• Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Bristol Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
University of Cambridge Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cass Business School Featured Masters Courses
University of London International Programmes Featured Masters Courses
"blast"×
0 miles

Masters Degrees (Blast)

We have 11 Masters Degrees (Blast)

  • "blast" ×
  • clear all
Showing 1 to 11 of 11
Order by 
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Who is it for?. This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Read more

Who is it for?

This course is for professional engineers who want to specialise in structural engineering or move into this area of expertise to advance their career. Normally students have an undergraduate degree in engineering or a related discipline. Students who don’t have qualifications in civil engineering usually have relevant work experience in civil engineering structures so they are familiar with working within the specific technical domain.

Objectives

From analysing how carbon nanofibers can reduce the effect of corrosion in concrete to gaining insight from experts developing the new Forth Bridge, this MSc in Civil Engineering Structures has been designed to be broad in scope so you can develop your own area of structural engineering expertise.

As a department, we have broad interests from defining new structural forms to practical application of new materials. We believe civil engineering is a creative and collaborative profession, as much as a technical one. This course gives you the tools to immerse yourself in both the analytical and experimental side of the subject, so you can investigate diverse problems to generate your own structural solutions.

The Civil Engineering Structures MSc mirrors industry practice, so you will work in groups with your peers from the first term onwards and learn from a group of world-leading engineers with diverse research strengths. From earthquake engineering to sustainable construction, you have the opportunity to learn in breadth and depth using high-end industry software to develop safe solutions for real-world projects.

Accreditation

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. the JBM website for further information.

Academic facilities

There is a large dedicated lab on site equipped with facilities to investigate different structures and construction materials from concrete to timber. You also have access to other workshops where you can liaise with mechanical or electrical engineers to develop innovative scale models. There is access to specialist soil labs and large-scale equipment including wind tunnels.

We have an extensive library housing all the references, journals and codes of practice that you will need during your studies.

Teaching and learning

You will be taught by the staff team within the School of Mathematics, Computer Science and Engineering and also from visiting industry experts from around the world.

Teaching mainly takes the form of lectures, but IT sessions and seminars also form part of the Masters degree. Modules are shared between two ten-week teaching terms running from October to December and January to March. Although work for the MSc dissertation starts during the second term, you will conduct most of the research work during the summer months.

The length of the full-time degree is 12 months. A part-time route is also available where you can spend either two or three years completing the programme. If you follow the two-year part-time study route, you will need to attend lectures for up to two days each week. Alternatively, you can complete the degree over three years by attending a single day each week. The timetable has been designed to offer flexibility for part-time students.

In the first term you will consider core technical topics and be introduced to new concepts such as structural reliability. In the second term you will begin to focus your studies by selecting your dissertation topic and by selecting options getting involved in a specific areas of your own interest. Spread over the year you will have design presentations, class tests and reports.

If you select an experimental dissertation you will have the opportunity to use a range of materials. Skilled technical support is available in the workshop and you have access to recently refurbished facilities, including specialist geotechnical labs which accommodate a large flexible laboratory space used for centrifuge model preparation and testing. Adjacent to this you have concrete mixing and casting facilities, a temperature-controlled soil element testing laboratory and a concrete durability laboratory.

Assessment

For the theoretical modules, you will be assessed through a combination of examinations and coursework. Examinations are shared between the January and April/May examination periods. For the design-oriented modules you are normally assessed by coursework only, where you will work both in groups and individually on challenging projects.

Modules

There are six core modules which give you a strong technical foundation and three elective modules from which you can choose two. These reflect the specialist expertise on offer within the academic team. These modules will give you unique insight into computer analysis of structures for blast and fire, bridge engineering, and earthquake analysis where you may look at techniques for analysing structures and safe design. In the final part of the programme you undertake a dissertation in which you can explore an area of interest from a proposed list of themes, some of which are industry-related.

As part of the University of London you can also become a member of Senate House Library for free with your student ID card.

Core modules

  • EPM717: Advanced Structural Analysis and Stability (20 credits)
  • EPM707: Finite Element Methods (15 credits)
  • EPM704: Dynamics of Structures (15 credits)
  • EPM719: Structural Reliability and Risk (10 credits)
  • EPM711: Design of Concrete Structures (15 credits)
  • EPM712: Design of Steel and Composite Structures (15 credits)
  • EPM949: Dissertation (60 credits)

Elective modules

You will be able to study two of the following elective modules:

  • EPM720: Earthquake Analysis of Structures (15 credits)
  • EPM718: Analysis of Steel and Concrete Structures for Blast and Fire Exposure (15 credits)
  • EPM715: Bridge Engineering (15 credits).

Career prospects

Graduates have secured employment with leading civil engineering consultants, research institutes and government agencies and pursued doctoral studies both in the UK and internationally. The cohort of 2015 have moved on to jobs and further study working within the following organisations:

  • Arup
  • Gant
  • Kier
  • Robert Bird Group
  • Skanska


Read less
Structural engineers design, develop and evaluate materials and systems used in constructing load-bearing infrastructure, such as roads, bridges, buildings, railway lines and dams. Read more

Structural engineers design, develop and evaluate materials and systems used in constructing load-bearing infrastructure, such as roads, bridges, buildings, railway lines and dams.

You will be guided by researchers, who are recognised internationally for their expertise in high-rise structures, and earthquake and blast-resistant technologies. You will have access to some highly specialised subjects in structural engineering, including the design of resilient structures to counter extreme conditions. Design seminars, field work and workshops provide opportunities to work with industry professionals.

The Master of Engineering (Structural) will lead to a formal qualification in structural engineering.

CAREER OUTCOMES

Career opportunities exist in a variety of roles related to the design and development of structures, their longevity, and their ability to withstand extremes, such as earthquake, high winds, blast or fire, and the risk assessment of infrastructure, for government, consultancies and industry.

You will find employment with national and global companies such as Arup, Bonacci Group, Brookfield Multiplex, GHD, WorleyParsons and AECOM.

Structural Engineering Career Pathways [PDF]

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status. Read more
This flexible MSc programme is suitable for individuals who already have an accredited undergraduate civil engineering degree and who are seeking to further their engineering skills and achieve chartered status.

The course is accredited by the Joint Board of Moderators as meeting the requirements for further learning for a chartered engineer (CEng) for candidates who already have an accredited CEng (partial) BEng(Hons) or an accredited IEng (full) BEng/BSc(Hons) undergraduate first degree.

You will study a range of advanced civil engineering subjects linked to cutting-edge research. These include earthquake engineering dynamics and design, advanced geotechnics and rock mechanics, bridge engineering and advanced hydraulics. You will also develop the skills demanded in civil engineering consultancy offices around the world.

On the course, you will have the opportunity to use state-of-the-art laboratories and advanced technical software for numerical modelling.

The course is flexible and allows you to combine advanced civil engineering with related subjects including water environmental management, construction management and sustainable construction.

All of the taught modules are delivered by research-active staff and pave the way for a career at the forefront of ambitious civil engineering projects.

Scholarships

Scholarships are available for this course. Please click the link below for more information.
https://www.brighton.ac.uk/studying-here/fees-and-finance/postgraduate/index.aspx

Course structure

Our courses are under continual review. If you have already applied you can find more information on the applicant portal.

The course has an emphasis on practical applications of advanced civil engineering concepts. You will make use of our advanced laboratories, modern computer facilities and technical software.

The MSc requires successful completion of six modules together with a dissertation on an agreed technical subject; a dissertation is not required, however, for the PGDip.

The taught component of the course comprises six core modules, and you can either take all six of these modules or choose four with an additional two approved modules from other MSc courses in the School of Environment and Technology. You can use this flexibility to study related subjects including water and waste-water treatment technology, construction management and sustainable construction.

Core modules cover geotechnical earthquake engineering, dynamics of structures with earthquake engineering applications, seismic design of reinforced concrete members, random vibrations of structures, bridge loads and analysis, rock mechanics, hydrogeology, coastal engineering and wave loading.

Areas of study

• Coastal Engineering and Wave Loading

This module provides a basic understanding of different wave theories and their applications in coastal engineering practice.

You will develop an understanding of the coastal sediment transport processes and the means to deal with issues associated with coastal protection and sea defence.

• Geotechnical Earthquake Engineering

This module provides an understanding of advanced geotechnical design methods with an emphasis on seismic design. It focuses on current design methods for soil and rock structures and foundation systems subject to complex loading conditions.

You will gain experience in using a variety of commercial software.

• Rock Mechanics

The module gives you an understanding of the behaviour of rocks and rock mass and enables you to evaluate the instability of rock slopes and tunnels in order to design reinforcements for unstable rock.

• Dynamics of Structures with Earthquake Engineering Applications

You will be introduced to the fundamental concepts of dynamics of structures. The module then focuses on analytical and numerical methods used to model the response of civil engineering structures subjected to dynamic actions, including harmonic loading, blast and impact loading, and earthquake ground motion.

• Random Vibration of Structures

The module gives you the confidence to model uncertainties involved in the design of structural systems alongside a framework to critically appraise probabilistic-based Eurocode approaches to design.

Stochastic models of earthquake ground motion, wind and wave loading are explored. Probabilistic analysis and design of structures is undertaken through pertinent random vibration theory.

You will become confident with the probabilistic analysis for the design against earthquake, wind and wave loadings through various checkable calculations.

• Repair and Strengthening of Existing Reinforced Concrete Structures

The module gives you an understanding of the types and causes of damage to reinforced concrete structures. It then focuses on current techniques for repair and strengthening of existing structures.

Employability

The course is particularly appropriate for work in structural, geotechnical and coastal engineering.

Graduates have gone on into roles as structural engineers and civil engineers in a number of structural design offices around the world.

Others have been motivated by the research component of the course and followed a PhD programme after graduation.

Read less
Learn the analytical and design skills needed to create successful structures in challenging environments. This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities. Read more

About the course

Learn the analytical and design skills needed to create successful structures in challenging environments.

This is the largest academic concrete research centre in the UK so you’ll benefit from some great facilities.

We have international-level expertise in cement chemistry, aggregate science, binder technology, concrete durability, alternative concrete materials, structural performance and design, earthquake and nuclear reactor design, and finite element analysis.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural 
Analysis and Research Skills
Advanced Concrete Design
Sustainable Concrete Technology
Innovations in Structural Concrete
Structural Design

Examples of optional modules

Blast and Impact Effects on Structures
Advanced Simulation of High Strain Rate Dynamics
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Specialist facilities

Our laboratories are equipped to a very high standard:

Large-scale tri-axial apparatus for stress path and cyclic load testing; flexible walled tri-axial calibration chambers; optical microscopy, digital camera and measurement software; model pile testing and durability testing facilities. We have recently established the Centre for Energy and Infrastructure Ground Research that is home to our world leading 4m diameter beam centrifuge and complementary £1m teaching facility.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Design of Earthquake Resistant Structures
Advanced Simulation of High Strain Rate Dynamics

Examples of optional modules

Advanced Concrete Design
Sustainable Concrete Technology
Structural Design and Fire Resistance
Innovations in Structural Concrete
Blast and Impact Effects on Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world. Read more

About the course

The majority of new buildings in the UK have steel structures, the use of steel in construction is growing in many other parts of the world.

This specialist course aims to prepare structural engineers for careers in the global construction industry by providing advanced knowledge of the properties and applications of steel.

There is an active steel structures group within the department whose research feeds directly into our MSc (Eng) in Steel Construction.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis
Structural Dynamics (Earthquakes and Vibration)
Computational Structural Analysis and Research Skills
Structural Design
Structural Design and Fire Resistance

Examples of optional modules

Innovations in Structural Concrete
Advanced Simulation of High Strain Rate Dynamics
Blast and Impact Effects on Structures
Design of Earthquake Resistant Structures
Geotechnical Design

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field. Read more

About the course

Develop skills in the analysis and design of steel and concrete structures. You can tailor the course to your specific interests, so it’s ideal for practising structural engineers who want to enhance their skills or for anyone pursuing a career in this field.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Linear Systems and Structural Analysis; Structural Design; Computational Structural Analysis and Research Skills; Structural Dynamics and Applications to Earthquake Engineering and Vibration.

Examples of optional modules

Innovations in Structural Concrete; Advanced Concrete Design; Structural Design and Fire Resistance of Medium Rise Steel-framed Buildings; Advanced Simulation of High Strain Rate Dynamics; Blast and Impact Effects on Structures; Design of Earthquake Resistant Structures; Geotechnical Design; Sustainable Concrete Technology.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation. Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

September–June: taught modules and preparation for your dissertation.
June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.

Read less
About the course. The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation. Read more

About the course

The civil engineers of the future will have to find innovative solutions to environmental challenges. We believe graduates from our MSc will be at the forefront of the new generation.

The core modules give you a grounding in engineering analysis and design. In the second semester, you can follow your interests and choose from a list of specialist modules.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

  • Linear Systems and Structural Analysis
  • Structural Design
  • Geotechnical Design
  • Constitutive Modelling of Geotechnical Materials
  • Hydrogeology and Civil Engineering Research Proposal

Optional modules

These vary but can include:

  • Advanced Hydraulics
  • Engineering Hydrology
  • Innovations in Structural Concrete
  • Advanced Concrete Design
  • Blast and Impact Effects on Structures
  • Design of Earthquake Resistant Structures
  • Sustainable Concrete Technology
  • Flood Risk Management
  • SuDS and Green Infrastructure
  • Computational Methods in Water Engineering
  • Design of Water Distribution and Sewer Networks
  • Coastal Engineering
  • Risk and Extreme Events

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

All courses use lectures by academic staff and industrial partners, laboratory work, site visits, design projects and dissertation.

Assessment is by formal examinations, coursework assignments and a dissertation with oral examination.

  • September–June: taught modules and preparation for your dissertation.
  • June–August: complete your dissertation.

Your research dissertation gives you the opportunity to work with an academic on a piece of research in a subdiscipline. We’ll give you training in research skills.



Read less
IN BRIEF. Develop cutting-edge practices and approaches to contemporary performance-making in an interdisciplinary, laboratory environment, with a focus on creative exploration. Read more

IN BRIEF:

  • Develop cutting-edge practices and approaches to contemporary performance-making in an interdisciplinary, laboratory environment, with a focus on creative exploration
  • Make and research in world-class performance-making facilities at MediaCityUK and the New Adelphi Arts Centre
  • Immerse yourself in the vibrant arts and performance scene in Salford and Manchester.
  • Part-time study option
  • International students can apply

COURSE SUMMARY

The MA Contemporary Performance Practice is a practical, interdisciplinary course that will introduce you to a range of approaches and concepts, which are vital to the making of live performance in and in response to the world today. It will equip you with the skills and knowledge to function in contemporary  performance environments, as a performer, maker, collaborative practitioner and researcher.

Drawing upon the excellent facilities for making live performance at New Adelphi and MediaCityUK, this course also provides the entrepreneurial and employability skills you need to function as a practitioner in the wider creative industries.

This course will also allow you to extend and develop skill sets through interdisciplinary exchange and collaboration, mirroring working environments within the creative industries. You will develop the ability to think dynamically, act originally, collaborate and function effectively in creative workplaces,  integrating theoretical concepts, creative practice and real world skills. 

You will also, through the core modules and final project, develop your own contemporary performance practice, culminating in the presentation of a significant piece of work, which you can then go on to use in professional contexts.

COURSE DETAILS

MA Contemporary Performance Practice offers you the opportunity to develop and refine your current practices, learn about new skills and approaches and engage with the issues most relevant to making performance in the world now. 

Through the course you will:

  • Collaborate creatively to explore, experiment and create new performance work
  • Engage with key approaches and aspects of making contemporary performance, such as the use and influence of digital technologies, the role and positioning of the audience and the ways in which your practice can engage with both local and global issues
  • Explore the theories, frameworks and practices in the field and how these are developing and responding to the contemporary world

TEACHING

From the outset, you will work in an interdisciplinary fashion. Your induction will include a creative collaborative project, that will acclimatise you to the ways of working on the programme and other students.

Programme modules are delivered through practical workshops, keynote lectures, seminars, and artist-led residencies. Seminars and student-centred symposia initiate independent work, and foster and facilitate collaborative partnerships and small group work. Adaptability of graduates is considered a core vocational outcome that reflects the hybridity of global culture and is an essential strategy for learning on the programme.

The programme fosters an intensive laboratory research culture intended to explore practice, deconstruct ideas, identify needs and skillsets and apply acquired knowledge to the construction of new modes of practice. At the core of this culture is the encouragement to consistently triangulate theory and reflection with personal practice. Philosophically the programme embraces diversity, innovation and accessibility through these student-centred approaches.

ASSESSMENT

Assessment is via a balanced combination of formative and summative opportunities for each module, which promotes and responds to a fluid and processual development of your practice. Formal opportunities to write are combined with oral presentations, a range of performance outcomes and online portfolios.

You will be assessed through:

  • Practical performances, combined with vivas/oral presentations (65%)
  • Written assignments (critical, reflective, analytical) (35%)

FACILITIES

Digital Performance Lab at MediaCity UK.

Theatre, studio and specialist rehearsal spaces and acting studios at New Adelphi.

CAREER PROSPECTS

Graduates will be able to work in a range of environments from the cultural sector to future media, interactive design and production, small scale touring, venue based and independent production, theatre-making, performing and writing, community arts practices and applied theatre-making with defined sectors.

People who work in the field of contemporary performance are able to work across a wide range of applied areas of creative design and application. This ranges from traditional arts settings to the fields of interactive design, new media production and, as the use of digitally driven interfaces increases, into more commercially driven areas of work. Contemporary performance experts can have a broad set of skills from devising and composition, to technical design, production management, programming, script-development, video editing and post-production skills. 

Potential employers include arts venues and organisations, educational providers and film companies. Skills employed in the making of contemporary performance, such as independent and collaborative problem solving, gathering and synthesis of elements, understanding and integration of the needs of a range of stakeholders, can be used to address many areas of creative practice. Graduates will also be equipped through the programme to pursue careers as individual, self-employed practitioners working across forms and disciplines.

LINKS WITH INDUSTRY

The programme has links with the following organisations and begins each year with a creative intensive, led by a key contemporary performance practitioner:

  • The Lowry Arts Centre
  • HOME
  • Z Arts
  • Blast Theory
  • Imitating the Dog
  • Station House Opera
  • Rimini Protokoll

FURTHER STUDY

Graduates of this programme will be well prepared, through its mix of theoretical and practical research, to pursue practice based MPhils/PhDs, which will build on and develop further practices established within the MA.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X