• Northumbria University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
University of Leeds Featured Masters Courses
Staffordshire University Featured Masters Courses
University of Birmingham Featured Masters Courses
"blood" AND "sciences"×
0 miles

Masters Degrees (Blood Sciences)

We have 78 Masters Degrees (Blood Sciences)

  • "blood" AND "sciences" ×
  • clear all
Showing 1 to 15 of 78
Order by 
This course will focus on the physiology and pathology of blood and its use as a diagnostic and therapeutic tool. A variety of areas of molecular and cellular bioscience will be covered with an emphasis on new technologies and developments in Haematology and related disciplines such as Transfusion Science. Read more

This course will focus on the physiology and pathology of blood and its use as a diagnostic and therapeutic tool. A variety of areas of molecular and cellular bioscience will be covered with an emphasis on new technologies and developments in Haematology and related disciplines such as Transfusion Science. You will expand your knowledge of the basic science and analytical techniques relating to Haematology and gain an up-to-date understanding of the application of Haematology in bioscience / pharmaceutical research, as well as in diagnostic and therapeutic medicine.

There will be an emphasis in the course on development of critical analysis skills in the assessment of scientific literature and laboratory data. In addition you will have the opportunity to design and execute your own research project. The course team is supported by visiting lecturers who are practising scientists in the field, which helps ensure that taught material is current and relevant.

Course structure

The following modules are indicative of what you will study on this course.

Core modules

Option modules

Professional accreditation

The course is accredited by the Institute of Biomedical Science (IBMS).

Career path

As well as gaining specialist knowledge in Haematology and related disciplines, you will develop a range of transferable skills that will enhance your employment prospects and research opportunities in the UK or overseas.

The course is relevant to career pathways in diagnostic haematology, immunology and transfusion laboratories, research institutions and pharmaceutical companies.



Read less
If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science. Read more

If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science.

You gain advanced knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop practical skills in our well-equipped teaching laboratories.

As well as studying the fundamentals of pathology, you can choose one specialist subject from • cellular pathology • microbiology and immunology • blood sciences. Your work focuses on the in vitro diagnosis of disease. You develop the professional skills needed to further your career. These skills include • research methods and statistics • problem solving • the role of professional bodies and accreditation • regulation and communication.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects and our tutors are experts in these techniques.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where full-time students are assigned to a tutor who is an active research in the biomedical research centre. Part-time students carry out their research project within the workplace under the guidance of a workplace and university supervisor.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into • cancer • musculoskeletal diseases • human reproduction • neurological disease • hospital acquired infection • immunological basis of disease.

Professional recognition

This course is accredited by the Institute of Biomedical Science (IBMS) who commended us on

  • the excellent scientific content of our courses
  • the supportive nature of the staff which provides a positive student experience
  • the laboratory and teaching facilities, which provide an excellent learning environment

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules

  • Biomedical laboratory techniques (15 credits)
  • Evidence based laboratory medicine (15 credits)
  • Cell biology (15 credits)
  • Molecular diagnostics (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)
  • Blood sciences (30 credits)
  • Cellular pathology (30 credits)
  • Microbiology and immunology (30 credits)

Assessment

Assessment methods include written examinations and coursework such as

  • problem solving exercises
  • case studies
  • reports from practical work
  • presentations.

Research project assessment includes a written report, presentation and portfolio. 

Employability

This course enables you to start to develop your career in various applications of biomedical science including pathology, government funded research labs or the life sciences industry. It is also for scientists working in hospital or bioscience-related laboratories particularly as biomedical scientists who want to expand their knowledge and expertise in this area.



Read less
You gain advanced level knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. Read more

You gain advanced level knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop relevant practical skills.

As well as studying the fundamentals of pathology, you can choose one specialist subject from

  • cellular pathology
  • microbiology and immunology
  • blood sciences.

If you choose the MSc route you also take a project module.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects, and our tutors are experts in these techniques

You develop the professional skills needed to further your career. These skills include • research methods and statistics • problem solving • the role of professional bodies and accreditation • regulation • communication.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where you are assigned to a tutor who is an active researcher in the Biomolecular Sciences Research Centre.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The professional development and research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into • cancer • musculoskeletal diseases • human reproduction • neurological disease • hospital acquired infection • immunological basis of disease.

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Biomedical laboratory techniques (15 credits)
  • Professional development (15 credits)
  • Cell biology (15 credits)
  • Molecular diagnostics (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules:

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)
  • Evidence based laboratory medicine (15 credits)
  • Blood sciences (30 credits)
  • Microbiology and immunology (30 credits)
  • Cellular pathology (30 credits)

Assessment

Assessment methods include written examinations and coursework, such as:

  • problem solving exercises
  • case studies
  • reports from practical work.

Research project assessment involves a written report and viva voce. 

Employability

As a graduate you can start or develop your career in pathology, biomedical sciences or research labs and industry within the biomedical field. It’s also for scientists working in hospital or bioscience-related laboratories particularly as biomedical scientists who want to expand their knowledge and expertise in this area.





Read less
The University of Chester Haematology course is a taught postgraduate qualification lasting for one year full-time or two to four years part-time. Read more

The University of Chester Haematology course is a taught postgraduate qualification lasting for one year full-time or two to four years part-time.

Students completing a range of modules followed by a research dissertation are awarded a full Master of Science degree. Students completing fewer modules, without a dissertation, may graduate instead with a Postgraduate Certificate or Postgraduate Diploma.

The MSc in Haematology is designed to enable you to develop an up-to-date, advanced understanding of the disorders of blood and blood-forming tissues. Utilising critical analytical skills, you will evaluate new developments in research into the blood sciences.

Why Study Haematology with us?

You will receive training in the skills required in the reading and interpretation of the literature and translating that into evidence-based practice. We aim to develop your research and writing skills so that you will be in a position to contribute to the scientific literature in an effective manner.

The course culminates in the Research Dissertation, which will be assessed through your production of two publishable scientific articles.

The content of the course is mapped to The Joint Royal Colleges of Physicians Training Board Speciality Training Curriculum for Haematology.

If biomedical or clinical research is your interest, successful completion of the MSc will allow you to directly register onto PhD study and join our team of researchers at the Institute of Medicine.

What will I learn?

Our course investigates in detail mechanistic models of haematopoiesis and how knowledge of stem cell theory can inform the treatment of anaemia or leukaemia. Blood carries many hormones and cytokines; these can be used as biomarkers of disease, and we will examine the problems associated with some of these measurements. You will also review current guidelines and their evidence base in the therapeutic management of haematological problems, and explore potential new therapies.

How will I be taught?

Our course consists of taught modules and a Research Dissertation. We deliver taught modules as three-day intensive courses to facilitate attendance from students in employment. Weekly support sessions and journal club supplement learning – all held in our modern facilities in Bache Hall.

Modules

The modules given below are the latest example of the curriculum available on this degree programme. Please note that programme structures and individual modules are subject to change from time to time for reasons which include curriculum enhancement, staff changes, student numbers, improvements in technology, changes to placements or regulatory or external body requirements.

Evidence Based Medicine(Compulsory) (MD7001)

Analysis and Interpretation of Clinical Data(Optional) (MD7002)

Clinical Medicine(Compulsory) (MD7003)

Blood Sciences(Compulsory) (MD7005)

Therapeutic Advances in Treating Haematological Problems(Compulsory) (MD7022)

Case Investigations in Molecular Medicine(Compulsory) (MD7027)

Assessment and Consultation in Clinical Settings(Optional) (MD7069)

Research Dissertation(Compulsory) (MD7100)

How will I be assessed?

You will be assessed via coursework assignments, which may focus on clinical reviews, laboratory reports, posters, oral presentations, or data manipulation exercises.

Funding

The following postgraduate funding may be available to study Haematology at the University of Chester.

UK postgraduate loans:

Erasmus funding:

Erasmus Masters Loans – Offering up to €18,000 for eligible students to study a Masters abroad.

Funding from FindAMasters:

FindAMasters Scholarships – Offering up to £5,000 to new UK, EU and international postgraduates.

Fees

Full Time (UK / EU): £6,390

Full Time (international): £11,850 (+£250 per academic year)

Part Time (UK / EU): £710 per 20 credits



Read less
The Postgraduate Certificate in Blood Component Transfusion enables experienced non-medical Healthcare Practitioners (HCPs) to make the clinical decision and provide the written instruction for blood component transfusion to patients within their own clinical specialty, and within their own areas of competence and expertise. Read more
The Postgraduate Certificate in Blood Component Transfusion enables experienced non-medical Healthcare Practitioners (HCPs) to make the clinical decision and provide the written instruction for blood component transfusion to patients within their own clinical specialty, and within their own areas of competence and expertise.

Key Features of PGCert in Blood Component Transfusion

- An All Wales programme and a core component of the preparation of non-medical staff for the role of authorising transfusion of blood components
- The course underpins the All Wales Policy for non-medical authorisation of blood component transfusion

Teaching and Employability:

- Developed in conjunction with the Welsh Blood Service on behalf of the Welsh Government
- Students must be working in a relevant clinical area whilst completing this programme

This innovative course prepares appropriate non-medical practitioners to adopt an extended role in making the decision to transfuse and in providing the written instruction for transfusion of blood components thereby;

- Streamlining the patient pathway
- Providing a holistic approach
- Safeguarding the patient, the Healthcare professional and the employer

The Blood Component Transfusion course is accredited by Swansea University and delivered in conjunction with the Welsh Blood Service Better Blood Transfusion Team.

The Blood Component Transfusion course will run over one academic year, comprises one theoretical and one work based learning module and is jointly delivered by a clinical teaching team and lecturers from the College of Human and Health Sciences. Participants are assessed by multiple choice examination, observed clinical practice with formal assessment, and a portfolio of evidence.

Modules

Modules on the Blood Component Transfusion may include:

Principles of Safe Practice in Clinical Transfusion Management
Developing Autonomous Practice
Advancing Your Own Practice

Postgraduate Community

Students on the Blood Component Transfusion course will benefit from the staff expertise of he core team for the College of Human and Health Sciences who has professional backgrounds in either haematology and/ or work-based learning.

The College of Human and Health Sciences has a vibrant postgraduate community with students drawn from a variety of backgrounds and nationalities. The College is known for its friendly, welcoming and supportive environment, which combined with its extensive facilities, state-of-the-art technology and superb beachside location, helps to ensure that students benefit from an exceptional student experience.

In addition, Blood Component Transfusion students have access to a wide range of excellent facilities and equipment for realistic workplace experiences.

Read less
Key Features of the Advanced Specialist Blood Transfusion. A part-time postgraduate course delivered via work-based learning (WBL). Read more

Key Features of the Advanced Specialist Blood Transfusion

  • A part-time postgraduate course delivered via work-based learning (WBL)
  • A 3 year Msc level course with the opportunity for students to opt out at both Post-graduate Certificate and Post-graduate Diploma levels
  • Develops your skills, knowledge and understanding of blood transfusion
  • Can be undertaken within a variety of healthcare settings
  • Delivered in partnership with British Blood Transfusion Society

Who is the Advanced Specialist Blood Transfusion course aimed at?

This qualification is for staff working in a predominately Clinical Transfusion environment (i.e. Nurses, Transfusion/ Haemovigilance Practitioners) and is open to students from across the UK.

How is the Advanced Specialist Blood Transfusion course structured?

After an initial induction period of 4 days at Swansea University, each module will be predominately work-based learning. You will be required to attend a number of face to face sessions throughout the year. Assessment method is through submission of a portfolio of evidence, including a critical narrative of the evidence provided in relation to the student’s learning journey.

The MSc element normally takes three years to complete, although you can opt out at PGCert and PGDip levels.

What to expect?

The Advanced Specialist Blood Transfusion course is broken down into 3 years. Year one contains 3 modules at 20 credits each (opt out here for PGCert), year two contains 2 modules at 30 credits each (opt out here for PGDip) and the final year contains one module at 60 credits for a full MSc.

Modules

Modules on the Advanced Specialist Blood Transfusion course may include:

  • The Work Place Learning Journey
  • The History, Science and Practice of Blood Transfusion
  • Clinical Governance and its Impact on Managing Adverse Events in Blood Transfusion
  • Advanced Specialist Practice in Blood Transfusion
  • Advanced Clinical Governance and Contemporary Issues
  • Professional Practice in in Advanced Specialist Blood Transfusion Practice

Staff Expertise

The core team for the College of Human and Health Sciences has professional backgrounds in either haematology and/ or work-based learning.

The programme manager, Mrs Heulwen Morgan-Samuel, has extensive clinical experience in general medical nursing, and has developed expertise in the care of cancer patients, including palliative care. She teaches on many palliative care and oncology modules and is the designated lead for haematology nursing in the College. 

Mrs Heulwen Morgan-Samuel has published a number of research studies in peer reviewed journals specifically on infection control for the immune-compromised patient and the role of the nurse lecturer in supporting students.

Sally Hore is part of the academic team who has extensive experience in work based learning and the use of a blended learning approach to facilitate learning in the workplace.

Sally leads work based learning for the CHHS and supports the programme. She is a module lead and acts as an academic supervisor to some of the students.

Postgraduate Community

The College of Human and Health Sciences has a vibrant postgraduate community with students drawn from a variety of backgrounds and nationalities. The College is known for its friendly, welcoming and supportive environment, which combined with its extensive facilities, state-of-the-art technology and superb beachside location, helps to ensure that students benefit from an exceptional student experience. In addition, students have access to a wide range of excellent facilities and equipment for realistic workplace experiences.



Read less
The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Read more

Overview

The School of Life Science has developed an extremely active and successful undergraduate, Biomedical Science programme. We have embraced specialists working in local NHS Trusts to develop outstanding, collaborative relationships covering key diagnostic and clinical specialties. Not only do students benefit from the inclusion of such specialist practitioners onto our teaching programmes, but could also be offered highly competitive research opportunities working within the hospital itself.

This MSc programme builds on this wealth of experience and best practice to enable well-qualified students to develop their scientific training and employability skills within a Biomedical context. The need for innovation and a multidisciplinary approach to Biomedical Science has never been more important. The teaching strategies embedded within this programme embrace these principles in its pursuit of Clinical Biochemistry, Medical Immunology and Haematology.

IBMS Accreditation

This programme is accredited by the Institute of Biomedical Science (IBMS) as the professional body of Biomedical Scientists within the United Kingdom. The IBMS aims to promote and develop the role of Biomedical Science within healthcare to deliver he best possible service for patient care and safety.

Accreditation is a process of peer review and recognition by the profession of the achievement of quality standards for delivering Masters level programmes.

Individuals awarded a Masters degree accredited by the Institute are eligible for the title of Chartered Scientist and the designation CSci if they meet the other eligibility criteria of corporate membership and active engagement in Continued Professional Development. A Masters level qualification is also one of the entry criteria for the Institute’s Higher Specialist Examination and award of the Higher Specialist Diploma, a pre-requisite for the membership grade of Fellowship and designation FIBMS.

The aim of IBMS accreditation is to ensure that, through a spirit of partnership between the Institute and the University, a good quality degree is achieved that prepares the student for employment in circumstances requiring sound judgement, critical thinking, personal responsibility and initiative in complex and unpredictable professional environments.

The Institute lists 10 advantages of IBMS accreditation:
1. Advances professional practice to benefit healthcare services and professions related to biomedical science.

2. Develops specific knowledge and competence that underpins biomedical science.

3. Provides expertise to support development of appropriate education and training.

4. Ensures curriculum content is both current and anticipatory of future change.

5. Facilitates peer recognition of education and best practice and the dissemination of information through education and employer networks.

6. Ensures qualification is fit for purpose.

7. Recognises the achievement of a benchmark standard of education.

8. The degree award provides access to professional body membership as a Chartered Scientist and for entry to the Higher Specialist Diploma examination.

9. Strengthens links between the professional body, education providers employers and students.

10. Provides eligibility for the Higher Education Institution (HEI) to become a member of HUCBMS (Heads of University Centres of Biomedical Science)

See the website https://www.keele.ac.uk/pgtcourses/biomedicalbloodscience/

Course Aims

The main aim of the programme is to provide multidisciplinary, Masters Level postgraduate training in Biomedical Blood Science. This will involve building on existing, undergraduate knowledge in basic science and applying it to clinical, diagnostic and research applications relevant to Clinical Biochemistry, Medical Immunology and Haematology.

Intended learning outcomes of the programme reflect what successful students should know, understand or to be able to do by the end of the programme. Programme specific learning outcomes are provided in the Programme Specification available by request, but to summarise the overarching course, aims are as follows:

- To develop students’ knowledge and understanding of different theoretical perspectives, methodological approaches, research interests and practical applications within Blood Science

- To explore and explicitly critique the clinical, diagnostic and research implications within the fields of Clinical Biochemistry,

- Medical Immunology and Haematology, and to place this in the context of a clinical laboratory, fully considering the potential implications for patients, health workers and research alike

- To develop a critical awareness of Biomedical ethics and to fully integrate these issues into project management including grant application and business planning

- To support student autonomy and innovation by providing opportunities for students to demonstrate originality in developing or applying their own ideas

- To direct students to integrate a complex knowledge base in the scrutiny and accomplishment of professional problem-solving scenarios and project development

- To enable student acquirement of advanced laboratory practical competencies and high level analytical skills

- To promote and sustain communities of practice that allow students to share best practice, encourage a multidisciplinary approach to problem-solving and to develop extensive communication skills, particularly their ability to convey complex, underpinning knowledge alongside their personal conclusions and rationale to specialist and nonspecialist listeners

- To provide students with a wide range of learning activities and a diverse assessment strategy in order to fully develop their employability and academic skills, ensuring both professional and academic attainment

Course Content

This one year programme is structured so that all taught sessions are delivered in just two days of the working week. Full-time students are expected to engage in independent study for the remaining 3 days per week. Consolidating taught sessions in this way allows greater flexibility for part-time students who will be expected to attend one day a week for two academic years, reducing potential impact in terms of workforce planning for employers and direct contact for students with needs outside of their academic responsibilities.

Semester 1 will focus on two main areas, the first being Biomedical ethics, grant application and laboratory competencies. The second area focuses on the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Clinical Biochemistry.

Semester 2 will also focus on two main themes; firstly, business planning methodological approaches, analytical reasoning and research. Secondly, the clinical and diagnostic implications of Blood Science for patients and health workers, with the major emphasis being on Haematology and Immunology.

Compulsory Modules (each 15 credits) consist of:
- Biomedical Ethics & Grant Proposal
- Project Management & Business Planning
- Advanced Laboratory Techniques*
- Research Methodologies *
- Case Studies in Blood Science I
- Case Studies in Blood Science II
- Clinical Pathology I
- Clinical Pathology II

*Students who have attained the IBMS Specialist Diploma and are successfully enrolling with accredited prior certified learning are exempt from these two modules.

Dissertation – Biomedical Blood Science Research Project (60 credits)

This research project and final dissertation of 20,000 words is an excellent opportunity for students to undertake laboratory based research in their chosen topic and should provide an opportunity for them to demonstrate their understanding of the field via applications in Biomedical Science. Biomedical Science practitioners are expected to complete the laboratory and data collection aspects of this module in conjunction with their employers.

Requirements for an Award:
In order to obtain the Masters degree, students are required to satisfactorily accrue 180 M Level credits. Students who exit having accrued 60 or 120 M Level credits excluding the ‘Dissertation – Biomedical Blood Science Research Project’ are eligible to be awarded the Postgraduate Certificate (PgC) and Postgraduate Diploma (PgD) respectively

Teaching and Learning Methods

This programme places just as much emphasis on developing the way in which students approach, integrate and apply new knowledge and problem-solving as it is with the acquisition of higher level information. As such, particular emphasis is placed on developing critical thinking, innovation, reflective writing, autonomous learning and communication skills to prepare candidates for a lifetime of continued professional development.

The teaching and learning methods employed throughout this programme reflect these principles. For example, there is greater emphasis on looking at the subject from a patient-orientated, case study driven perspective through problem-based learning (PBL) that encourages students to think laterally, joining up different pieces of information and developing a more holistic level of understanding.

Assessment

The rich and varied assessment strategy adopted by this programme ensure student development of employability
and academic skills, providing an opportunity to demonstrate both professional and academic attainment. Assessment design is
largely driven by a number of key principles which include: promotion of independent learning, student autonomy, responsibility for personal learning and development of innovation and originality within one’s chosen area of interest. Note that not all modules culminate in a final examination.

Additional Costs

Apart from additional costs for text books, inter-library loans and potential overdue library fines we do not anticipate any additional costs for this post graduate programme.

Find information on Scholarships here - http://www.keele.ac.uk/studentfunding/bursariesscholarships/

Read less
Accredited by the Institute of Biomedical Science (IBMS), the MSc Advanced Biomedical Science gives you the skills and knowledge to build a career as an NHS biomedical scientist or within bioscience research. Read more

Accredited by the Institute of Biomedical Science (IBMS), the MSc Advanced Biomedical Science gives you the skills and knowledge to build a career as an NHS biomedical scientist or within bioscience research.

The course aims to give you a balance of theory, practical skills and application of a range of techniques relevant to the biomedical sciences such as medical genetics, immunobiology, and disease pathology. Emphasis is placed on the application of quality and management processes in the improvement of healthcare provision by biomedical laboratories.

Work-based learning modules are available to part-time students completing the IBMS specialist portfolio as an alternative to the discipline-specific modules.

The MSc is a good qualification for careers in bioscience research, or for those wishing to progress to further study (PhD). However, it is primarily aimed at those wishing to work or already working as biomedical scientists in the NHS, where an accredited MSc is integral to career progression.

More Information

Professional Approval and Accreditation

Our course is accredited by the Institute of Biomedical Science (IBMS).

Placement Opportunities

Work-based learning modules are available if you are a part-time student completing the IBMS specialist portfolio as an alternative to the discipline-specific modules.

Course Details

Core modules you will study include: 

  • Genetic Analysis in Biomedical Science 
  • Clinical Immunology 
  • Disease, Detection, Monitoring and Therapy 
  • Research Design

You can choose from a number of quality and management modules that are relevant to your career and employment needs.

Upon successful completion of the taught modules you will then undertake the MSc research project.

Two optional modules are offered, which allow you to specialise in either: 

  • Blood sciences
  • Infection 
  • Pathology

The research-orientated nature of our course will also offer an additional option if you wish to retrain for a career in the pharmaceutical and healthcare industries.

Teaching & Assessment

A wide range of teaching methods are used on our Advanced Biomedical Science course. Some of which include: 

  • Enquiry based learning 
  • Critical thinking 
  • Data analysis
  • Directed learning
  • Problem solving

There will be strong linkages with research and employers throughout our course, for example through laboratory exercises, guest lecturers from NHS laboratories and the MSc research project. The VLE (Moodle) used by UWS will facilitate many of these approaches for example group projects, personal development planning (PDP).

Assessment will be based on: 

  • Problem-solving exercises 
  • Case studies 
  • Critical reviews 
  • Presentations 
  • Planning, conduct and reporting of project work


Read less
This innovative distance learning MSc in Blood Science focuses on the diagnostic techniques, QA/QC and regulatory issues within this emerging field combining haematology, immunology, transfusion and clinical biochemistry developed from increasing automation within pathology. Read more
This innovative distance learning MSc in Blood Science focuses on the diagnostic techniques, QA/QC and regulatory issues within this emerging field combining haematology, immunology, transfusion and clinical biochemistry developed from increasing automation within pathology.

The course now benefits from accreditation by the Institute of Biomedical Science enabling students to take full advantage of the opportunities for knowledge and career development that this affords.

More about this course

This MSc distance-learning course is designed to promote a deep understanding of the emerging mixed disciplinary area of blood science. You will examine different theoretical perspectives, methodological approaches, research interests and practical applications within the subject area, as an independent learner.

Designed with input from current practitioners in the field, the course is suitable for biomedical science practitioners and graduates of biomedical or related life sciences. The programme covers areas relevant to staff working within or wishing to work in blood science departments within pathology.

Delivered as a flexible distance-learning programme through our e-Portal WebLearn, you will be able to continue to work whilst studying. The self-guided eLearning materials have been specially designed to support your engagement with the course content.

Each module has a module leader who is responsible for developing the curriculum and coordinating the production of the eLearning materials. Some sessions are ‘broadcast live’ with modules running face-to-face so you can engage with tutors, lecturers and other students. You can also contact your module leader and discuss ideas with other students via email, discussion boards, and during live peer-to-peer support sessions.

Your final research project is to be conducted in your place of work with joint supervision provided by your laboratory training officer and a member of staff from the School of Human Sciences. For those not working in a suitable laboratory, research may be conducted at London Metropolitan University with additional bench fees for materials.

The course is designed to support professionals in their career development in the healthcare profession, biomedical/biotechnology industry or in academia and has the potential to lead on to doctoral studies.

This course has many benefits:
-You can study at your own pace, with the support of our Biomedical Science team - no attendance required.
-Single modules can be undertaken to gain continuing professional development (CPD) points.
-You can start your course either in the September or January of the academic year.

Exercises and short phase tests will be used to provide you with feedback on your progress. Summative assessment of students’ knowledge base and their understanding will be incorporated into formal in-course tests/exercises, personal learning logs and end of module assessments completed at the end of each unit.

MSc research project assessment will culminate in the presentation of a dissertation and a poster presentation (via face-to-face messaging system or similar technology).

Professional accreditation

This course is accreditated by the Institute of Biomedical Science (IBMS), enabling students to take full advantage of the opportunities for knowledge and career development that this affords.

Students are eligible for eStudent Membership of the IBMS. Single modules taken for CPD obtain 100 points per 10 credits with the IBMS. It is also recommended by the Canadian Society for Medical Laboratory Science (CSMLS).

Modular structure

The modules listed below are for the academic year 2016/17 and represent the course modules at this time. Modules and module details (including, but not limited to, location and time) are subject to change over time.

Year 1 modules include:
-Advanced Immunology (core, 20 credits)
-Bioethics, Research and Grant Proposal (core, 20 credits)
-Clinical Biochemistry (core, 20 credits)
-Haematology (core, 20 credits)
-Research Project (Biomedical Science) (core, 60 credits)
-Transfusion Science (core, 20 credits)
-Haemoglobinopathies (option, 10 credits)
-Introduction to Anatomy and Physiology in Health and Disease (option, 20 credits)
-Introduction to Cell Biology (option, 10 credits)
-Introduction to Cellular Pathology (option, 10 credits)
-Introduction to Clinical Genetics (option, 20 credits)
-Introduction to General Microbiology (option, 10 credits)
-Introduction to Medical Microbiology (option, 20 credits)
-Introduction to Molecular Biology and Genetics (option, 10 credits)
-Introduction to Toxicology (option, 10 credits)

After the course

This course provides an extension of knowledge allowing practising biomedical scientists to be considered for promotion at work. Healthcare scientists are training in this discipline area too.

Career opportunities include employment in NHS hospital laboratories and other health-related areas. Graduates will also be well placed to apply for research studentships.
This course allows students to be considered for promotion at work.

Graduates with two years relevant professional experience can apply for the Member grade of membership

PhD research, pharmacology, biotechnology and similar employment opportunities are available.

Read less
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics. Read more
This programme offers a fascinating range of subjects, including molecular biology, genetics, biochemistry, microbiology, immunology, tissue engineering, clinical medicine, laboratory management and statistics.

It is accredited by the Institute of Biomedical Science and is based at one of the largest transfusion centres in the world, enabling visits to manufacturing, testing and tissue typing sections. You will learn from specialist lecturers based at the University, NHS Blood and Transplant (NHSBT), and NHS hospitals, and have an opportunity to become fully embedded in an NHS environment while you develop your knowledge.

The programme will give you extensive practical experience of transfusion and transplantation, allowing you to gain skills that directly relate to your future career. As well as being academically interesting, this continually developing area of healthcare science has a major impact on patients' quality of life.

The programme:
-Is one of just two specialist full-time courses in transfusion and transplantation, and is a recommended course at level seven in the Career Framework for Health.
-Gives you the opportunity to carry out your MSc project with NHSBT research staff within the transfusion centre.
-Has high contact hours, with teaching each day and practical classes.
-Includes a large skills component (eg writing in different formats, conference and publication skills, assignments with specific study aims).
-Includes laboratory management, a key skill required at level seven.
-Attracts a diverse range of students (about 50 per cent overseas students), including new graduates, those working in blood centres or blood transfusion/haematology in hospitals, or training to lecture in transfusion.

Programme structure

The programme comprises eight taught units that run from September to March and a research project that begins in May and runs until August. Example project topics have included:
-A study on red cell antibody formation in trauma patients
-Optimisation of platelet antigen detection using recombinant proteins
-Expression of red cell membrane proteins during large-scale red cell culture
-A comparison of stem cell mobilisation drugs for stem cell transplantation

Taught units
-Transfusion and Transplantation Science:
-Pathology of Transfusion and Transplantation Science
-Provision of Blood, Cells, Tissues and Organs
-Clinical Transfusion and Transplantation
-Transfusion and Transplantation in Practice (two units)
-Biostatistics
-Research and Laboratory Management

Assessments are designed to teach skills such as comprehension, scientific writing in different formats and conference skills, and to further knowledge in subject areas not covered in the lectures. Students must pass the taught component to be able to progress to the project.

Part-time students complete the Postgraduate Certificate components in their first year and the Postgraduate Diploma in the second. The project is usually taken during year three to complete the MSc.

Careers

Some of the career paths that graduates have followed include: blood transfusion and fetal medicine research, working for a bone marrow donor laboratory or bone marrow registry, biostatistics, graduate entry to medical school, NHS Clinical Scientist Training programme, and progression to PhD study in several areas including cancer biology and stem cell regeneration.

Read less
This Biomedical Sciences degree offers research training for students in order to gain all the required Biomedical Sience entry requirements to proceed to a PhD. Read more
This Biomedical Sciences degree offers research training for students in order to gain all the required Biomedical Sience entry requirements to proceed to a PhD. It is largely based on individual research projects rather than coursework, and allows you to specialise in a particular area of study.

Why this programme

◾Ranked world top 100 for Biological Sciences
◾The Masters in Biomedical Science provides training in a wide range of modern molecular biology techniques required to pursue a research career.
◾You will gain valuable practical research experience by using the skills and techniques acquired during the programme to complete two extensive research projects.
◾The Biomedical Science programme is distinctive in that students complete two different extensive research projects of their choice, allowing them to acquire a wide range of knowledge and skills directly relevant to the study of human disease.
◾If you are aiming to study for a higherBiomedical Science degree , this programme is designed for you.
◾If you want to enter the pharmaceutical and biotechnology industries, this programme provides excellent training; and is an ideal introduction for overseas students who may wish to proceed to PhD biomedical science studies in the UK.
◾You can choose to specialise within a particular discipline or area, which can be important for career development, see programme structure below for more information.

Programme structure

The overall aims of the programme are:
◾to provide students with the knowledge, skills and confidence needed to pursue a career in laboratory research.
◾to provide students with a theoretical and practical understanding of advanced techniques used in modern biomedical sciences research.
◾to provide students with the opportunity to practice research skills in the laboratory by completing two extensive research projects.

MRes students have the opportunity to specialise in a particular discipline or area, which can be important for their career development. The specialisations are:
◾Biotechnology
◾Cancer Studies
◾Cardiovascular Studies
◾Cell Engineering
◾Integrative Mammalian Biology SFC funded places available

◾Medical Biochemistry and Molecular Biology
◾Molecular Genetics
◾Neuroscience
◾Proteomics

To qualify for a specialisation, students must select two research projects in a cognate research area.

Research projects

The central and most important part of the MRes is the two research projects that students undertake. Students choose both projects themselves in the subject areas that interest them and that will allow them to follow the career path they wish to follow. The MRes programme has a huge number of projects which students can choose from, across a wide spectrum of biomedical science.

The following are examples of the types of projects offered, to illustrate the range of subject areas.

• Making blood from human embryonic stem cells

• A gene-microarray based approach to the detection of recombinant human erythropoietin doping in endurance athletes

• Neuropathology of trypanosomiasis

• Development of a new technique for stem cell transfection

• Cloning and analysis of an inflammatory factor in cancer and autoimmune disease

• Analysis of viral induced cancer

Each year students have about 100 different projects to choose from and all students find research topics that interest them.

Read less
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council. Read more
Sunderland is the only university in the north of England to offer an Overseas Pharmacist Assessment Programme (OSPAP) that is accredited by the General Pharmaceutical Council.

Course overview

Pharmaceutical Sciences for the Overseas Pharmacist Assessment Programme (OSPAP) is designed for those who are qualified pharmacists outside the European Economic Area and who are now looking to become registered pharmacists in the UK.

Our course is one of a small number of courses that are accredited by the General Pharmaceutical Council. Their accreditation is based on quality reviews that ensure Sunderland is meeting the required standards.

Completing the OSPAP postgraduate diploma allows for entry to the next stages of registering as a pharmacist in the UK: firstly, 52 weeks of supervised training in employment; secondly, a registration assessment.

Once all these stages are successfully completed, and assuming you have the necessary visa and work permit, you would be in a position to apply for roles as a practising pharmacist in the UK. There is virtually no unemployment of registered pharmacists in the UK.

You can also apply to undertake a Masters research project in addition to your postgraduate diploma. Pharmacy is a particular area of strength at the University of Sunderland and our Department has been teaching the subject since 1921.

Course content

The content of this course reflects the accreditation requirements of the General Pharmaceutical Council.

Modules on the course include:
-Pharmacy, Law, Ethics and Practice (60 Credits)
-Clinical Therapeutics (60 Credits)
-Research Methods for Pharmaceutical Practice and Masters Research Project (60 Credits)

Teaching and assessment

We use a wide variety of teaching and learning methods which include lectures, debate sessions, online learning packages, tutorials and seminars.

Compared to an undergraduate course, you will find that this Masters requires a higher level of independent working. Assessment methods include end-of-year examinations, practical assessments as well as assignments throughout the year.

Facilities & location

This course is based in the Sciences Complex at our City Campus, which boasts multi-disciplinary laboratories and cutting-edge equipment thanks to multi-million pound investments.

Facilities for Pharmaceutics
We have pharmaceutical-related equipment for wet granulation, spray drying, capsule filling, tablet making, mixing inhalation, film coating and freeze drying.

As well as standard pharmacopoeial test methods, such as dissolution testing, friability and disintegration, we also offer highly sophisticated test methods. These include rheometry, thermal analysis (differential scanning calorimetry and hot stage microscopy), tests for powder flow, laser diffraction, photon correlation spectroscopy, image analysis and laser confocal microscopy.

Facilities for Medicinal Chemistry
Our state-of-the-art spectroscopic facility allows us to confirm the structures of new molecules that could be potential pharmaceutical products and to investigate the structures of potential medicinal substances that have been isolated from plants.

We are equipped with Liquid Chromatography-Nuclear Magnetic Resonance and Mass Spectroscopy (LCNMR/MS) platforms; this is an exceptional facility for a university. We also have low and high resolution mass spectrometry, nuclear magnetic resonance and elemental analysis equipment.

Our facilities allow you to gain hands-on experience of a wide range of analytical techniques such as atomic absorption spectroscopy and infra-red spectroscopy, which are of great importance in determining both ionic/metal content of pharmaceuticals and simple chemical structures.

You will also gain experience of revolutionary protein and DNA separation techniques, as well as Ultra High Performance Liquid Chromatography and Gas Chromatography for separating unknown chemical mixtures.

Facilities for Pharmacology
Our highly technical apparatus will give you first-hand experience of the principles of drug action and the effects of drugs on pharmacological and cellular models. As a result, you gain a better understanding of the effects of drugs on specific receptors located throughout the human body and related physiological effects.

Simulation technology
You’ll have the opportunity to apply your training in a realistic setting with our two advanced simulation technology ‘SimMan’ models.
Each of our £57,000 SimMan mannequins has blood pressure, a pulse and other realistic physiological behaviour. The models can be pre-programmed with various medical scenarios, so you can demonstrate your pharmacological expertise in a realistic yet safe setting. Our academic team is also actively working with the SimMan manufacturers to develop new pharmacy simulations.

Pharmacy Practice
One of the most important skills of pharmacists is to communicate their expertise in a manner that the public can understand and accept.

The University has invested in a purpose-built model pharmacy complete with consultation suite. This allows you to develop skills in helping patients take the correct medicine in the right way, with optional video recording of your interaction with patients for the purposes of analysis and improvement.

In addition, we can accurately simulate hospital-based scenarios in a fully equipped ward environment where medical, nursing and pharmacy students can share learning.

University Library Services
We’ve got thousands of books and e-books on pharmaceutical and biomedical science, with many more titles available through the inter-library loan service. We also subscribe to a comprehensive range of print and electronic journals so you can access the most reliable and up-to-date academic and industry articles.

Some of the most important sources for your studies include:
-Embase, which is a complex database covering drug research, pharmacology, pharmaceutics, toxicology, clinical and experimental human medicine, health policy and management, public health, occupational health, environmental health, drug dependence and abuse, psychiatry, forensic medicine and biomedical engineering/instrumentation
-PubMed, which contains life science journals, online books and abstracts that cover fields such as medicine, nursing, dentistry, veterinary medicine and health care
-Science Direct, which offers more than 18,000 full-text journals published by Elsevier
-Web of Science, which covers a broad range of science areas

Learning Environment
Sunderland Pharmacy School has a rich heritage in scientific studies and our degree courses are extremely well respected in the industry. We are fully plugged into relevant medical and pharmaceutical industry bodies, with strong links and an exchange of ideas and people. Our vibrant learning environment helps ensure a steady stream of well-trained pharmacists whose most important concern is patient-centred pharmaceutical care.

Employment & careers

On completing this course you can register and practise in the UK as a qualified pharmacist. An entry-level pharmacist usually starts within Band 5 of the NHS pay rates (up to around £28,000). Advanced pharmacists, consultants, team managers and managers of pharmaceutical services are rated as Bands 8-9 and can earn up to £99,000. Currently there is virtually no unemployment of qualified pharmacists. Typical starting salaries for community pharmacists range from £21,000 to £35,000 depending on location, conditions of employment and experience.

Most pharmacists work in the following areas:
Community pharmacy: this involves working in pharmacies on high streets or in large stores. You will dispense prescriptions, deal with minor ailments, advise on the use of medicines and liaise with other health professionals.

Hospital pharmacy: this involves the purchasing, dispensing, quality testing and supply of medicines used in hospitals.

Primary care: this involves working in General Practice surgeries, either as an employee of the Practice or the Primary Care Trust. Roles include Medicines Management Pharmacists, who are responsible for prescribing budgets and the development of prescribing directives.

Secondary care: this involves working in hospitals to supply medicines, manage clinics, provide drug information and prescribe medicines.

Industrial pharmacists are involved in areas such as Research & Development, Quality Assurance and product registration.
Research degrees can be undertaken in many aspects of pharmacy. Sunderland Pharmacy School offers excellent facilities and a wide range of research expertise.

You can also work in areas of the pharmaceutical industry, medical writing and in education. By completing a Masters project in addition to your OSPAP postgraduate diploma it will enhance opportunities in academic roles or further study towards a PhD.

Read less
PROJECT DESCRIPTION. This project is based in the Biomedical Sciences and Sport, Exercise and Health Research Themes within the School of Applied Sciences and is led by Dr Mark Ross (. Read more

PROJECT DESCRIPTION

This project is based in the Biomedical Sciences and Sport, Exercise and Health Research Themes within the School of Applied Sciences and is led by Dr Mark Ross (http://www.napier.ac.uk/people/mark-ross) and Dr Graham Wright (http://www.napier.ac.uk/people/graham-wright) and is focused on the role of T-lymphocytes in endothelial proliferation and angiogenesis.

Angiogenesis is a key process in improvement of vascular health, a process involving resident endothelial cells and circulating progenitor cells. However, progenitor cells in peripheral circulation are very low in number. Recently, a sub population of T-lymphocytes have been found to potentially play an important role in stimulating angiogenesis, but the exact phenotype of this population of ‘angiogenic’ T-cells (TANG) has yet to be established.

This project aims to isolate and characterise CD31+ T-cells and the subsequent cellular subsets, and examine the effect of these subsets on endothelial growth and angiogenesis in vitro.

You will be given the opportunity to engage in an active research project that has already yielded publication and work toward your own published work. This will include the use of in vitro models of endothelial cell structure formation and employ a range of techniques such as cell culture, cell isolation (magnetic and flow-based), flow cytometry and confocal microscopy. You will be given the opportunity to engage with an active post-graduate research community (including the chance to present at national/international conferences) and take part in a full training programme aimed at supporting progression to a successful research career.



Read less
Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans. Read more

Improved global life expectancy has resulted in a cancer epidemic. It is well recognised that accurate early diagnosis is an essential aspect of the administration of increasingly expensive and tailored cancer treatment care plans.

The Biomedical Sciences (Cancer Biology) MSc programme has been devised to provide knowledge of key aspects of this increasingly important disease area.

You will become familiar with the genetic and cellular changes occurring in both solid and blood-borne cancers, the current and emerging technological approaches for diagnosis of the disease and the effect on pertinent cellular changes on patient prognosis. Studies on populations and the influence of genotypic variation will ensure that you are qualified to make sense of cancer statistics.

You are able to tailor your programme by selecting from a menu of option modules and pursuing a research project in an area ranging from molecular through to cellular or tissue-based aspects of cancer.

During the course you will join our thriving research environment and will have access to excellent laboratory facilities within the Faculty. On successful completion of the course you will be equipped to take forward your career with an in-depth knowledge of this increasingly common disease area.

Professional accreditation

The course is accredited by the Institute of Biomedical Science (IBMS).

Career path

The Cancer Biology MSc equips students for careers in the research sector, for example in academia or in the biotechnology or pharmaceutical industries.

Depending on the options that are taken by the student, in addition to their in-depth knowledge of molecular and cellular changes that occur in cancer, the student may also gain a detailed knowledge of the –OMICs topics alongside immunodiagnostics and immunotherapeutics. These areas of study open up the choices that students may select in terms of careers.

Our alumni have gone on to study PhDs or have gone on to work in the biotechnology industries in drug discovery roles.



Read less
IN BRIEF. This course will give you the opportunity to take a lead role in sports injury rehabilitation. Theoretical content is available online so you can study at a time convenient to you. Read more

IN BRIEF:

  • This course will give you the opportunity to take a lead role in sports injury rehabilitation
  • Theoretical content is available online so you can study at a time convenient to you
  • High practical content means you’ll develop the skills that will impress employers
  • Part-time study option

COURSE SUMMARY

This course will further the knowledge, skills and abilities of sports rehabilitators, sport therapists, physiotherapists and other allied health professionals currently working in the area of sports injury rehabilitation and prevention.

This was the first exercise rehabilitation masters in Europe to be recognised by the National Strength and Conditioning Association (NSCA) though their recognition programme. The programme is delivered by some of the world's leading experts. The contact sessions on campus, including keynote sessions followed by practical and seminar sessions, are applicable immediately to professional practice and involve a high practical content.

COURSE STRUCTURE

The MSc programme is offered as either a full-time or part-time programme.

The full time course runs over three academic semesters (October through to September the following year), whilst  giving you the chance to exit with the following awards:

  • Postgraduate Certificate: completion of one module
  • Postgraduate Diploma: completion of two modules
  • Masters: completion of two modules plus a dissertation

In order to achieve an award of MSc Sports Injury Rehabilitation you must successfully complete the modules Rehabilitation of Musculoskeletal Injuries and Injury Prevention and Performance Measurement, along with producing a thesis for the dissertation module.

TEACHING

This course is available both part-time and full-time and is delivered via a blended learning approach, which includes:

Workshops (three days per module, per semester)

These are interactive, discursive, reflective, participatory, collaborative and practice related and employ a variety teaching and learning methods. As the programme progresses these will become progressively more student led, with you presenting case studies for peer and tutor review.

Individual Scholarly Activity

Self directed learning, personal reflection, practice based application and reflection, including peer and tutor review.

Distance Learning Resources

Delivery of supporting resources such as study guides and lecture material online. Facilitated group work, including tutor and peer evaluation are a key component of this course. 

Personal Tutor and Peer Support

To provide an academic, practice based and personal support mechanism alongside facilitated networking.

ASSESSMENT

Assessment methods will vary depending on the module, they include:

  • Case Studies (written and oral presentations)
  • Viva vocé
  • Literature review
  • Practical assessments
  • Journal articles (research reports written in the format of a journal article)
  • Research proposal

EMPLOYABILITY

Take a lead role in sports injury rehabilitation with this practice-based course and make a difference to your clients with higher level skills. You’ll also learn how to conduct research and then apply it to the real world, with numerous students successfully publishing their research in peer reviewed journals.

The skills developed within the programme are recognised within organisations such as the English Institute of Sport as critical to the development of key competencies to move through there competency lead career structure.

LINKS WITH INDUSTRY

This course has been developed to include the key competencies identified by the International federation of Sports Physiotherapists in the domains of exercise rehabilitation. It is also recognised as providing key exercise rehabilitation skills by the English Institute of Sport.

FURTHER STUDY

Upon successful completion of the course it would be possible to progress on to a PhD, or a PhD via publication. We offer a range of research degrees relevant to your area of practice.

As a University, we are committed to your continuing professional development. We run short courses and study days throughout the year to keep you at the forefront of developments in Sports Injury Rehabilitation.

FACILITIES

You will have access to some of the best facilities in the UK, including our purpose-built Human Performance Lab, which contains almost every type of physiological and biomechanical equipment:

  • FT700 Ballistic Measurement System
  • 9 AMTI Force Plates, 5 of which are situated in a 40m running track
  • ProReflex 10 Camera real-time motion analysis system
  • KinCom and Biodex Isokinetic Dynamometers for muscle strength testing
  • Portable Kistler force plate
  • EMG (electromyography) system used to measures the electrical activity of muscles and to gather information about the muscular and nervous systems
  • Esaote AU5 Ultrasound used to study skeletal muscles, tendons, ligaments and blood flow
  • We have a range of cycle and rowing ergometers, two treadmills, and two online gas analysis systems.
  • We can perform blood analysis with our Analox GM7 Multi-Assay Blood Analyser to measure blood lactate, glucose and a range of other blood substrates
  • There is also the Reflotron which another multi-use system that can measure blood cholesterol and haemoglobin as well as portable blood glucose and lactate analysers.

In addition we have the usual equipment found in exercise physiology labs.

  • Polar heart rate monitors
  • Harpenden skinfold callipers
  • Wingate tests
  • Hand grip dynamometers
  • Height, weight monitors
  • Jump mats & timing gates


Read less

Show 10 15 30 per page



Cookie Policy    X