• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Hertfordshire Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Reading Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Newcastle University Featured Masters Courses
"biotechnologies"×
0 miles

Masters Degrees (Biotechnologies)

We have 16 Masters Degrees (Biotechnologies)

  • "biotechnologies" ×
  • clear all
Showing 1 to 15 of 16
Order by 
Admission Notice now available. - check at. http://www.unipd.it/en/biotecnologie-alimentazione. http://www.unipd.it/en/how-apply. Read more

Admission Notice now available

- check at

http://www.unipd.it/en/biotecnologie-alimentazione

http://www.unipd.it/en/how-apply

Instructions in English:

http://www.unipd.it/en/educational-offer/second-cycle-degrees/school-of-agricultural-sciences-and-veterinary-medicine?ordinamento=2011&key=IF0362

.

Biotechnologies for Food Science

In the 2016-2017 academic year, the University of Padova inaugurated a new curriculum of the Master Degree “Biotechnology applied to Food Security and Nutrition” (Second Cycle Degree) entitled “Biotechnologies for Food Science " to be entirely taught in English.

The “Biotechnologies for Food Science " Master degree (MSc) is an interdisciplinary and research-oriented Master of Science Programme and explores how to produce healthier and safer food following a cross-cutting, farm/field-to-fork approach. It is focused on the application of advanced biotechnologies in food production and safety and it is the ideal trait-d’union between the requests of consumers, of producers in the agro-food sector and research applied to production and food-safety.

The course has a strong component on cutting-edge methods, such as genomics, bioinformatics, proteomics, metabolomics, nanotechnologies, all in the context of animal and crop production as well as food quality and safety. Theoretical lessons are mixed with practical training, offering hands-on experience in advanced DNA, RNA, and protein analysis together with substantial lab sessions in bioinformatics. Lectures will deal with food production, hygiene and quality, molecular methods of agro-food analyses, effects of agro-biotech products on human beings and environments. Moreover environmental stresses, disease mechanisms, pathogens and pests will be treated as essential to understand how to protect crop and farm animals and how food might impact on human health: the lectures move across animal infectious disease, immunology, microbiology, plant pests and pathogens as well as abiotic stresses to show how biotechnology might help preventing disease and improve food production. As consumers are increasingly worried about the presence of contaminants in food and on the real origin of what they eat; the Programme includes a course in food toxicology and regulation, and one on traceability for food authentication.

Our Programme is based at the Agripolis campus, where are located four departments of the School of Agriculture and Veterinary Medicine of the University of Padova, all of which contribute to the MSc course, offering the best opportunities for a rich, cross-disciplinary experience in a highly qualified scientific environment.

Who is the MSc candidate?

This programme is open to Italian and foreign students from the EU and abroad, interested in learning and implementing effective value-added practices for the production of high-quality food products both in the EU and in international markets. English knowledge must be minimum at B2 level (CEFR). Applying students might possibly have a three-year Bachelor’s degree in a field connected with the Master’s curriculum. Good background in molecular biology, biochemistry, and microbiology is requested.

How is the programme organised?

Biotechnologies for Food Science is a 2-year Master programme (120 ECTS, equivalent to a Master of Science). Requirements for graduation include courses and preparation and defense of the Master thesis. Students will be encouraged to spend a period of their studies abroad, through Erasmus+ or other local programmes and agreements. Financial support to meet part of the cost for thesis work is granted to best students.

Visit the MSc “Biotechnologies for Food Science” page on the Università di Padova web-site (http://www.unipd.it/en/biotecnologie-alimentazione) for more details.

Teaching methods

Teaching takes place in an international environment and includes lectures and laboratory activities, practical exercises and seminars by experts; opportunities for intensive tutoring and for master thesis-related stages of at least six months duration will be available with outstanding companies in the sector of the food industry or with other relevant organisations in the private or public sphere. The Programme assists students to find suitable internship opportunities with qualified laboratories in Italy and abroad.

Examinations are written or oral and assess students’ participation also through reports, presentations, and group work.

Course structure

First year

During the first year of the programme the student will acquire knowledge on animal and crop genomics, focusing on the most advanced methods for high throughput genomic analysis (transcriptomics, genome-wide SNP analysis, epigenomics) and on the most recent approaches for selective breeding (genomic selection, genomic prediction). In parallel, the student will learn how bioinformatics tools might be applied to manage large sets of data, how biological data bases are organized and how to link different types of data. Extensive practical training in bioinformatics will be offered with various sessions in a dedicated lab. Food-borne pathogens and the positive role of microorganisms in food processes will be examined in an integrated microbiology course, while the molecular basis of pathology, host-response to infection, epidemiology, and diagnostics of transmissible diseases will form the basis of two courses. A course on biotechnology for crop production will introduce the molecular and physiological basis of crop production. Biotechnological approaches to improve crop yield, with particular attention to fruit production, and to reduce impact of abiotic stresses will examined. Molecular tools for food traceability and an intensive practical lab in DNA/RNA/protein analysis applied to food control will conclude the first year.

Second year

In the second year, the first semester have three courses. One will focus on novel technologies (proteomics, metabolomics, nanotechnology) and their application to food production. A second one will extend knowledge on plant biotechnology exploring advanced technologies for crop disease and pest management. A third one will deal with contaminants in food and food legislation. The second semester is completely dedicated to lab internship. It is possible to join a research lab in the campus or to have a working stage in the private sector.

link to the Campus descriptions:

http://youtu.be/gR4qcWUXvGg

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
The purpose of the Master of Science in Pharmaceutical Biotechnologies (two years, 120 CFU) is to endow students with a sound scientific knowledge for modern pharmaceutical research and health biotechnologies. Read more

The purpose of the Master of Science in Pharmaceutical Biotechnologies (two years, 120 CFU) is to endow students with a sound scientific knowledge for modern pharmaceutical research and health biotechnologies.

The organization and the needs of the research in the pharmaceutical field have changed dramatically in recent years. Modern research in both academic and industrial setting is intensely devoted to the study and development of biopharmaceuticals, including the development of biologics and monoclonal antibodies of new conception. Currently, the pharmaceutical scientist requires a thorough education and expertise in molecular biology, genetics, recombinant DNA techniques and bioinformatics, with a solid background in chemistry, pharmacology and advanced pharmaceutical technology. The professionals working in pharmaceutical R&D and production must possess a sound interdisciplinary knowledge, including the specific technical and regulatory issues dedicated to the research, development and monitoring of innovative drugs and biosimilars.

The Master of Science focuses on “transferring” knowledge, endowing students with strong technical skills (hard skills) and interpersonal skills (soft skills), building at the same time those competencies needed to face the changing pharmaceutical marketplace. Graduates in Pharmaceutical Biotechnologies will acquire a solid knowledge in biochemistry, molecular biology and protein engineering, immunology, pharmacology and pharmaceutical technology, and in those disciplines required to design, analyze and formulate innovative drugs such as biologics and drugs employed in targeted therapies. The knowledge of the physico-chemical properties of molecules and macromolecules enable students to apply the analytical methods required for the identification, purification and characterization of biopharmaceuticals during production and quality control.

Strengths: innovative teaching approach; critical approach to science (not only theory!); students have an active role in organizing events, projects and investigations; excellent Teacher/Students ratio; high student satisfaction score (>8.5/10); high employability rate (90%, in Italy); most students graduate with full marks and pursue a PhD abroad.

Course structure

  • Advanced Reactivity And Modelling
  • Advanced Molecular Biology
  • Molecular And Experimental Pharmacology
  • Structural Biochemistry
  • Bioinformatics And Computational Biology
  • Drug Discovery And Development
  • Pharmaceutical Nanotechnology
  • Protein Engineering
  • Proteomics And Biochemical Methodologies
  • Biologics And Biopharmaceuticals
  • Delivery And Formulation Of Biotechnological Drugs
  • Diagnostic Microbiology And Molecular Immunology

Career opportunities

Graduates in Pharmaceutical Biotechnologies will operate in various areas of academic and industrial research at national and international level. They will be able to tackle problems related to the study and development of drugs and diagnostics and will work in several fields associated with the production and quality control of the pharmaceutical, biopharmaceutical, diagnostic and scientific instrumentation, as well as the cosmetic and nutraceutical industries and those interested in human and animal nutrition.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. Read more

This study course is for students who wish to become specialised graduates with an advanced biomedical knowledge concerning the links between the structure and the purpose of biomolecules and bio-systems operating at cellular and tissue level of the human body, in both physiological and pathological conditions. The wide knowledge of the techniques is based on a solid practical activity in laboratories during the internship.

Subject to the educational aims of Class LM-9, the acquired knowledge allows specialized graduates to assist physicians in the diagnostic and therapeutic tasks involving the manipulation of cells, genes, and other biosystems requiring applicants to learn special skills in experimental biotechnology (e.g. Diagnosis and gene therapy; therapy through the use of genetically engineered cells; rational design and development of new medicines based on models of molecular targets known or derived from pharmacogenomic knowledge; preparation of nano-biotechnological tools for advanced diagnostics imaging and drug delivery; modulation of the immune response; diagnostics based on innovative processes of science and medical laboratory techniques; immunotherapy to targeted cells); organize and coordinate laboratory activities for advanced research or for diagnostic examinations requiring the use of biotechnological methods and the manipulation of cells or biotechnological materials; organize and coordinate the experimental protocols of clinical research involving the use of materials or biotechnology techniques; design and perform with autonomy research in biotechnology applied to medicine; lead and coordinate, also in governance, development programs and surveillance of biotechnology applied to human beings, taking into account the ethical, technical, environmental and economic implications.

Course structure

First year: Advanced Biomedical Technologies Or Laboratory Activities 1: Cellular And Molecular Therapies Or Laboratory Activities 2: Molecular And Systems Biology, Laboratory Medicine Technologies And Molecular Diagnostics, Pharmaceutical Biotechnology: Design And Analysis Of Biopharmaceuticals, Seminar

Molecular Medicine Curriculum: 6 Months At Ulm University: Glp/Gsp Bioethics, Molecular Oncology, Trauma Research And Regenerative Medicine

Traditional Curriculum: Proteomics And Bioinformatics, Cell And Organ Physiology And Medical Pathophysiology, Genetics, Immunology And General Pathology, Nanobiotechnology

Second year: Experimental Models In Vivo And Vitro, Pharmacology And Molecular Therapies, Stem Cell Biology And Molecular Biology Of Development, Thesis Work

Molecular Medicine Curriculum + Proteomics And Bioinformatics

Career opportunities

Biotechnology physicians will be able to head research laboratories in a predominantly technological and pharmacological environment and coordinate, as well as in terms of management and administration, program development and the monitoring of biotechnology applied on human beings with emphasis on the development of pharmaceutical products and vaccines, taking into account the ethical, technical, and legal implications and environmental protection.

  • To work in industry (pharma, biotech companies) for new diagnostics, molecular therapeutics, regenerative medicine and vaccines
  • To work in academia as a researcher in one of the many fields of Molecular Medicine
  • To be an entrepreneur in Biotech start up companies as a result of scientific discoveries

Graduates will be able to assist doctors in the diagnostic and in the therapeutic phases when those imply the manipulation of cells, genes and other bio systems and when specific biotechnological experimental competences are required.

Scholarships and Fee Waivers

The University of Padova, the Veneto Region and other organisations offer various scholarship schemes to support students. Below is a list of the funding opportunities that are most often used by international students in Padova.

You can find more information below and on our website here: http://www.unipd.it/en/studying-padova/funding-and-fees/scholarships

You can find more information on fee waivers here: http://www.unipd.it/en/fee-waivers



Read less
This course will enhance your understanding of key concepts in biotechnology and environmental sustainability and their practical application from innovation to commercialisation. Read more
This course will enhance your understanding of key concepts in biotechnology and environmental sustainability and their practical application from innovation to commercialisation.

This course is designed to enhance your career in a wide range of sectors, such as biorenewables, bioremediation and bioprocessing in which environmental sustainability is a key consideration. It will enable you to undertake a variety of fulfilling roles from research, and product and technology development to environmental protection and other leadership positions.

Biotechnology for Environmental Sustainability will equip you with broad theoretical knowledge and critical understanding of advanced principles in biotechnology. You’ll also gain the practical skills required to underpin a career within an industrial or research setting.

You’ll be supported by an active research group with varied interests and links with relevant industries, research institutes and other organisations.

See the website http://www.napier.ac.uk/en/Courses/MSc-Biotechnology-for-Environmental-Sustainability-Postgraduate-FullTime

What you'll learn

This course provides you with in-depth knowledge and critical understanding of key concepts in fermentation and bioprocessing, environmental microbiology, business planning and environmental policy which are relevant to the application of commercial-scale biotechnologies in an environmentally sustainable manner.

You’ll study the scientific concepts that underpin modern biotechnologies and how innovations can be exploited for the development of products and processes such as biofuels, novel bioactive compounds and waste conversion technologies. You’ll also explore the bioethical, socio-economic and regulatory aspects of environmental sustainability and the role of biotechnologies in environmental protection.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices such as fermentation and environmental monitoring. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project with one of our Edinburgh Napier start-up companies or externally in a relevant organisation or industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits, field trips and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time programme over one year and is split up into three trimesters. You can choose to start in either January or September. There may also be some opportunities to study abroad.

Modules

• Cell technology
• Business and bioethics
• Biotechnology for sustainable renewables
• Research skills
• Biotechnology for sustainable remediation
• Environmental sustainability management
• Independent research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Environmental sustainability is an increasingly important consideration in many aspects of our lives. Biotechnology underpins many of the solutions to existing unsustainable practices and offers the possibility of new products and as such is predicted to be a key driver in the future global economy.

This course provides a wide range of career opportunities in areas such as sustainable waste management, bioremediation, environmental protection and monitoring, biorenewables, and bioprocessing, as well as product/technology development. You'll be prepared for a variety of roles including those with a research focus and those with an emphasis on leadership in both multinational companies and smaller biotechnology enterprises.

Opportunities may also exist in contract research companies and service providers to the environmental and industrial biotechnology sectors, in addition to government and environment protection agencies.

Successful completion of the MSc programme also provides a sound platform for further study in a research setting; graduates will be qualified to continue to PhD studies in the biosciences.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less
Biotechnology is the exploitation of living systems or molecules from them for commercial gain. Although the word 'biotechnology' is only a few decades old, humankind has been using biotechnology for millennia, for example in baking, brewing and sewage treatment. Read more
Biotechnology is the exploitation of living systems or molecules from them for commercial gain. Although the word 'biotechnology' is only a few decades old, humankind has been using biotechnology for millennia, for example in baking, brewing and sewage treatment.

Modern biotechnologies rely on our increasing ability to manipulate organisms at the genetic level and include novel waste treatments and bioremediations, new pharmaceuticals, the exploitation of enzymes in 'green catalysis' and exciting new diagnostic techniques. In the 20th century our lives were transformed by information technology; the 21st century may see an equally great transformation, but this time led by biotechnology.

This Masters degree aims to teach the fundamental molecular bioscience underpinning biotechnology along with examples of its current applications.

PROGRAMME CONTENT
This MSc is taught by research-active staff members in the School of Biological Sciences. In addition, fundamental biological research skills are taught and students are given an understanding of bio-entrepreneurship. The degree culminates in a three-month, intensive research project in a laboratory in Queen's, thus preparing graduates for a career in research biotechnology.

Modules:
- Bio-entrepreneurship
- Biotechnology
- Foundations for Research in the Biosciences
- Literature Review
- Nucleic Acid Structure and Function
- Protein Structure and Function
- Research Project (triple module)

CAREER PROSPECTS
This Masters degree equips students with the necessary skills to enter either PhD programmes or employment directly in the global biotechnology industry.

Queen's postgraduates reap exceptional benefits. Unique initiatives, such as Degree Plus and Researcher Plus bolster our commitment to employability, while innovative leadership and executive programmes alongside sterling integration with business experts helps our students gain key leadership positions both nationally and internationally.

Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The MSc Biotechnology programme aims to provide students with the opportunity to develop advanced level theoretical knowledge, understanding, practical experience and training, with a particular focus on modern molecular and systems biology approaches to emerging biotechnologies. Read more
The MSc Biotechnology programme aims to provide students with the opportunity to develop advanced level theoretical knowledge, understanding, practical experience and training, with a particular focus on modern molecular and systems biology approaches to emerging biotechnologies.

The course is designed provide a good grounding in core biotechnology, and specialist training in medical, industrial, environmental and fermentation biotechnology with the opportunity to complete a research project within one of these areas.

The programme also seeks to provide training and support in developing a variety of key professional skills, including communication, critical analysis and thinking, project and time management, scientific writing, teamwork, ethics, information technology and career management.

Teaching staff are research active with the majority belonging to two major research groups within the School of Life Sciences:

- Drug Design and Delivery

- Molecular Basis of Disease

They can offer expertise in molecular, cell and system biology, recombinant DNA technology, protein biochemistry, structural biology, fermentation, bioengineering and many other areas. In addition to this, students can also hear from external guest speakers from industry and other schools within the University.

As a consequence of the research driven character of the School, students are expected to become research engaged. They are encouraged to interact with prospective final research project supervisors from the beginning of the course and they are invited to the School’s weekly research seminars.

Please note that this course is only available in the full-time format.

Read less
Regenerative Medicine. MSc ( 1 year Full-time ). Overview. Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. Read more
Regenerative Medicine
MSc ( 1 year Full-time )

Overview

Regenerative medicine is an interdisciplinary field, which aims to repair diseased or damaged tissues using biological or cell-based technologies. It is a rapidly growing area of biomedical research that encompasses stem cell biology, tissue engineering, drug delivery, and nanotechnology. This MSc course provides advanced, multi-disciplinary training in the scientific principles and clinical applications of regenerative medicine, and is delivered jointly by Barts and The London School of Medicine and Dentistry and the School of Engineering and Materials Science.

Taught modules will develop a strong scientific foundation in the biology of stem cells and regeneration and the fundamental principles of biomaterials, tissue engineering and cellular reprogramming. Through an intensive 12-week research project, students will then gain hands on experience applying these concepts to problems in human health and the development of novel regenerative technologies.

Upon completion of the MSc in Regenerative Medicine, students will be well placed for further training at the PhD level or professional careers in the biotechnology and pharmaceutical industries.

Structure
The MSc in Regenerative Medicine is a one year, full-time programme. Students are required to complete 180 credits comprising taught and research modules.


Taught Modules (15 credits each)

o Cellular and Molecular Basis of Regeneration
o Stem Cell and Developmental Biology
o Advanced Tissue Engineering and Regenerative Medicine
o Research Skills and Methodology
o Biomaterials in Regenerative Medicine
o Tissue-specific Stem Cells
o Induced Pluripotent Stem Cells and Genome Engineering
o Ethics and Regulatory Affairs

Research Project in Regenerative Medicine (60 credits)
During the final 12 weeks of the course, students will work full time on their laboratory-based research projects. Students will select research projects from a wide range of topics in regenerative medicine. Examples include research on the cellular and molecular aspects of tissue regeneration, disease pathogenesis, development of stem cell therapies, design of novel nano-biotechnologies, or engineering biomaterials and tissue scaffolds.


Entry requirements
As a multi-disciplinary course, the MSc is appropriate for a wide range of students. Graduates with degrees in biological sciences or medicine will gain an in-depth understanding of the cellular and molecular aspects of regenerative medicine as well as an introduction to the interdisciplinary fields of biomaterials and tissue engineering. Similarly, students with a physical sciences background will have the opportunity to broaden their experiences and acquire new skills in the biological sciences.
Admission to the course is selective, and based upon academic credentials, research experience, and motivation. At a minimum, students must have an undergraduate degree equivalent to UK second-class honours from a recognised academic institution. Applicants are required to submit a statement of purpose and letter of recommendation with their application.
Applications are accepted all year round, but there are limited places to ensure high-quality training, so please apply early to avoid disappointment.

Read less
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research. Read more
Develop your understanding of key concepts and practices in the biotechnologies that drive new product innovation as well as the business principles underlying commercialisation of biomedical research.

This course is designed to enhance your career in the medical or pharmaceutical biotechnology sectors in a variety of research, product and technology development and leadership roles.

Medical Biotechnology will equip you with broad theoretical knowledge and critical understanding of advanced principles in biotechnology. You'll also gain the practical skills required to underpin a career within a business or research environment.

See the website http://www.napier.ac.uk/en/Courses/MSc-Medical-Biotechnology-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in cell technology, bioprocessing and molecular analysis and how these approaches are applied in areas of specific relevance to medical and pharmaceutical applications such as drug design and discovery, immunology and microbial infection.

You’ll explore and critically evaluate the technologies driving discovery and modification of natural compounds for use in medicine; the relationship between progress in our understanding of disease and the development of diagnostics and treatments; as well as the application of theoretical concepts to the use of biological systems for production of drugs.

Business and entrepreneurship are also a core feature of this programme. You’ll address themes that influence the success of any biotechnology venture such as intellectual property, bioethics, sustainability and public perception through the development of a novel business concept.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices such as mammalian cell culture and fermentation. In your final trimester you’ll undertake an independent project within a vibrant research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or bio-industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials, site visits and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Cell technology
• Business and bioethics
• Research skills
• Biotechnology and drug discovery
• Molecular pathogenesis of microbial infection
• Research project

One optional module from
• Advanced immunology
• Current practice in drug development
• Molecular pharmacology and toxicology

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

Within the life sciences, biotechnology is the most rapidly growing sector and it is predicted that the global expansion in this field will be a key driver in the world economy.

This programme provides opportunities for laboratory-based or research management and product development work in a variety of industries ranging from multi-national companies to smaller biotechnology enterprises in the medical, pharmaceutical, nutraceutical and biochemical sectors.

Opportunities may also exist in contract research companies and service providers to the biotechnology sector, in addition to research institutes and local government.

Successful completion of the MSc programme provides a sound platform for further study in a research setting; graduates will be qualified to continue to PhD studies in the bio-molecular sciences.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

  • Compulsory Courses
  • Computational Fluid Dynamics
  • Numerical Simulation of Waves
  • Advanced Composite Materials

Optional Courses

  • Fire and Explosion Engineering
  • Structural Dynamics

SEMESTER 2

  • Compulsory Courses
  • Finite Element Methods
  • Mathematical Optimisation
  • Engineering Risk and Reliability Analysis

Optional Courses

  • Project Management
  • Risers Systems Hydrodynamics
  • Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less
Water is a strategic resource, and access to clean and secure water is essential for human wellbeing. Read more

Water is a strategic resource, and access to clean and secure water is essential for human wellbeing. Demand for better water systems has resulted in the pressing need for people with the technical skills to develop practical solutions in areas that include water treatment, monitoring tools, information technologies, efficient water use and reuse, and novel biotechnologies. Graduates of this cutting-edge degree will be able to apply the complex toolset of technical and leadership knowledge acquired in the program to a wide variety of private sector, institutional and government organizations involved with water use, treatment, research and protection.

The Master of Engineering Leadership (MEL) in Integrated Water Management is an intensive one-year degree program that will enable you to spearhead initiatives focused on water use, treatment, research and protection. The project-based curriculum covers all stages of the industry value chain. Graduates will explore advanced engineering theories, interdisciplinary knowledge and real-world applications. While 60 per cent of your classes will focus on your technical specialization, the remaining 40 per cent are leadership development courses that will enhance your business, communication and people skills. Delivery of the management and leadership courses are in partnership with UBC's Sauder School of Business.

What Makes The Program Unique?

The MEL in Integrated Water Management degree was developed in close collaboration with industry partners, who told us they need to hire leaders with the cross-functional technical and business skills to develop innovative solutions, manage collaborative teams and direct projects. The combination of technical expertise and leadership development makes the MEL in Integrated Water Management unique and highly relevant in today’s business environment.

To complement your academic studies, professional development workshops, delivered by industry leaders, are offered throughout the year-long program. These extra-curricular sessions cover a range of topics such as:

-Leadership fundamentals

-Giving and receiving feedback

-Learning how to deliver a successful pitch

-Effective presenting

The workshops also provide opportunities to network with professionals from a wide range of industries, UBC faculty and students in the MEL and MHLP programs.

Career Options

There is a growing demand for professionals in the public and private sectors who can develop and lead sustainable water management solutions. Graduates of this program will be highly sought after for their unique combination of leadership and technical sector-specific skills.

Our graduates will be in high demand locally, nationally and internationally by employers in industry and government seeking professionals who can develop and deliver sustainable water management initiatives.



Read less
Our Master of Research (MRes) in Translational Medicine provides high-quality research and training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more
Our Master of Research (MRes) in Translational Medicine provides high-quality research and training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

With advances in technology, graduates are now faced with heightened expectations to conduct effective bioscience research.

Employers demand skillsets comprising biological, medical, physical and computational characteristics and this Masters is designed to provide this breadth of training.

The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit.

Our MRes in Translational Medicine (Interdisciplinary Molecular Medicine) provides intense training in 'omics' skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics.

The training in metabolomic techniques is novel for a UK course, and teaching on the integration of different omic platforms and data in a systems medicine strategy is unique.

With its extended 35-week research project and broad training in biotechnology for medical healthcare, this MRes provides an excellent platform to progress into PhD research, or for a career in academia or the pharmaceutical or biotechnology industries, or as a clinical academic.

The MRes has substantial interdisciplinary focus; training comprises four taught modules before you undertake an extended 35-week research project within The University of Manchester, Waters or one of the Greater Manchester teaching hospitals.

A wide choice of projects are available, allowing individuals to focus on areas of interest such as the use of gene expression profiling, proteomics, metabolomics, stem cell research, tissue culture or pharmacogenetics in the biology of cancer, cardiovascular disease, infectious diseases, stroke or diabetes.

The MRes lasts for one year full-time, so it provides the ideal opportunity to experience the challenges of multidisciplinary research first-hand before committing to further training.

Over 85% of our graduates secure further research (PhD), pharmaceutical or biotechnology industry, or medical training posts upon completion.

Career opportunities

Our MRes, with its extended 35-week research project and broad training in biotechnology for medical healthcare, provides an excellent platform to progress into PhD research, or for a career in the pharmaceutical or biotechnology Industries or as a clinical academic.
-More than 50% of our graduates progress into PhD research (for example, within the Universities of Manchester, Cambridge, Imperial College London, Newcastle, Glasgow, Liverpool, Bristol).
-Around 15% pursue a career in the pharmaceutical or biotechnology industry in the UK or abroad.
-Approximately 25% are intercalating medics who complete their medical education.
-An estimated 10% pursue an undergraduate medical degree.

Read less
Our PGCert in Translational Medicine provides high-quality training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare. Read more
Our PGCert in Translational Medicine provides high-quality training skills for students who want to use state-of-the-art biotechnologies to rapidly translate disease research into improved clinical healthcare.

With advances in technology, graduates are now faced with heightened expectations to conduct effective bioscience research.
Employers demand skillsets comprising biological, medical, physical and computational characteristics and this PGCert is designed to provide this breadth of training.

The core aim is to train the next generation of scientists able to 'fast-track' biological and scientific data into advanced therapies and diagnostics tools.

Our understanding of the molecular basis of disease and drug mechanisms has improved dramatically in recent years, yet there is a distinct shortage of individuals able to apply this knowledge into effective clinical benefit.

This course provides intense training in 'omics' skills and techniques such as genetics, genomics, transcriptomics, proteomics and metabolomics.

The training in metabolic techniques is novel for a UK course, and teaching on the integration of different omic platforms and data in a systems medicine strategy is unique.

Teaching and learning

The postgraduate certificate requires the completion of four taught units delivered using a variety of face-to-face, workshop and e-learning approaches. Each unit lasts the equivalent of two weeks and consists of a package of lectures, workshops and tutorials.

Career opportunities

The aim of the PGCert is to give you a thorough knowledge and understanding of the key technologies used in the field of translational medicine.

This will help you to obtain laboratory-based positions or progress your career if you are already employed within academia or the pharmaceutical industry.

Read less
The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. Read more

The Bordeaux Biology Agrosciences (B2AS) program offers an integrated multidisciplinary approach that is adapted to the realities of research (background research) as well as to the socio-economic sector (professional courses). The program objectives are to train and equip researchers and professionals to face the issues posed by agriculture in the 21st century. This is achived by integrating plant biotechnology and agrofood technology within course content in order to deal with the challenges of innovation in agriculture.

With such an integrated approach, the Master B2AS represents a meeting point between academia and professionals. During the program, students may specialize either in the field of plant biology, biotechnology, plant breeding, genetics, plant and human health benefits, food production and innovation. The wide partner network provides students with a range of complementary expertise. This means that specific competencies are developed within the chosen field of biotechnology and plant breeding for agriculture improvements.

Program structure

Semester 1:

Scientific English (3 ECTS)

  • Students will reinforce and develop the reading, writing, listening and speaking skills relevant to a biological science research context.
  • Students will acquire knowledge of the linguistic and discursive features of both written and spoken scientific English.
  • Structure and rhetoric of the research article, writing up an abstract. Oral scientific presentation – students prepare a mini-symposium on the topic related to their future work placement (and thus complete relevant bibliographical and reading research in preparation).
  • Students are evaluated on their communication skills in English and also on their ability to manage complex scientific concepts in English.

Plant development and reproduction (3 ECTS)

  • Genetic regulation of root and stem apical meristem functioning, epigenetic regulations of plant development and reproduction, parental imprinting, plant hormones, fruit and seed development, sex determination in plants, cellular mechanisms involved in plant organ growth and development.

Metabolism and cellular compartmentation (3 ECTS)

  • Metabolism and cell compartmentation: morphodynamic organization of the plant secretory pathway, lipid and protein machineries; membrane transporters in plants and the related methods of study; lipid signaling in plant cells; formation and dynamics of membrane domains; regulation of metabolism and gene expression by sugars in plants. Nature and importance of futile cycles in plants.

Biotechonology (3 ECTS)

  • In vitro culture and applications, plant transformation and applications to crop plants, GMO legislation and traceability, metabolic engineering, GMO and production of antibodies and of molecules of high health value, GMO in the food industry, fungi biotechnology.

Plant pathogen interactions (3 ECTS)

  • Plant-Mollicutes interactions, plant-virus interactions: analysis of plant and virus factors necessary for virus cycle, viroids; RNA interference, plant defence mechanisms against pathogens (fungi, bacteria and virus), breeding of plants resistant to pathogens, biodiversity of plant pathogens, epidemiology of plant pathogen interactions and impact on crop production.

Plant breeding (3 ECTS)

  • Principles of selection and genetic gain, response to selection, germplasm resources, collecting, analysing, classifying, international rules on germplasm resources. Population improvement and cultivar development (breeding for lines, hybrids, clones, populations), high throughput phenotyping, breeding strategies and methods including molecular breeding (MAS, genomic selection) and biotechnologies, multiple traits selection, genotype by environment interaction, protecting varieties and intellectual property, plant breeding international network and organization.

Quantitative and population genetics and evolution (3 ECTS)

  • Population genetics and genetic diversity, haplotype structure, domestication and genetic consequences, linkage disequilibrium, genetic variance, estimating variance components, heritability, genetic correlations, association genetics, genomic selection, induced diversity TILLinG, natural diversity ecoTILLinG, linking genetics, genomics and bioinformatics : from fine- mapping to gene cloning; genotyping by sequencing.

Semester 2:

Laboratory Practice (6 months/30 ECTS) 

  • In a public laboratory and/or a private company laboratory.

Strengths of this Master program

During their studies, students will:

  • Acquire scientific knowledge in various fields of plant biology, green biotechnology, food supplements, food production, etc.
  • Receive a modern research-based training.
  • Develop an understanding of the challenges of modern agricultural practices in a context of environmental constraints and increasing demand.
  • Develop an understanding of the benefits and limits of modern biotechnology.
  • Acquire the skills to develop action planning processes for bioscience.
  • Acquire skills and practice within an English-speaking environment as well as other languages practised within the consortium.
  • Develop the necessary skills to collaborate with international teams and networks.
  • Acquire competencies for knowledge transfer to students and collaborators.
  • Develop competencies to create, finance and manage a new start-up.
  • Acquire an understanding of today’s industrial and economic environment within the Biotech sector.

After this Master program?

The objectives of the B2AS program are to prepare students for further study via PhD programs and/or careers in the food and agronomy industry throughout the world. This is achieved by providing high-level training in plant sciences but also by preparing students with relevant knowledge and skills in management and business. 

Graduates may apply for positions in the following industrial sectors in a R&D laboratory as well as in production activities:

  • Plant research laboratories
  • Plant breeding companies
  • Agro-chemical companies
  • Green and white biotechnology companies
  • Food, diet and nutrition companies
  • Plant medicinal production companies
  • Food supplement or nutraceutical companies
  • Pharmaceutical companies
  • Business trade companies


Read less

Show 10 15 30 per page



Cookie Policy    X