• University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Bocconi University Featured Masters Courses
FindA University Ltd Featured Masters Courses
Swansea University Featured Masters Courses
"brain" AND "imaging"×
0 miles

Masters Degrees (Brain Imaging)

We have 82 Masters Degrees (Brain Imaging)

  • "brain" AND "imaging" ×
  • clear all
Showing 1 to 15 of 82
Order by 
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. Read more
Over the last decades, improvements in technology have led to a rapid increase in the use of neuroimaging to study human brain function non-invasively in health and disease. In particular, functional magnetic resonance imaging (fMRI), electro-encephalography (EEG), magneto-encephalography (MEG) and transcranial magnetic stimulation (TMS) are now routinely used by neuroscientists to study brain-behaviour relationships. Our MSc in Brain Imaging showcases Nottingham’s multi-disciplinary environment and offers a comprehensive programme that will provide you with the theoretical knowledge and practical skills required to conduct high-quality neuroimaging work and neuroscience research. Translational in vivo neuroscience approaches in animal models will also be considered, and interested students will have the opportunity to receive research training in this area.

The MSc in Brain Imaging has a flexible course structure and offers four pathways with core modules alongside a choice of optional modules that permits tailor-made study. The options are:

MSc Brain Imaging (Cognitive Neuroscience)
MSc Brain Imaging (Neuropsychology)
MSc Brain Imaging (Integrative Neuroscience)
MSc Brain Imaging (Developmental Science)

Graduating from the University of Nottingham opens up a wide range of career options. Many of our students use this programme as a preparation for PhD study or other advanced degree positions. Others opt for science-related jobs. Our graduates are highly regarded by employers in private and public sector organisations because of the solid academic foundation and transferable skills they gain during their degree course such as analytical evaluation, data management, statistical analysis as well as presentation and writing skills. In the past, graduates of this programme have taken-up career opportunities in university, hospital and industry settings.

Please email for more information or visit the PG prospectus. Given the breadth of training available, the MSc is recommended to students with a background in psychology, neuroscience or a bioscience discipline as well as those with training in physics, engineering, mathematics, or computer sciences.

Upcoming Open Days: Wednesday 29 June and Wednesday 6 July (1.30-3 pm). Please contact us if you have specific questions about the programme. Phone: +44 (0)115 951 5361 or email:

Key facts

• Programme delivered through lectures, practicals and research project resulting in a dissertation
• Core and optional modules according to specific pathways
• Four pathways with applications in Cognitive Neuroscience, Developmental Science, Neuropsychology, and Integrative Neuroscience
• Taught by active and internationally renowned research scientists
• Interdisciplinary approach with specialist lectures and/or project supervision by scientists from: the School of Psychology; Sir Peter Mansfield Magnetic Resonance Centre; Department of Academic Radiology

Read less
As Psychology and Neuroscience reach out to tackle the big questions facing society today, skills and experience in new and emerging techniques in brain imaging as they relate to cognitive neuroscience are in demand. Read more
As Psychology and Neuroscience reach out to tackle the big questions facing society today, skills and experience in new and emerging techniques in brain imaging as they relate to cognitive neuroscience are in demand.

The MSc in Brain Imaging and Cognitive Neuroscience is an exciting course that offers students the flexibility to develop specific interests, whilst at the same time an excellent opportunity to develop the technical and transferable skills needed to succeed in a wide range of research-related jobs.

The course uses a range of taught modules, a major research placement module and an independent research project leading to a dissertation.

Key features of the course are:

- One to one contact with research active staff
- An opportunity to specialize in Cognitive Neuroscience, gaining specific skills in neuroimaging and programming
- Find out what’s really hot or not in contemporary Cognitive Neuroscience
- Learn transferable skills that enhance employability

This course offers an excellent opportunity for advanced learning in Brain Imaging and Cognitive Neuroscience. For many students this course helps them to develop a more focused set of interests and skills within Cognitive neuroscience so that they can choose the next career step that is best for them. For others, who have already identified the sub-specialty that fires their career aspirations, the course allows them to delve more deeply into their subject and to gain more specific skills and knowledge needed to build their chosen career. An aim of the course is to give students a boost in securing an interesting and exciting job in the workplace or a place on a high quality PhD course after graduation.

About the School of Psychology

The School of Psychology is one of the strongest and most active psychology departments in the country. We are ranked among the top five psychology departments for research and have a reputation for excellent teaching.

With around 800 undergraduates, 250 postgraduates including 100 PhD students, and 140 research and teaching staff we are one of the largest psychology departments in the UK.

The School currently has a live research grant portfolio of £14.1m generating an annual income of around £3.8m. Of our 140 staff, 63% are core funded, and 37% are research funded.

The School hosts four specialist research centres:

- Centre for Human Brain Health
- Centre for Applied Psychology
- The Cerebra Centre for Neurodevelopmental Disorders
- Centre for Computational Neuroscience and Cognitive Robotics

Staff and students benefit from our extensive links with local hospitals and clinics, other universities, schools and nurseries, industrial companies and local and national government departments.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
Our MSc in Neuroimaging for Clinical and Cognitive Neuroscience will provide you with the theoretical and practical skills required to carry out high-quality cognitive brain imaging work in healthy individuals and in patient populations. Read more
Our MSc in Neuroimaging for Clinical and Cognitive Neuroscience will provide you with the theoretical and practical skills required to carry out high-quality cognitive brain imaging work in healthy individuals and in patient populations.

Our course is aimed at graduates with scientific training (eg in physics, computer science, mathematics, medicine, psychology, neuroscience, pharmacology and engineering) who are interested in a career where brain imaging forms a major focus or where the scientific and technological needs of brain imaging are addressed.

This field draws on diverse areas of scientific expertise and ultimately depends on effective communication between these areas.
The course aims to provide a unique environment in which students from these contrasting backgrounds can work together in a way that reflects the collaborations they will contribute to in the future, and in which they can readily acquire the multidisciplinary skills needed.

Issues relating to the optimisation of fMRI and EEG data acquisition and analysis will be explored, with a particular focus on the cross-talk between the physics of the scanning environment, the psychology of the experimental design and the neuroanatomy and neurophysiology of the human brain.

In addition, the course offers an in-depth grounding in cognitive, social, behavioural and clinical neuroscience theory and offers the opportunity to be directly involved in both EEG and fMRI research.

Graduating students will be ideally placed to make major contributions to research and technological development within the brain imaging area.

Teaching and learning

Our course is delivered through a series of lectures and linked lab-based classes, as well as informal seminar-style sessions encouraging interaction and discussion.

The research placement offers one-to-one supervision within the research environment.

Apart from doing standard background reading and preparation for coursework and examinations, you will be required to work on lab-based skills outside formal teaching times. Dedicated facilities will be available for this.

Coursework and assessment

Assessment will vary between course units, but will comprise a mixture of examinations (including short answer and multiple-choice formats), coursework, lab reports and a final research report.

Career opportunities

Our MSc in Neuroimaging for Clinical and Cognitive Neuroscience will prepare you for a career path in scientific and clinical research and academia, as it provides the ideal platform from which to proceed to doctoral work involving brain imaging.

The course also provides clear career paths in specialist software and hardware industries and in specialist sections of the pharmaceutical industry.

In addition, our MSc offers a high-level specialisation relevant for students and graduates of medicine.

Read less
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. Read more
Over the last two decades there has been an explosion of interest in brain science across academia, industry and the media. The integration of cognitive brain imaging with neuroscience will play a central part in discovering how the brain functions in health and disease in the 21st century, as illustrated by the Human Brain Project in Europe and The Brain Initiative in the USA. The taught Brain Sciences Degree will help you gain interdisciplinary knowledge “from molecules to mind” and enable you to develop research skills in cognitive brain imaging, fundamental neuroscience and brain disorders.

Why this programme

◾You will study the Brain Science Degree in an Institute that strives to understand the brain at multiple levels of function, from cells to cognition using approaches ranging from molecular, cellular and systems level investigations to brain imaging o
◾Lectures will be given by staff who are international research leaders and who publish cutting edge research at the forefront of brain sciences.
◾You will attend seminars on a wide range of topics given by eminent external speakers visiting the Institute from around the world as part of our Current Research Topics course.
◾You will carry out a research project working in labs equipped with technology and expertise at the forefront of brain science research, including: ◾3 Tesla fMRI system to image human brain function
◾Magnetoencephalography and electroencephalography to study neural activity
◾Transcranial magnetic stimulation for non-invasive brain stimulation
◾7 Tesla experimental MRI scanner for studying models of disease
◾Confocal microscopy for high resolution cellular imaging
◾Models of disease for pharmcolgical, gene and stem cell therapies

◾You will receive in depth training in research design and statistical analysis
◾The brain science programme allows student choice and flexibility. Through your choice of optional taught courses you can develop in-depth specialist knowledge to enhance further academic research as well as transferable skills for a career outside academia.
◾You will join a vibrant community of masters students from other programmes and for your research project you will be based in laboratories alongside PhD students, postdocs and senior researchers.
◾Through the range of teaching methods and assessments used you will gain skills in critical appraisal, independent working, presentations, writing scientific documents and time management.

Programme structure

The programme will consist of compulsory taught courses, selected optional courses and a research project spread over 11-12 months.

Core courses and Research Project

◾Fundamentals for neuroscience research
◾Cognitive brain imaging
◾Statistics and research design
◾Current research topics in brain sciences
◾Neuroscience: animal models of disease and function
◾Designing a research project
◾Brain sciences research project

Optional courses

◾Introduction to Matlab for biologists
◾Neuroscience: in vivo models
◾In vitro and analytical approaches in neuroscience
◾Bioimaging for life sciences
◾Current trends and challenges in biomedical research and health
◾Technology transfer and commercialisation of biomedical research
◾Neuroinflammation

Teaching and Learning Methods

Taught courses are delivered by lectures, tutorials, problem-based learning and computer-based sessions supplemented by a wide range of electronic resources for independent or group study. You will use the primary scientific literature as an information resource and through project work will develop skills in team-working, experimental design and data interpretation. Through assessment of coursework you will gain skills in oral and written communication.

Career prospects

The University of Glasgow MSc in Brain Sciences provides you with many career opportunities.

Research: MSc students can enter a research career, mainly by undertaking further postgraduate research studies towards a PhD, or by working in research laboratories in academic settings.

Industry: Other options include going on to work in a wide range of commercial sectors including the pharmaceutical or biotechnological industries and scientific publishing.

Read less
The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular… Read more

The International Master in Bio-Imaging at the University of Bordeaux offers a comprehensive and multidisciplinary academic program in cellular and biomedical imaging, from molecules and cells to entire animals and humans. It is part of the “Health Engineering” program, which combines three academic tracks (Biomedical Imaging, Cellular Bio-Imaging and Bio-Material & Medical Devices).

Built on the research expertise of the researchers at the University of Bordeaux, this Master program provides excellent training opportunities in advanced bio-imaging methods and concepts to understand (patho)-physiological processes through the vertical integration of molecular, cellular and systems approaches and analyses.

Students receive intense and coordinated training in bio-imaging, combining a mix of theoretical and practical aspects. They acquire scientific and technological knowledge and experience in the main imaging techniques used in biomedical research and practice.

Program structure

Semesters 1 and 2 focus on the acquisition of general knowledge in the field (courses and laboratory training). Semester 3 consists of track specialization in cellular bio-imaging, biomedical imaging and bio-materials & medical devices. Semester 4 proposes an internship within an academic laboratory or with an industrial partner.

Semester 1:

  • Tutored project (6 ECTS)
  • Introduction to bio-imaging (6 ECTS)
  • Mathematical and physical basis of imaging (6 ECTS)
  • General physiology (6 ECTS)
  • Mathematical methods for scientists and engineers (6 ECTS)

Semester 2:

  • TOEIC training and business knowledge (9 ECTS)
  • Introduction to research and development (12 ECTS)

Cellular Bio-Imaging track

  • Fluorescence spectroscopy and microscopy (9 ECTS)

Biomedical Imaging track

  • Advanced bio-medical imaging (9 ECTS)

Semester 3:

  • Design of a scientific project (9 ECTS)
  • Introduction to image analysis and programming (3 ECTS)

Cellular Bio-Imaging track

  • Super-resolution microscopy (6 ECTS)
  • Electron microscopy (6 ECTS)
  • Advanced topics in cellular bio-imaging (6 ECTS)

Biomedical Imaging track

  • Magnetic resonance imaging (6 ECTS)
  • Ultrasound imaging (3 ECTS)
  • In vivo optical imaging (3 ECTS)
  • Ionizing radiation imaging (3 ECTS)
  • Multimodal imaging (3 ECTS)

Semester 4: 

  • Master 2 Thesis: internship in an academic or industry laboratory (30 ECTS)

Strengths of this Master program

  • Teaching courses from academic and professional experts (industry).
  • Access to leading research labs and advanced core facilities.
  • Practice of a wide range of applications, from molecular andcell biology and neuroscience to biomedical instrumentation, maintenance and service.
  • Supported by the Laboratories of Excellence (LabEx) BRAIN(Bordeaux Cellular Neuroscience) and TRAIL (Translational Research and Biomedical Imaging).
  • English language instruction.
  • Possibility of international secondment.

After this Master program?

Graduates will be qualified in the following domains of expertise:

  • Mastering theoretical concepts and practical knowhow of main bio-imaging techniques.
  • Knowing the application and limits of different bioimaging methods.
  • Identifying and manipulating biological targets with bio-imaging tools.
  • Ability to conceive, design and conduct independent research project in bio-imaging.

Potential career opportunities include: researcher, service engineer, application scientist, bio-medical engineer, sales engineer, healthcare executive.



Read less
This programme provides an opportunity to undertake intensive training in human cognitive neuropsychology by working closely with our Human Cognitive Neuroscience Research Unit, a group of internationally recognised cognitive psychologists, clinical and academic neuropsychologists including Dr Sharon Abrahams and Professors Sergio Della Sala and Robert Logie. Read more

Programme description

This programme provides an opportunity to undertake intensive training in human cognitive neuropsychology by working closely with our Human Cognitive Neuroscience Research Unit, a group of internationally recognised cognitive psychologists, clinical and academic neuropsychologists including Dr Sharon Abrahams and Professors Sergio Della Sala and Robert Logie.

Teaching follows an integrated approach with courses on neuropsychology, cognitive psychology, clinical neuropsychology and brain imaging. You will also receive training in generic research methods within psychology.

Programme structure

This programme comprises two semesters of taught compulsory and optional courses, followed by a dissertation. Optional courses within the area of human cognitive neuroscience can be selected to tailor the programme to your interests. You may also choose your optional courses from a range in associated disciplines, such as individual differences, informatics and psycholinguistics, with permission from the programme director.

Compulsory courses

Psychological Research Skills
Univariate and Multivariate Statistics and Methodology using R
Specialist techniques in psychological research
Current topics in psychological research

Option courses

Brain Imaging in Cognitive Neuroscience
Clinical Neuropsychology
Consciousness and Perceptual Awareness
Disorders of Language Functions
Eye Movements and Visual Cognition
Frontal Lobe Functions
Human Cognitive Neuroscience
Multisensory Integration
Working Memory
Imaging Mind and Brain
Dissertation

The dissertation involves conducting a research project under staff supervision. You will produce a written report, which describes your research and interprets your findings.

If you are looking to complete a research dissertation in clinical based environments (interacting with NHS patients) or schools / nurseries, you may be asked to apply for a Research Passport by your supervisor, or you may select a clinical research project that is already in progress within the University.

Research Passports

Learning outcomes

On successful completion of this programme, you will have gained:

specialist knowledge within the fields of human cognitive neuropsychology and integrated areas of study, in addition to training in psychological research methods
an understanding of clinical neuropsychology (assessment and rehabilitation of patients with neurological disorders), brain imaging, cognitive psychology, and cognitive neuropsychology and critical awareness of cognitive and neuropsychological research and its application to clinical practice
a foundation for advanced research within human cognitive neuropsychology
a comprehensive understanding of the basic principles of research design and application
competency in applying a range of methods and research tools
skills in research management, including managing data and conducting and disseminating research in ways consistent with both professional practice and the normal principles of research ethics

Career opportunities

The programme is suitable for graduate psychologists or those who have studied or worked in related disciplines who wish to pursue a research-oriented career within cognitive neuropsychology (providing the foundations for later application to a doctoral training programme) or a clinically oriented career in neuropsychology.

Read less
This course is about the relationship between brain function and mechanisms that underpin behaviour. Computational neuroscience uses data to construct models of brain function. Read more

About the course

This course is about the relationship between brain function and mechanisms that underpin behaviour.

Computational neuroscience uses data to construct models of brain function. Cognitive neuroscience and human imaging relate function to its underlying neural substrate.

The course includes a long research
project which gives you the chance to carry out an in-depth imaging study. The computational and analytical skills you’ll learn are great preparation for a PhD.

The course takes students from both life sciences and the physical sciences and engineering. Appropriate training is given to ensure all students can master the required skills and complete the course successfully.

For the taught component of the course, students choose one of two options: either a pathway focused on mathematics, computational neuroscience and MR-physics or a pathway focused on ethics, clinical neurology, neuroradiology and neuroanatomy, which includes a practical human brain dissection course.

Where your masters can take you

You’ll develop the skills and knowledge for all sorts of careers. Many of our graduates continue to PhD level. Others work as research associates and assistant psychologists for employers such as universities and the NHS. Throughout your course, you’ll have frequent reviews with your tutor to discuss your learning needs and objectives.

Applying psychology in the real world

Our ongoing collaborative projects with hospitals, mental health care units, the police and prison service, and several leading firms in business and industry will show you how psychology can be applied in the real world.

You’ll also benefit from our research excellence. We don’t just focus on one or two specialisms – with active researchers in most areas of psychology, we are consistently one of the highest-ranked research departments in the UK.

Our facilities

Whatever your particular interest, we have the facilities for your research. Our research environment was rated amongst the best in the country in the last national assessment. We are exceptionally well resourced for research in Social and Health Psychology, Clinical Psychology and Developmental Psychology, with a dedicated suite of rooms for different participant groups.

To give you the right tools for your research, there is a fully equipped neuroscience unit with excellent facilities for brain imaging, neuroanatomy, electrophysiology, behavioural neuroscience and computational neuroscience. We have access to a small-bore MRI device and to the University’s MRI facility for human studies.

Studentships and bursaries

Please contact us for the latest funding opportunities.

Careers

The course is designed to prepare you for a PhD, but your experience could land you a job in the private sector as a lab technician or a developer.

Core modules

PATHWAY 1

Fundamentals of Cognitive Neuroscience; Fundamentals of Neuroscience; Computational Neuroscience 1: biologically grounded models; Mathematical Modelling and Research Skills; Brain Imaging and its Physical Foundations; Applied Neuroimaging, Neurophysiology and Psychiatry.

OR

PATHWAY 2

Fundamentals of Cognitive Neuroscience; Fundamentals of Neuroscience; Ethics and Public Awareness of Science; Neuroanatomy and Neuroradiology; Brain Imaging and Clinical Neurology; Applied Neuroimaging, Neurophysiology and Psychiatry.

Teaching

Teaching is through lectures, seminars and laboratory classes.

Assessment

There are examinations at the end of semesters one and two, written coursework and an extensive empirical research project over the summer.

Read less
This programme involves studying the interaction between and within groups of neurons in the brain, and how they affect our interactions with the outside world. Read more
This programme involves studying the interaction between and within groups of neurons in the brain, and how they affect our interactions with the outside world.

The brain is no longer considered a passive response device but rather as a network in which we consider ongoing activity before, during, and after a stimulus. The specialisation Brain Networks and Neuronal Communication deals with brain networks; ranging from the smallest scale, the communication between individual neurons, to the largest scale, communication between different brain areas. Using advanced mathematical tools, this specialisation prepares students for cutting-edge neuroscience research.
Students interested in this specialisation are expected to already have a high level of mathematical skills and/or training in physics, engineering or computer science in their Bachelor’s studies.

A large majority of our graduates gain a PhD position, while other graduates find jobs in the commercial sector or at research institutes. Graduates of this specialisation may more readily find a position within a government institution or specialised companies (e.g. in the pharmaceutical industry).

See the website http://www.ru.nl/masters/cns/brain

Why study Brain Networks and Neuronal Communication at Radboud University?

- Researchers in Nijmegen combine new techniques for electrophysiological and anatomical measurements of connectivity and activation with data analysis and the experimental application of these techniques. This is done in studies of cognition in not just humans but also non-human primates and rodents.
- Exceptional students who choose this specialisation have the opportunity to do a double degree programme with either Neuroscience or Artificial Intelligence. This will take three instead of two years.
- This competitive programme provides a sound balance of theory and practice. Our selective approach guarantees excellence, especially during the research training period.

Career prospects

If you have successfully completed the Master’s programme in Brain networks and neuronal communication, you will be able to conduct independent neuroimaging and neurobiological research. You will have ample knowledge of the anatomical and neurophysiological aspects of networks in the human brain and the techniques for the computational analysis and modeling of brain networks. This will enable you to conduct independent research into the neurofunctional architecture of key cognitive functions, such as perception, attention, memory, language, planning and targeted actions and develop technologies to measure, characterise and model networks at the whole brain and/or the local cortical circuit level. With this educational background you should be able to find a position with one of the research institutes in the Netherlands or abroad, government institutions or specialised companies (e.g. in the pharmaceutical industry).

Our approach to this field

Research in the field of cognitive neuroscience is one of the spearheads in the research policy of Radboud University. Here, in Nijmegen, hundreds of scientists from various faculties and top institutes have joined forces to unravel the workings of the human brain, step by step . They work together closely, exchange expertise and share state-of-the-art research equipment.

Nijmegen is one of the foremost centres of cognitive neuroscience in the world. We have a high admission threshold to ensure that all of our students are highly motivated and have the ability to work at an advanced level. Top scientists screen all applications to make sure the new students meet our stringent entry criteria and can maintain the current standards of excellence. Once admitted to the programme, you can expect to be trained as a multidisciplinary scientist in the following two years. The research you will undertake addresses crossdisciplinary challenges. The teachers and supervisors you will meet are all experts in their own disciplines. We hope that with this programme, you will outperform your teachers by being able to combine knowledge from different domains. Alongside language processing and perceptuomotor systems, you may also help improve brain/computer interfaces, a hot topic with applications in medicine and information technology. Apart from being very exciting, it is also logical that various disciplines are merging. After all, everything that happens in the brain is interconnected. In Nijmegen we develop sophisticated cognitive models which we test by means of state-of-the-art imaging techniques, thanks to which you can participate in cutting-edge research that will hopefully lead to new insights into the way the human brain and mind work. Finally, we offer our best CNS students excellent career opportunities in challenging PhD projects.

- Unique multi-disciplinary Master’s programme
Are you also interested in the human brain? Would you like to conduct research into the workings of the brain and join an enthusiastic, international group of top researchers? The Radboud University offers a multi-faculty Master’s programme in Cognitive Neuroscience. The programme takes two years and is of a scientific orientation. There is a strong emphasis on experimental research. This Master’s programme is unique in Europe.
The Master’s programme in Cognitive Neuroscience is primarily focused on training you as a researcher because research institutes and businesses around the world desperately need highly qualified and motivated young researchers. Moreover, since cognitive neuroscience is a rather young discipline, much in this field has not yet been explored. There are many challenging questions that need to be answered. So there is plenty of room for new discoveries!

This competitive programme provides a sound balance of theory and practice. We enrol about 50 students per year. Our selective approach guarantees excellence, especially during the research training period.

See the website http://www.ru.nl/masters/cns/brain

Read less
This MRes is an innovative research-led programme which brings together expertise from across the Faculty of Brain Sciences and offers you the opportunity to work and train with leading researchers at one of the most highly regarded centres of excellence in brain science in the world. Read more
This MRes is an innovative research-led programme which brings together expertise from across the Faculty of Brain Sciences and offers you the opportunity to work and train with leading researchers at one of the most highly regarded centres of excellence in brain science in the world.

Degree information

Students will gain an understanding of the human brain and its disorders from the molecular to systems level that will reflect the interdisciplinary breadth of cutting-edge research in brain sciences conducted at UCL. Students will gain theoretical and practical knowledge of core personal and professional skills that underpin excellence in research.

Students undertake modules to the value of 180 credits.

The programme consists of three core modules (45 credits), one optional module (15 credits) and an extensive empirical research project (120 credits).

Core modules
-Research Methods I
-Research Methods II
-Contemporary Topics in Brain Sciences Research

Optional modules - students choose one of the following 15-credit optional modules:
-Cellular and Molecular Mechanisms of Disease
-Introduction to the Brain and Imaging the Brain
-Structure and Measurement of the Human Brain
-Introduction to Cognitive Science
-Principles of Cognition
-Molecular Pharmacology
-Developmental Neurobiology
-Receptors and Synaptic Signalling

Dissertation/research project
All students undertake an independent research project which culminates in a dissertation in the form of a journal article and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, seminars, independent study, journal clubs, independent and collaborative problem-based tasks, practical demonstrations and classes, computational work, and a supervised empirical research project. Assessment is through online tasks, unseen written examinations, essays, oral presentations, research-based tasks and a primary research article.

Careers

This programme will prepare students for research careers in academia, industry or business, nationally or internationally. The first cohort of students on the Brain Sciences MRes will graduate after 2014, therefore no information on graduate destinations is currently available.

Employability
The programme provides a broad understanding of brain sciences. The aim is to give students the best chance of obtaining a place on a relevant PhD programme. In addition the programme includes taught elements that will enhance employability. Transferable skills include statistical training, communication skills, training in research ethics, research governance and in enterprise.

Why study this degree at UCL?

This comprehensive programme will provide core knowledge and skills, and ensure that prospective PhD candidates are thoroughly acquainted with the background as well as with the expanding scope of the field.

The unique curriculum will develop knowledge and insight into the broad and interdisciplinary scope of brain science through practical experience and exposure to contemporary topics in brain sciences research delivered through a series of innovative masterclasses led by internationally renowned researchers at UCL.

With an empirical research project encompassing two-thirds of the programme, quantitative and qualitative tools for research will be developed including core skills in the implementation, management and dissemination of research.

Read less
Cognitive neuroscience relates cognitive and behavioural functions to the underlying brain systems. Computational neuroscience uses data to construct rigorous computational models of brain function. Read more

About the course

Cognitive neuroscience relates cognitive and behavioural functions to the underlying brain systems. Computational neuroscience uses data to construct rigorous computational models of brain function. Put them together and these new disciplines are the key to explaining the relationship between brain and behaviour.

You’ll develop a broad and critical understanding of these two fields, along with an appreciation of different approaches to understanding brain function. Your range of computational and analytical skills, and an ability to generate and test hypotheses, will give you an excellent foundation for further research.

The course takes students from both life sciences and the physical sciences and engineering. Appropriate training is given to ensure all students can master the required skills and complete the course successfully.

Where your masters can take you

You’ll develop the skills and knowledge for all sorts of careers. Many of our graduates continue to PhD level. Others work as research associates and assistant psychologists for employers such as universities and the NHS. Throughout your course, you’ll have frequent reviews with your tutor to discuss your learning needs and objectives.

Applying psychology in the real world

Our ongoing collaborative projects with hospitals, mental health care units, the police and prison service, and several leading firms in business and industry will show you how psychology can be applied in the real world.

You’ll also benefit from our research excellence. We don’t just focus on one or two specialisms – with active researchers in most areas of psychology, we are consistently one of the highest-ranked research departments in the UK.

Our facilities

Whatever your particular interest, we have the facilities for your research. Our research environment was rated amongst the best in the country in the last national assessment. We are exceptionally well resourced for research in Social and Health Psychology, Clinical Psychology and Developmental Psychology, with a dedicated suite of rooms for different participant groups.

To give you the right tools for your research, there is a fully equipped neuroscience unit with excellent facilities for brain imaging, neuroanatomy, electrophysiology, behavioural neuroscience and computational neuroscience. We have access to a small-bore MRI device and to the University’s MRI facility for human studies.

Studentships and bursaries

Please contact us for the latest funding opportunities.

Core modules

Fundamentals of Cognitive Neuroscience; Fundamentals of Neuroscience; Computational Neuroscience 1: biologically grounded models; Mathematical Modelling and Research Skills; Computational Neuroscience 2: theoretical models; Brain Imaging and its Physical Foundations; Current Issues in Systems Neuroscience;Current Issues in Cognitive Neuroscience.

Teaching

Teaching is through lectures, seminars and laboratory classes.

Assessment

Examinations at the end of semesters one and two, written coursework and an extensive empirical research project over the summer.

Read less
Recent years have been characterised by a rapid development of functional imaging technology, with increasing availability worldwide of high-resolution scanners for research and clinical applications. Read more
Recent years have been characterised by a rapid development of functional imaging technology, with increasing availability worldwide of high-resolution scanners for research and clinical applications. Functional brain imaging requires an understanding of current concepts in cognitive neuroscience and psychology, as well as a basic appreciation of neuroimaging techniques and of the mathematical and statistical foundations for data analysis.

The rapid development of functional imaging technology and research has contributed to the call for improved education and training in functional imaging. Within this context the aim of the programme is to provide a strong theoretical and practical introduction to the world of neuroimaging research. It will equip students with a range of practical research skills to enable them to successfully complete research of this kind, either as part of a research team or as an individual.

The course will also provide the necessary training in safety and in the rules of scanner operation. This will allow students to conduct a neuroimaging research project under the supervision of an Authorised User on Brunel’s 3T scanner, or else to conduct a project in one of its related ERP imaging or psychological laboratory facilities.

Who is this degree for?
If you want to know how to use an MRI scanner and learn what neuroimaging has already taught us, this MSc is for you. Whether you want to pursue neuroimaging research, or simply become an expert in this important field of science, the Functional Neuroimaging MSc provides the relevant skills and knowledge. The course is a good preparation for a PhD in functional brain imaging, or for working as part of a neuroimaging team with fMRI and/or other imaging modalities.

Course Content
Modules are subject to variation and students are advised to check with the School whether a particular module of interest will be running in their year of entry. At the time of printing modules (all core) are likely to be drawn from the following areas:
Principles of Neuroimaging; Practical Neuroimaging; Cognitive Neuroscience; Visual Neuroscience. Check the web for the latest updates.

Assessment
Assessment is by coursework, one multiple choice exam and a final research project. Under the supervision of one of the Centre for Cognition and Neuroimaging’s research team, students will conduct a functional imaging experiment. This may involve use of the in-house EEG or fMRI facilities.

Careers
The MSc in Functional Neuroimaging is an invaluable companion or prelude to a research degree or research position in functional neuroimaging, one of the most rapidly growing fields of scientific research. Academic or research positions include:
MPhil/PhD in neuroimaging or related subjects; Research Assistant on a neuroscience project, or a related project in psychology or biology. Imaging now has applications from the physical sciences to projects in economics and the social sciences; Technical Assistant in functional neuroimaging. Non-academic positions include: any occupation that requires a higher level of analytical, technical and presentation skills than can be offered by a graduate in social sciences.

Here is what a few of our past students have to say:
Anna: “After completing an MSc degree in Educational Psychology in Poland I moved to the UK where I worked clinically with people suffering from epilepsy. During that placement, inspired by the state-of-the-art research conducted there, I developed a strong interest in neuropsychology. As a result I took up an MSc in Functional Neuroimaging at Brunel. The course appealed to me not only because it was an excellent introduction to this method, but also because it provided invaluable hands-on experience. The course was delivered by very competent and knowledgeable staff, who were enthusiastic about their subject. Their approachability and enthusiasm helped in managing course workload, as well as in developing my passion for research. Functional neuroimaging, being primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience, was taught in a very uncomplicated yet comprehensive manner. The course opened up research opportunities at many well-established research centres in the country and proved to be a key skill when applying for jobs after graduation. I now work partly at the University of Cambridge, and partly at the neuropsychological centre providing rehabilitation for people who have sustained brain injury. This is a fabulous chance to combine research and clinical experience, and knowledge and skills gained during the MSc prove extremely helpful in my work. I will always be very grateful to all Brunel’s staff for the support and help that they provided, even after graduation!”

Priya used her MSc as a transition to research work : “My year in Brunel’s MSc program in Functional Neuroimaging provided a crucial bridge for me between my undergraduate and doctoral studies. As an undergraduate I studied Cognitive Science and was interested in neuroimaging, but had few opportunities to work with a scanner. One of the aspects that drew me to the program at Brunel was the chance to design and carry out my own fMRI study; in addition to submitting the results as part of my degree requirements, I was able to present them as a poster at a scientific conference. The substantive coursework was also helpful for me in transitioning from undergraduate to postgraduate studies in neuroscience. Going into my MSc year at Brunel, I was not sure whether I was ready for or interested in a career in neuroscience research. Today I enjoy my doctoral studies and do research in an fMRI laboratory.”

Read less
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans. Read more
Learn how to create artificial information systems that mimic biological systems as well as how to use theoretical insights from AI to better understand cognitive processing in humans.
The human brain is a hugely complex machine that is able to perform tasks that are vastly beyond current capabilities of artificial systems. Understanding the brain has always been a source of inspiration for developing artificially intelligent agents and has led to some of the defining moments in the history of AI. At the same time, theoretical insights from artificial intelligence provide new ways to understand and probe neural information processing in biological systems.
On the one hand, the Master’s in Computation in Neural and Artificial Systems addresses how models based on neural information processing can be used to develop artificial systems, probing of human information processing in closed-loop online settings, as well as the development of new machine learning techniques to better understand human brain function.
On the other hand it addresses various ways of modelling and understanding cognitive processing in humans. These range from abstract mathematical models of learning that are derived from Bayesian statistics, complexity theory and optimal control theory to neural information processing systems such as neural networks that simulate particular cognitive functions in a biologically inspired manner. We also look at new groundbreaking areas in the field of AI, like brain computer interfacing and deep learning.

See the website http://www.ru.nl/masters/ai/computation

Why study Computation in Neural and Artificial Systems at Radboud University?
- Our cognitive focus leads to a highly interdisciplinary AI programme where students gain skills and knowledge from a number of different areas such as mathematics, computer science, psychology and neuroscience combined with a core foundation of artificial intelligence.

- Together with the world-renowned Donders Institute, the Behavioural Science Institute and various other leading research centres in Nijmegen, we train our students to become excellent researchers in AI.

- Master’s students are free to use the state-of-the-art facilities available on campus, like equipment for brain imaging as EEG, fMRI and MEG.

- Exceptional students who choose this specialisation have the opportunity to study for a double degree in Artificial Intelligence together with the specialisation in Brain Network and Neuronal Communication. This will take three instead of two years.

- This specialisation offers plenty of room to create a programme that meets your own academic and professional interests.

- To help you decide on a research topic there is a semi-annual Thesis Fair where academics and companies present possible project ideas. Often there are more project proposals than students to accept them, giving you ample choice. We are also open to any of you own ideas for research.

- Our AI students are a close-knit group; they have their own room in which they often get together to interact, debate and develop their ideas. Every student also receives personal guidance and supervision from a member of our expert staff.

Our research in this field

The programme is closely related to the research carried out in the internationally renowned Donders Institute for Brain, Cognition and Behaviour. This institute has several unique facilities for brain imaging using EEG, fMRI and MEG. You will be able to use these facilities for developing new experimental research techniques, as well as for developing new machine learning algorithms to analyse the brain data and integrate them with brain-computer interfacing systems.

Some examples of possible thesis subjects:
- Deep learning
Recent breakthroughs in AI have led to the development of artificial neural networks that achieve human level performance in object recognition. This has led companies like Google and Facebook to invest a lot of research in this technology. Within the AI department you can do research on this topic. This can range from developing deep neural networks to map and decode thoughts from human brain activity to the development of speech recognition systems or neural networks that can play arcade games.

- Brain Computer Interfacing
Brain computer interfaces are systems which decode a users mental state online in real-time for the purpose of communication or control. An effective BCI requires both neuro-scientific insight (which mental states should we decode?) and technical expertise (which measurement systems and decoding algorithms should be used?). A project could be to develop new mental tasks that induce stronger/easier to decode signals, such as using broadband stimuli. Another project could be to develop new decoding methods better able to tease a weak signal from the background noise, such as adaptive-beam forming. Results for both would assessed by performing empirical studies with target users in one of the EEG/MEG/fMRI labs available in the institute.

Career prospects

Our Artificial Intelligence graduates have excellent job prospects and are often offered a job before they have actually graduated. Many of our graduates go on to do a PhD either at a major research institute or university with an AI department. Other graduates work for companies interested in cognitive design and research. Examples of companies looking for AI experts with this specialisation: Google, Facebook, IBM, Philips and the Brain Foundation. Some students have even gone on to start their own companies.

Job positions

Examples of jobs that a graduate of the specialisation in Computation in Neural and Artificial Systems could get:
- PhD researcher on bio-inspired computing
- PhD researcher on neural decoding
- PhD researcher on neural information processing
- Machine learning expert in a software company
- Company founder for brain-based computer games
- Hospital-based designer of assistive technology for patients
- Policy advisor on new developments in neurotechnology
- Software developer for analysis and online visual displays of brain activity

Internship

Half of your second year consists of an internship, giving you plenty of hands-on experience. We encourage students to do this internship abroad, although this is not mandatory. We do have connections with companies abroad, for example in China, Sweden and the United States.

See the website http://www.ru.nl/masters/ai/computation

Read less
Neuroimaging has emerged as a new important methodology in the study of the structure and function of the human brain in health and disease. Read more
Neuroimaging has emerged as a new important methodology in the study of the structure and function of the human brain in health and disease. In Neuroscience it is being increasingly used to study the physiological correlates of mental processes. In Clinical practice it plays a prominent role in the detection and diagnosis of neurological and psychiatric illnesses and in the evaluation of new treatments. The techniques are getting increasingly sophisticated and as a result there is a high demand for well-trained professionals.

Our Neuroimaging MSc is one of only a few programmes dealing with modern neuroimaging in the UK. It is exceptional in its focus on practical and biomedical aspects of Neuroimaging. The success of the program is reflected in the success of our students with 60% either in further higher education, or fully employed in the first year after degree completion. This figure rises to 100% within 3 years of the degree.

The Neuroimaging MSc is designed to provide students with the background knowledge and technical skills to design, analyze and evaluate imaging data. The Neuroimaging MSc focuses on Magnetic Resonance Imaging (MRI) based techniques, including functional MRI, anatomical imaging, Diffusion Tensor Imaging, and Spectroscopy. Imaging techniques will be discussed with reference to relevant applications. The programme puts a strong emphasis on practical skills. In a dedicated computer lab, the students will learn and practice analysis and imaging techniques. Under supervision of our world-class academic staff, students will design their own imaging based studies, which will be run using the in-house 3T MRI scanner. Additional classes will provide students with a broad scope of professional skills.

The Neuroimaging MSc is especially suited for:
students interested in pursuing an Academic career in the field of Neuroimaging;
students looking to find a job as research staff in industry or academic labs involved in translational research;
medical professional, looking to develop skills in a new emergent technology and research field;
students with a background in physics, mathematics or computer science who want to move into cognitive or clinical neuroscience;
students with a background in psychology or biology who want to improve your technical skills for a neuroscience career.

Content
The core of the Neuroimaging MSc consists of two modules on Neuroimaging. The first module concentrates on methodological aspects. It includes an introduction to the physics of MR imaging, the physiological basis of functional signals, processing and analysis of imaging data and the design of research studies. The second module provides an in-depth introduction to a number of specialized imaging techniques used to understand the biology of brain function in health and disease. The latter module aims to illustrate the use of imaging in the context of translational and clinical studies of disease processes affecting the human brain.

Both modules combine formal lectures, and computer-based laboratories, in which students learn and practice analysis and imaging techniques. Weekly practical labs and programming classes are held in a dedicated computer laboratory available to all students. The work done in the lab sections constitute 50% of the grade in first module, and 30% of the grade in the second module. The latter also includes student-led discussion of published scientific and clinical research.

In the weekly Bangor Imaging Group (BIG) meeting, academic staffs, postdocs and students discuss current research. All MSc and PhD students propose their research here.

Additional optional modules provide an in-depth view of several content areas of cognitive and clinical neuroscience (see below). Students are also welcome to attend weekly review of clinical scans performed at the local hospital for the purpose of patient recruitment and a monthly neuroradiology conference where cases of clinical interest are discussed. Journal-clubs and research meetings concerning fMRI, EEG, and TMS methodologies are open to all students.

Students are also required to take at least one additional module in advanced statistics or advanced computing. The module Communicating Research completes the curriculum by training students in a broad scope of professional skills.

The Bangor Imaging Unit houses a state-of-the-art 3T MRI machine, available for student projects. Setups for the measurement of eye-movement, arm and hand movement, and physiological parameters are also available.

In the beginning of the year you will choose your academic supervisor. The supervisor will be responsible for helping you plan, design and draft your research thesis. From your project proposal you will review the relevant literature, and formally outline your study. In the weekly Bangor-Imaging Group meeting we learn about and discuss proposed, ongoing and completed studies and important new publications in the field. Moreover, all MSc and PhD students present their proposed plan of research in this forum. Thus, you are tightly integrated into the research environment at the Bangor Imaging Unit, and profit from interactions with older PhD students, post-docs, and other supervisors. Your final research project is conducted over the summer months, most likely using the in-house, research-dedicated 3T MRI scanner. The course ends with the successful submission of your research thesis.

Structure
The Neuroimaging MSc consists of two parts. Part one comprises taught modules over two semesters. You are required to take the two core modules in Neuroimaging, which include a large component of laboratory work. You will also choose two 'content' modules, each designed to provide knowledge and promote understanding in a specific core area of neuroscience. You also take three 'skills' modules designed to hone your research skills. In addition, you will partner with one of the academic faculty in order to jointly develop a research proposal for your thesis. On successful completion of Part One, you'll proceed to Part Two (in the third semester), when you will carry out your research study and write your thesis.

Research Thesis
The thesis is the 'crown' of the Neuroimaging MSc and is an intensive research experience conducted in collaboration with your supervisor that allows you to put your knowledge and skills into practice. In conducting your thesis project, you will develop new skills such as planning, co-operative working, and the academic skills essential to understanding and reporting findings to others.
Career Prospects

Read less
- The connection between the brain and cognition. Read more

Master's specialisation in Plasticity and Memory

- The connection between the brain and cognition
How does your brain enable you to remember a certain event? What happens in your brain when you listen to music? How does your brain adapt itself to certain changes, such as a haemorrhage or other form of damage? How do you distinguish between important and relatively unimportant information in the world around you? How do you focus your attention on a playing child? How does our consciousness work? These are just a few of the questions that neurocognitive scientists would like to see answered.

- Neurocognition in Nijmegen: the cutting edge
The Radboud University has an outstanding reputation in the field of neurocognition. In 2002, the ultramodern Donders Centre for Cognitive Neuroimaging (DCCN) was officially opened on campus. This centre draws many young researchers from all over the world and to a large extent determines the nature of the Plasticity and Memory specialisation. In 2008 the DCCN formed together with the Donders Centre for Cognition (formerly NICI) and the Donders Centre for Neuroscience the Donders Institute for Brain, Cognition and Behaviour.

General requirements:

- Bachelor's degree
The graduation date of the last attained BA/BSc degree relevant for this programme must be within five years of applying to the programme.

- English skills
The Cognitive Neuroscience Master's programme (MSc CNS) is an English programme: all courses and examinations are taught in English. For the general language requirements of the Radboud University click here. Foreign students please note that the MSc CNS programme requires the following minimum scores: TOEFL: 600 (paper-based test), 250 (computer-based test), 100 (internet-based test); IELTS 7.0 or higher.

- Mathematics & Physics
Students who did not follow physics in their highschool curriculum and/or who have not been trained in mathematics at level B (including concepts such as matrix algebra, differentation, integration, complex numbers), are advised before the start of the programme to work on the assignment in Chapters 1, 2, 7, 8 and 11 (three chapters on physics and two on mathematics) of R.K. Hobbie: "Intermediate Physics for Medicine and Biology", Springer Verlag, New York, 1997; third edition, ISBN 1-56396-458-9).

Career prospects

If you have successfully completed the Master’s programme in Plasticity and Memory, you will be able to conduct neuroimaging and neurobiological research. You will have ample knowledge of the anatomical and neurophysiological aspects of the human brain and theoretical cognition/neurocognition models. This will enable you to conduct independent research into the neurofunctional architecture of cognitive key functions, such as perception, attention, memory, language, planning and targeted actions. With this educational background you should be able to find a position with one of the research institutes in the Netherlands or abroad, government institutions or specialised companies (e.g. in the pharmaceutical industry).

Our approach to this field

Research in the field of cognitive neuroscience is one of the spearheads in the research policy of Radboud University. Here, in Nijmegen, hundreds of scientists from various faculties and top institutes have joined forces to unravel the workings of the human brain, step by step and bit by bit. They thereby work together very closely, exchange expertise and share state-of-the-art research equipment.

Nijmegen is one of the foremost centres of cognitive neuroscience in the world. We have deliberately created a high admission threshold to ensure that all our students are highly motivated and have the ability to work at an advanced level. Top scientists screen all applications to make sure the new students meet our stringent entry criteria and help maintain the current standards of excellence. Once admitted to the programme you can expect to be trained as a multidisciplinary scientist in the following two years. The research of which you will become a part addresses crossdisciplinary challenges. The teachers and supervisors you will meet are all experts in their own disciplines. We hope that with this programme you will outperform your teachers by being able to combine knowledge from different domains. Alongside language processing and perceptuomotor systems, you may also help improve brain/computer interfaces, a hot topic with applications in medicine and information technology. Apart from being very exciting, it is also logical that various disciplines are merging. After all, everything that happens in the brain is interconnected. In Nijmegen we develop sophisticated cognitive models which we test by means of state-of-the-art imaging techniques, thanks to which you can participate in cutting-edge research that will hopefully lead to new insights into the way the human brain and mind work. Finally, we offer our best CNS students excellent career opportunities in challenging PhD projects.

- Unique multi-disciplinary Master’s programme
Are you also interested in the human brain? Would you like to conduct research into the workings of the brain and join an enthusiastic, international group of top researchers? The Radboud University Nijmegen offers a multi-faculty Master’s programme in Cognitive Neuroscience. The programme takes two years and is of course of a scientific orientation. There is a strong emphasis on experimental research. After all, what counts is hands-on research experience. This Master’s programme is unique in Europe.

The Master’s programme in Cognitive Neuroscience is primarily focussed on training you as a researcher and if possible, a top researcher, because research institutes and businesses around the world desperately need highly qualified and motivated young researchers. Moreover, since cognitive neuroscience is a rather young discipline, much in this field has not yet been explored. There are many challenging questions that need to be answered. So there is plenty of room for new discoveries!

This competitive programme provides a sound balance of theory and practice. We enrol about 50 students per year. Our selective approach guarantees excellence, especially during the research training period.

See the website http://www.ru.nl/masters/physicsandastronomy/physics

Read less
The fields of graphics, vision and imaging increasingly rely on one another. Read more
The fields of graphics, vision and imaging increasingly rely on one another. This unique and timely MSc provides training in computer graphics, geometry processing, virtual reality, machine vision and imaging technology from world-leading experts, enabling students to specialise in any of these areas and gain a grounding in the others.

Degree information

Graduates will understand the basic mathematical principles underlying the development and application of new techniques in computer graphics and computer vision and will be aware of the range of algorithms and approaches available, and be able to design, develop and evaluate algorithms and methods for new problems, emerging technologies and applications.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits).

Core modules
-Mathematical Methods, Algorithmics and Implementation
-Image Processing
-Computer Graphics
-Research Methods

Optional modules
-Machine Vision
-Graphical Models
-Virtual Environments
-Geometry of Images
-Advanced Modelling, Rendering and Animation
-Inverse Problems in Imaging
-Computation Modelling for Biomedical Imaging
-Computational Photography and Capture
-Acquisition and Processing of 3D Geometry

Dissertation/report
All students undertake an independent research project related to a problem of industrial interest or on a topic near the leading edge of research, which culminates in a 60–80 page dissertation.

Teaching and learning
The programme is delivered through a combination of lectures and tutorials. Lectures are often supported by laboratory work with help from demonstrators. Student performance is assessed by unseen written examinations, coursework and a substantial individual project.

Careers

Graduates are ready for employment in a wide range of high-technology companies and will be able to contribute to maintaining and enhancing the UK's position in these important and expanding areas. The MSc provides graduates with the up-to-date technical skills required to support a wealth of research and development opportunities in broad areas of computer science and engineering, such as multimedia applications, medicine, architecture, film animation and computer games. Our market research shows that the leading companies in these areas demand the deep technical knowledge that this programme provides. Graduates have found positions at global companies such as Disney, Sony and Siemens. Others have gone on to PhD programmes at MIT, Princeton University, and Eth Zurich.

Top career destinations for this degree:
-Senior Post-Doctoral Research Associate, University of Oxford
-Software Engineer, Sengtian Software
-Graduate Software Engineer, ARM
-IT Officer, Nalys
-MSc in Computer Games and Entertainment, Goldsmiths, University of London

Employability
UCL Computer Science was one of the top-rated departments in the country, according to the UK Government's most recent research assessment exercise, and our graduates have some of the highest employment rates of any university in the UK. This degree programme also provides a foundation for further PhD study or industrial research.

Why study this degree at UCL?

UCL Computer Science contains some of the world's leading researchers in computer graphics, geometry processing, computer vision and virtual environments.

Research activities include geometric acquisition and 3D fabrication, real-time photo-realistic rendering, mixed and augmented reality, face recognition, content-based image-database search, video-texture modelling, depth perception in stereo vision, colour imaging for industrial inspection, mapping brain function and connectivity and tracking for SLAM (simultaneous localisation and mapping).

Read less

Show 10 15 30 per page



Cookie Policy    X