• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
De Montfort University Featured Masters Courses
Southampton Solent University Featured Masters Courses
University of Birmingham Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Aberdeen University Featured Masters Courses
0 miles

Masters Degrees (Biorefining)

  • "biorefining" ×
  • clear all
Showing 1 to 5 of 5
Order by 
January, May or September. The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. Read more

Start dates

January, May or September


The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. This makes it’s an exciting time to be part of the rapidly developing Biotech Industries. However, biorefining is a highly technical field and the successful growth of the industry is resulting in a lack of sufficient staff with the technical knowledge necessary to support its expansion. This course has been designed in consultation with existing UK industries to address this skills shortage. Since this programme is aimed at people who are already working, training is via distance learning and we hope to complement these with workshops.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU) through AU, the Industrial Biotechnology course offers you a highly vocational option.

The MSc comprises five core modules and four complementary modules which have been selected to allow students to study the main components of the biorenewable pipeline, from raw materials through extraction and processing to products; and to carry out your own work-based research. They are:

Core Modules

Biorenewable Feedstocks - each January

Students will learn about dedicated crops, agricultural waste and food waste streams and look at how to match feedstock to end-use. The module will examine: the scale of the challenge facing land-based crop production in the 21st century; the role of emerging technologies to meet these needs sustainably; and practical and economic considerations to scaling up production.

Biorefining Technologies - each January

This module will equip students with a detailed fundamental and practical knowledge of biorefining including pre-processing, processing and product isolation. It will teach them to evaluate the relative limitations and merits of different extraction, microbial biotechnology & fermentation technologies

Biobased Product Development - each September

This module will focus on potential end-products from bio-refineries including the relevant performance tests and the available processing/manufacturing technologies; both current and emerging technologies will be discussed. The module will also pay attention to the product innovation chain including commercial elements, life-cycle analysis and regulatory considerations.

Waste Stream Valorisation - each May

This module explores the potential to valorise a range of waste streams and will include case studies of exemplary waste streams as well as from students’ own chosen areas of interest.

Drivers of the Bioeconomy - each September

This module examines the societal drivers that shape the bio-economy and looks at what makes production viable. The need for energy efficient will be highlighted, along with vertically integrated production pipelines.

Research Methodologies and Advances in Bioscience

This module provides a framework for developing your research skills in the context of your own research question. You will be paired you up with a supervisor whose research field is in your area of interest and your supervisor will then guide you as you develop your ideas.

Work-based Dissertation

You may start your dissertation in any semester but should only be taken when Research Methodology and Advances in Biosciences has been completed and will involve a work-plan developed with your ATP tutor, academic supervisor and employer (if relevant). Working at a rate of 10-15 hrs per week we would expect the dissertation to take a year to complete.

Complementary Modules

Carbon Footprinting and Life Cycle Assessment - each January

(BU) This module will provide a theoretical and critical analysis of the practice and application of Carbon Footprinting (CF) and Life Cycle Assessment (LCA) as key tools in assessing the environmental impact of agricultural systems.

Genetics and Genomics - each May

(AU) This module focuses on the challenges facing land based production and the role of emerging technologies to meet these challenges sustainably.

Anaerobic Digestion - each May

(BU) This module covers not only the technological aspects of AD, but also the opportunities and consequences of different feed-stocks, the alternative uses of the produced energy and digestates.

Climate Change - each September

(BU) After an introduction to the science and effects of greenhouse gases in the atmosphere, the module will assess historical climate change and will look at current predictions of future change. Methods by which agriculture and industry could adapt to the consequences of – and mitigate its effect on – climate change will be discussed.

Each distance learning module runs for 12 to 14 weeks. Students can start with whichever module they like and take as many or as few as they are able to over the five years of registration.

To achieve a PGCert, students must complete three taught core modules
To achieve a PGDiploma students must complete any six taught modules
To achieve an MSc, students must complete four core modules, two complementary modules and a work-based dissertation.

Read less
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. Read more
The MSc in Advanced Process Integration and Design started in the Department of Chemical Engineering (UMIST) over twenty years ago. The programme was a result of emerging research from the Centre for Process Integration, initially focused on energy efficiency, but expanded to include efficient use of raw materials and emissions reduction. Much of the content of the course stems from research related to energy production, including oil and gas processing.

The MSc in Advanced Process Integration and Design aims to enable students with a prior qualification in chemical engineering to acquire a deep and systematic conceptual understanding of the principles of process design and integration in relation to the petroleum, gas and chemicals sectors of the process industries.

Overview of course structure and content
In the first trimester, all students take course units on energy systems, utility systems and computer aided process design. Energy Systems develops systematic methods for designing heat recovery systems, while Utility Systems focuses on provision of heat and power in the process industries. Computer Aided Process Design develops skills for modelling and optimisation of chemical processes.

In the second trimester, the students choose three elective units from a range covering reaction systems, distillation systems, distributed and renewable energy systems, biorefining, and oil and gas processing. These units focus on design, optimisation and integration of process technologies and their associated heat and power supply systems.

In two research-related units, students develop their research skills and prepare a proposal for their research project. These units develop students skills in critical assessment of research literature, group work, written and oral communication, time management and research planning.

Students then carry out the research project during the third trimester. In these projects, students apply their knowledge and skills in process design and integration to investigate a wide range of process technologies and design methodologies. Recent projects have addressed modelling, assessment and optimisation of petroleum refinery hydrotreating processes, crude oil distillation systems, power plants, waste heat recovery systems, refrigeration cycles with mixed refrigerants, heat recovery steam generators, biorefining and biocatalytic processes and waste-to-energy technologies.

The course also aims to develop students' skills in implementing engineering models, optimisation and process simulation, in the context of chemical processes, using bespoke and commercially available software.

Industrial relevance of the course
A key feature of the course is the applicability and relevance of the learning to the process industries. The programme is underpinned by research activities in the Centre for Process Integration within the School. This research focuses on energy efficiency, the efficient use of raw materials, the reduction of emissions reduction and operability in the process industries. Much of this research has been supported financially by the Process Integration Research Consortium for over 30 years. Course units are updated regularly to reflect emerging research and design technologies developed at the University of Manchester and also from other research groups worldwide contributing to the field.

The research results have been transferred to industry via research communications, training and software leading to successful industrial application of the new methodologies. The Research Consortium continues to support research in process integration and design in Manchester, identifying industrial needs and challenges requiring further research and investigation and providing valuable feedback on practical application of the methodologies. In addition, the Centre for Process Integration has long history of delivering material in the form of continuing professional development courses, for example in Japan, China, Malaysia, Australia, India, Saudi Arabia, Libya, Europe, the United States, Brazil and Colombia.

Career opportunities

The MSc course in Advanced Process Design and Integration typically attracts 40 students; our graduates have found employment with major international oil and petrochemical companies (e.g. Shell, BP, Reliance and Petrobras and Saudi Aramco), chemical and process companies (e.g. Air Products), engineering, consultancy and software companies (e.g. Jacobs and Aspen Tech) and academia.

Accrediting organisations

This programme is accredited by the IChemE (Institution of Chemical Engineers).

Read less
The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Read more


The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Increasingly, biotechnology companies are recruiting Master’s students with specialised skills to perform jobs previously the reserve of Doctorate level scientists https://www.sciencemag.org/careers/features/2012/01/wanted-bs-and-ms-scientists-life-sciences-industries.

At the end of the course you will be able to meet the challenges of biotechnology, demonstrate critical thinking and solve problems, exploit opportunities, and know how ideas can be turned into viable businesses or a successful grant application.

Why study Biotechnology at IBERS?

• You want specialist experience and knowledge in biotechnology research and commercial application to give you a competitive edge in the job market and underpin your successful career.
• IBERS has the credentials to deliver these goals.
• With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University, and we regard teaching as particularly important to our mission https://youtu.be/gU5Kd-vlglQ. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey 2016 https://www.aber.ac.uk/en/ibers/ug-study/ugrad-courses/nss/, with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University.
• IBERS is internationally-recognised for research excellence and works to provide solutions to global challenges such as food security, sustainable bioenergy, and the impacts of climate change. IBERS hosts 2 National bioscience facilities: The National Plant Phenomics Centre https://www.youtube.com/watch?v=8qBsVP0j70k&feature=youtu.be is a state of the art automated plant growth facility that allows the high throughput evaluation of growth and morphology in defined environments, and the BEACON Centre of Excellence for Biorefining http://www.beaconwales.org/ is a £20 million partnership between Aberystwyth, Bangor and Swansea Universities set up to help Welsh businesses develop new ways of converting biomass feedstocks and waste streams into products for the pharmaceutical, chemicals, fuel and cosmetic industries.
• IBERS has a track record of working with academic and industrial partners to develop and translate innovative bioscience research into solutions that help mitigate the impacts of climate change, animal and plant disease, and deliver renewable energy and food and water security. The economic and social impact of IBERS research was recognised in 2011when the institute won the national BBSRC Excellence with Impact.

Course Content

In the first 2 semesters the course focuses on 2 key areas of biotechnology: industrial fermentation (manufacturing processes, feedstock pretreatment, fermentation, and the biorefining of low cost feedstocks to high value products) and plant biotechnology (synthetic biology, gene editing, precision genome modification, transformation technologies, up and down gene regulation and silencing, and gene stacking). In addition you will receive practical training in state of the art molecular and analytical bioscience techniques and technologies, you will learn of marine, food and health biotechnology, and sustainable use of bio-resources and bioscience to help meet the needs of an ever growing human population. All course modules are delivered by academics and professional practitioners at the forefront of activity in the field.
In the final semester you will work on your own research project with your dissertation supervisor. This could be a project of your own design and will focus on an aspect of biotechnology that you found particularly interesting; it may even be something that you want to develop as a business idea in the future. During your dissertation project you will use the knowledge and the skills that you gained during the first 2 semesters. Your dissertation project will give you an opportunity to become an expert in your topic and to develop research skills that will prepare you for your future career in biotechnology. Your tutor will mentor you in hypothesis driven experimental design, train you in analytical techniques e.g. gas and liquid chromatography, mass spectrometry, vibrational spectroscopy, fermentation, product isolation, biomass processing, the analysis of complex experimental data, and the formation of robust conclusions. You will also be guided in writing your dissertation.

Examples of past dissertation topics

1. Optimisation of ethanol production, xylose utilisation and growth of Candida shehatae 661 on absorbent hygiene product sourced cellulosic material using Taguchi methodology
2. Bioactive compounds in invasive species
3. Designing a system for industrial production of recombinant protein using grass juice as a fermentation medium

Read less
Wageningen University is one of the leading centres in Food Science and Technology in Europe and the world. The history of the Food Technology programme at Wageningen University goes back more than 50 years; it is considered to be one of the best and most innovative programmes in its field in Europe. Read more

MSc Food Technology

Wageningen University is one of the leading centres in Food Science and Technology in Europe and the world. The history of the Food Technology programme at Wageningen University goes back more than 50 years; it is considered to be one of the best and most innovative programmes in its field in Europe. The programme focuses on aspects of production, composition and design of food products.

Programme summary

The Food Technology programme at Wageningen University has been in place for more than 50 years and is considered one of the best and most innovative programmes in its field in Europe. Wageningen University offers high-level courses and research in all areas of food science; ranging from advanced technical fields, such as Process Engineering or Chemistry, to fields with a more economic or sociological focus, such as Marketing and Gastronomy.

The Wageningen Food Science faculty is larger than that of any other European university. It includes professors and lecturers from a wide range of departments: Food Chemistry, Food Physics, Food Microbiology, Food Quality and Design, and Food Process Engineering. Food Technology covers nearly all aspects of food science and technology. As a result of being a very broad field, students are required to choose one of the specialisations offered.


Within the programme Food Technology you can choose your own specialisation that meets your personal interests.

Ingredient Functionality
This specialisation focuses on the composition of food, especially, on the role of various components, ingredients or structures in the quality and functionality of the final product. It deals with sensory, nutritive and textural aspects of foods in relation to their components. You major in Food Chemistry or Food Physics.

Product Design
While many new products are launched, not all succeed. This specialisation deals with the design and development of new or improved products. The focus is on the processes used in Food Technology, the design of new products from a consumer perspective and on modelling new product concepts/processes and predictive quality control. You major in Food Process Engineering or Food Quality and Design.

Food Innovation and Management
This specialisation combines courses in Food Technology with courses in Management Studies. It is intended for students who wish to work on product development in small businesses or who plan to start their own business. You will do a thesis in Management Studies and an internship in one of the Food Technology groups.

Food Biotechnology and Biorefining
This specialisation focuses on using micro-organisms or enzymes in food production. During this specialisation, you will learn about processes that can be used for biorefinery or agricultural raw materials. The focus is on biotechnological food production. You major in Food Microbiology, Food Chemistry, Food Process Engineering.

Dairy Science and Technology
This specialisation focuses on the dairy production chain. Its core programme consists of dairy-related courses and several additional courses, such as Food Components and Health, Advanced Fermentation Science and Predicting Food Quality. During the second year, you complete a dairy-related thesis research project and internship.

Sustainable Food Process Engineering
This specialisation focuses on the development of processes that are more efficient in their use of resources. Thesis can be carried out under the supervision of one of the following groups: Food Process Engineering; Operations Research and Logistics; Biobased Chemistry and Technology; or Food Quality and Design.

European Masters Degree in Food Studies
This international specialisation is developed in cooperation with the universities of Cork (Ireland), Lund (Sweden) and Agro-Paris Tech (Paris, France) as well as with ten large industrial partners. For more information see: http://www.eurmscfood.nl.

This specialisation focuses on the molecular science behind products and dishes used in small scale settings. Scientific insights are used to develop improved food preparation techniques. The cultural aspects of food will also receive attention. You major in Food Chemistry, Food Physics or Rural Sociology.

Sensory Science
This specialisation combines Food Technology with Nutrition and Health. You will work with products and humans in different contexts and study how sensory systems function, how this relates to products and how to analyse these aspects.

Your future career

Graduates find jobs with relative ease, especially in the Netherlands and Western Europe. Recent graduates found positions in the private sector (from small- and medium-sized companies to large multinationals), at Wageningen University or other universities as PhD students, and at research institutes domestically and abroad. Graduates also work in the field of process technology at innovation centres, innovative food companies or government agencies. Most achieve management positions.

Student Harmke Klunder
“It is rich in proteins, unsaturated fats, vitamins and is available in large quantities all over the world. You may conclude, ‘The ideal food ingredient.’ However, would you still think it was ideal if you knew it was made from insects? With three other students, we added insects to a third world food product, thereby winning an international competition from the IFT (Institute of Food Technologists). Malnutrition in Africa could be fought by enriching their daily porridge, sorghumpap, with protein-enhanced termites. As food ingredients technologist, it is possible to look beyond the products found on the shelves of the local supermarkets.”

Related programmes:
MSc Food Quality Management
MSc Food Safety
MSc Biotechnology
MSc Nutrition and Health

Read less
Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?. Read more
Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?

You can find answers to these questions when you study forest sciences. You will come to view forests not only as a setting for jogging trails or as a source of wood, but rather as a source of versatile renewable resources and as complex ecological systems that are closely connected to their environment. The relationship between humans and nature and between society and natural resources is a strong feature of these studies.

The Master’s Programme in Forest Sciences offers a broad and versatile perspective on forests and their use. The studies focus on and apply knowledge in biology, business economics, environmental sciences, logistics, geoinformatics and information technology. As a graduate in forest sciences you will be a professional in forest ecology, the management and use of forest resources, forest bioeconomy business and policy, with ample career opportunities in Finland and abroad.

Come and study forest sciences at the University of Helsinki, in one of the world’s foremost degree programmes in the field. For more information in Finnish about studies in forest sciences, the field of forestry and its opportunities, see http://www.metsatieteet.fi.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

General studies in the Master’s programme provide you with skills needed for the academic world and the labour market. In advanced studies, you focus on field-specific issues and develop your professional knowledge when writing your Master’s thesis and completing courses in your field of specialisation. In addition, the studies include elective courses that allow you to diversify and deepen your knowledge.

The Master's Programme in Forest Sciences comprises three study tracks: forest ecology, the management and use of forest resources and forest bioeconomy business and policy. These study tracks include a total of 12 fields of specialisation.

The specialisations in forest ecology focus on various types of forest and peatland ecosystems and their exploitation. Topical issues include climate change, the prevention of damage to forests caused by insects and fungi, the control of game populations, and problems related to the exploitation of tropical forests.

The specialisations in the management and use of forest resources examine the planning of forest use and the relevant collection of information, forest inventory models, wood harvesting and logistics as well as the processing of wood into bioeconomy products. Topical issues include the application of new remote sensing methods in the planning of forest resource management, the combination of different values and targets in forestry and bioeconomy, various models of silviculture, increased efficiency in logging and transportation, and generating added value in all areas of biorefining.

Studies in the business economics of forest bioeconomy are based on the sustainable use of a renewable natural resource and on the development of responsible business activities in a global environment. The focus of studies is on the globalisation of forest-based industry and business and its structural redevelopment into the bioeconomy. You will become familiar with forest-based issues of the bioeconomy in production, marketing and policy as part of the global operating environment.

Selection of the Major

Graduates from the Bachelor’s Programme in Forest Sciences at the University of Helsinki can continue their studies in the Master's Programme in Forest Sciences. There is an application process for graduates from other Bachelor’s programmes, from universities of applied sciences, and for international applicants.

In the application process, you are selected for the Master’s Programme in Forest Sciences. Upon admission you must select one of the three study tracks, and you must select your specialisation by the second year of your Master’s studies.

Study tracks, specialisations and examples of topics covered by them:
Forest Ecology
-The management and restoration of forest ecosystems: the sustainable and multitargeted use of forest, the use of peat.
-Forest soil science: the biogeochemistry and hydrology of forest soil, soil and root ecology.
-Forest pathology and mycology: the microbiology and epidemiology of forests.
-Forest zoology: the biology and ecology of forest insects, the ecology of forest pests.
-Wildlife management: game populations and society, the planning of game husbandry, mammal ecology.
-The ecology, management and use of tropical forests: methods of tropical forestry, agroforestry.

Management and Use of Forest Resources
-Forest resource management: the collection and use of forest-related information in decision-making, laser scanning, remote sensing, forest inventory.
-Forest technology and logistics: the management of forest products, terramechanics, forest bioenergy.
-Wood technology: wood science and wood as raw material, laboratories in the forest industry, the structure and properties of wood raw material.

Forest Bioeconomy Business and Policy
-Marketing and management in the forest industry: strategic management and marketing, responsibility in forestry, customer orientation, innovations.
-Forest economics: business economics of units within forest bioeconomy, economics of silviculture, forest investment and the economic impact of environmental targets.
-International forest policy: global processes and trends impacting the forest sector from the perspective of individuals, communities and nations.

Programme Structure

The Bachelor’s Programme in Forest Sciences includes two study tracks: forest ecology and the use of forest resources, and forest economics and marketing. The Master's Programme in Forest Sciences comprises three study tracks: forest ecology, the management and use of forest resources, and business economics and policies of forest bioeconomy. These study tracks include a total of 12 specialisations (see specialisations above). Upon completing the Master's Programme in Forest Sciences you will be eligible to apply for the Doctoral Programme in Sustainable Use of Renewable Natural Resources.

Career Prospects

A degree in forestry offers extensive and fairly unique professional competence on a global scale on forest and peatland ecosystems, forest management and use, forest conservation, the business economics and policies of forest bioeconomy as well as the collection, management and use of forest-related information. For more information in Finnish on the available career opportunities, see http://www.metsatieteet.fi


Studies in forestry offer ample opportunities for international activities. For example, you can complete your practical training or collect material for your Master’s thesis abroad. Most courses in the Master’s programme are in English, and several international students participate. You can also serve as a tutor for international exchange students and establish contacts and networks in this way. Another example of international activities is the Helsinki Summer School, which offers intensive courses on topical issues and brings together students from as many as 60 countries.

Read less

  • 1
Show 10 15 30 per page

Share this page:

Cookie Policy    X