

Core modules:

Animal Breeding and Genetics
Grassland Science
Infection and Immunity
Livestock Nutrition
Livestock Production Science
Research Methods in the Biosciences
Dissertation

Assessment

Assessment is via a mix of written assignments (case studies, research proposals, research critiques, essays, and reports), written examinations, seminar presentations and online assignments.

Successful submission of the dissertation in the final semester leads to the award of an MSc.

Skills

This course will empower you to:

Develop an in-depth knowledge and critical understanding of the key contemporary topics affecting the Livestock Sciences
Enhance your problem-solving and data handling skills
Develop and sustain a self-initiated programme of study
Develop study and research skills
Develop your skills of original thought, analysis, evaluation, interpretation and reasoning
Enhance your communication skills
Work effectively independently and as part of a team

Careers

Our graduates often progress to careers in:

Academia
Scientific research and development
Scientific publishing
Animal nutrition
Animal welfare
Teaching and training
Animal breeding
Technical Sales
Consultancy and advisory work
Laboratory work
Government agencies and non-government organisations
All throughout the world.

Many of our previous graduates have also progressed to PhDs or Veterinary Medicine.

Read less
Students can choose to start in September, May or January. About the course. This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. Read more

Students can choose to start in September, May or January

About the course

This Sustainable and Efficient Food Production postgraduate course centres on increasing efficiency and reducing environmental impact within the extensive pasture-based production sector. The programme provides flexible, accessible, postgraduate level training for people employed in the agri-food sector. Training comprises distance learning modules and work-based research projects. These are accessible as CPD or as credit-bearing units, which can be built towards a range of postgraduate qualifications.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU), the Sustainable and Efficient Food Production course offers you a highly vocational option. In the most recent joint submission to the Research Excellence Framework assessment (2014), the department was placed in the top 10 universities in the UK for research intensity and 78% of our research was world-leading or internationally excellent.

To achieve an MSc students must complete five optional modules (including up to three from BU) plus Research Methods and a Dissertation.

Course structure and content

Two to five years to complete a full MSc. 14 weeks for one module by distance learning Three intakes per year (January, May, September). Students will be eligible for a UK Student Loan if the course is completed in 3 years.

Core modules:

Dissertation

Research Methods

Optional modules - Choose any 5 from:

Contact Time

We have designed our training to be as accessible as possible, particularly for those in full time employment. Each topic comprises a 12-14 week distance learning module worth 20 credits which can be taken for your own continuing professional development or interest; or built towards a postgraduate qualification. The research elements of our qualifications are carried out in your work place with regular academic supervision. The training is web-based which means that as long as you have access to a reasonable broadband connection (i.e. are able to stream videos such as on YouTube), you can study where and when best suits you. Learning material includes podcast lectures, e-group projects, guided reading, interactive workbooks and discussion forums, as well as assignments and e-tutorials. By signing a re-registration form each year you will have access to e-journals and library resources for the full five years.

Assessment

There are no exams within this programme. Taught modules are assessed via course work and forum discussion.



Read less
Students can choose to start in September, May or January. About the course. This scheme aims to facilitate knowledge exchange between academia and industry. Read more

Students can choose to start in September, May or January

About the course

This scheme aims to facilitate knowledge exchange between academia and industry. Students must complete three taught modules including research methods and a 120 credit work-based dissertation / research thesis (approximately 20,000 words in length).

While the primary academic focus is on the completion of an advanced piece of research, the collaborative route provided by a work-based research project provides an ideal opportunity to embed new knowledge in the work place and ensure that research is relevant to industry. As such, it is crucial that a student’s employer is supportive of both their research aims and the time commitment that the proposed research will involve. Self-employed students should aim to undertake research which will be closely aligned to their business.

Students may build on the MRes to work towards a Professional Doctorate.

Course structure and content

An MRes can be completed in 2-5 years but we would expect most students to spend 1 year on their taught modules and 2 years on their work based dissertation. 12 or 14 weeks for one module by distance learning. Three intakes per year (January, May, September).

Students will be eligible for a UK Student loan if their course is completed within 3 years.

Core modules:

MRes Research Project

Research Methods

Optional modules:

Contact time

The MRes comprises three taught modules (including Research Methodologies and Advances in Bioscience) followed by a 120 credit work-based dissertation (20,000 words).

We have designed our training to be as accessible as possible, particularly for those in full time employment. Each taught module comprises a 12 or 14 week distance learning module worth 20 credits which can be taken for your own continuing professional development or interest; or built towards a postgraduate qualification. The research elements of our qualifications are carried out in your work place with regular academic supervision. The training is web-based which means that as long as you have access to a reasonable broadband connection (i.e. are able to stream videos such as on YouTube), you can study where and when best suits you. Learning material includes podcast lectures, e-group projects, guided reading, interactive workbooks and discussion forums, as well as assignments and e-tutorials. By signing a re-registration form each year you will have access to e-journals and library resources for the duration of your registration.

Assessment

There are no exams within this programme. Taught modules are assessed via course work and forum discussion. Research is monitored and assessed.



Read less

Show 10 15 30 per page



Cookie Policy    X