• Swansea University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
University of Leeds Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Aberdeen University Featured Masters Courses
"bioprocess" AND "enginee…×
0 miles

Masters Degrees (Bioprocess Engineering)

We have 24 Masters Degrees (Bioprocess Engineering)

  • "bioprocess" AND "engineering" ×
  • clear all
Showing 1 to 15 of 24
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Bioprocess Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Bioprocess Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition delivering pioneering innovative process engineering solutions.

Key Features of MSc by Research in Bioprocess Engineering

Our research on Bioprocess Engineering builds on established process engineering areas with application to energy, health, food, water and the environment.

One of our major strengths is our close and extensive involvement with local, national and international engineering companies.

There is a wide range of research at Swansea University. This includes:

- Bioengineering, biomedical engineering

- Desalination

- Pharmaceutical engineering

- Polymer engineering

- Separation processes

- Transport processes

- Water and wastewater engineering

MSc by Research in Bioprocess Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Students enrolled on the MSc by Research in Bioprocess Engineering benefit from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis

Astra Zeneca

Avecia

BP Chemicals

Bulmers

Dow Corning

GlaxoSmithKline

Nestle

Murco

Phillips 66

Unilever

Valero



Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less
Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production?… Read more

Have you ever wondered how the latest life science discoveries - such as a novel stem cell therapy - can move from the lab into commercial scale production? Would you like to know whether it is possible to produce bio-polymers (plastics) and biofuels from municipal or agricultural waste? If you are thinking of a career in the pharma or biotech industries, the Biochemical Engineering MSc could be the right programme for you.

Degree information

Our MSc programme focuses on the core biochemical engineering principles that enable the translation of advances in the life sciences into real processes or products. Students will develop advanced engineering skills (such as bioprocess design, bioreactor engineering, downstream processing), state-of-the-art life science techniques (such as molecular biology, vaccine development, microfluidics) and essential business and regulatory knowledge (such as management, quality control, commercialisation).

Three distinct pathways are offered tailored for graduate scientists, engineers, or biochemical engineers. Students undertake modules to the value of 180 credits. The programme offers three different pathways (for graduate scientists, engineers, or biochemical engineers) and consists of core taught modules (120 credits) and a research or design project (60 credits).

Core modules for graduate scientists

-Advanced Bioreactor Engineering

-Bioprocess Synthesis and Process Mapping

-Bioprocess Validation and Quality Control

-Commercialisation of Bioprocess Research

-Fluid Flow and Mixing in Bioprocesses

-Heat and Mass Transfers in Bioprocesses

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

Core modules for graduate engineers

-Advanced Bioreactor Engineering

-Bioprocess Validation and Quality Control**

-Cellular Functioning from Genome to Proteome

-Commercialisation of Bioprocess Research

-Integrated Downstream Processing

-Mammalian Cell Culture and Stem Cell Processing

-Metabolic Processes and Regulation

-Structural Biology and Functional Protein Engineering

-Bioprocess Microfluidics*

-Bioprocess Systems Engineering*

-Bioprocessing and Clinical Translation*

-Cell Therapy Biology*

-Industrial Synthetic Biology*

-Sustainable Bioprocesses and Biorefineries*

-Vaccine Bioprocess Development*

*Core module for graduate biochemical engineers; **core module for both graduate engineers and graduate biochemical engineers

Research project/design project

All MSc students submit a 10,000-word dissertation in either Bioprocess Design (graduate scientists) or Bioprocess Research (graduate engineers and graduate biochemical engineers).

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, and individual and group activities. Guest lectures delivered by industrialists provide a professional and social context. Assessment is through unseen written examinations, coursework, individual and group project reports, individual and group oral presentations, and the research or design project.

Careers

The rapid advancements in biology and the life sciences create a need for highly trained, multidisciplinary graduates possessing technical skills and fundamental understanding of both the biological and engineering aspects relevant to modern industrial bioprocesses. Consequently, UCL biochemical engineers are in high demand, due to their breadth of expertise, numerical ability and problem-solving skills. The first destinations of those who graduate from the Master's programme in biochemical engineering reflect the highly relevant nature of the training delivered.

Approximately three-quarters of our graduates elect either to take up employment in the relevant biotechnology industries or study for a PhD or an EngD, while the remainder follow careers in the management, financial or engineering design sectors.

Top career destinations for this degree:

-PhD Degree/Further Studies(Imperial College London, UCL, Cambridge)

-Consultancy (PwC)

-Bioprocess/Biopharma Industry (GSK, Eli Lilley, Synthace)

-Financial Sector

Employability

The department places great emphasis on its ability to assist its graduates in taking up exciting careers in the sector. UCL alumni, together with the department’s links with industrial groups, provide an excellent source of leads for graduates. Over 1,000 students have graduated from UCL with graduate qualifications in biochemical engineering at Master’s or doctoral levels. Many have gone on to distinguished and senior positions in the international bioindustry. Others have followed independent academic careers in universities around the world.

Why study this degree at UCL?

UCL was a founding laboratory of the discipline of biochemical engineering, established the first UK department and is the largest international centre for bioprocess teaching and research. Our internationally recognised MSc programme maintains close links with the research activities of the Advanced Centre for Biochemical Engineering which ensure that lecture and case study examples are built around the latest biological discoveries and bioprocessing technologies.

UCL Biochemical Engineering co-ordinates bioprocess research and training collaborations with more than a dozen UCL departments, a similar number of national and international university partners and over 40 international companies. MSc students directly benefit from our close ties with industry through their participation in the Department’s MBI® Training Programme.

The MBI® Training Programme is the largest leading international provider of innovative UCL-accredited short courses in bioprocessing designed primarily for industrialists. Courses are designed and delivered in collaboration with 70 industrial experts to support continued professional and technical development within the industry. Our MSc students have the unique opportunity to sit alongside industrial delegates, to gain deeper insights into the industrial application of taught material and to build a network of contacts to support their future careers.

Visit the Biochemical Engineering Open Days page on the University College London website for more details on opportunities to come and see our facilities and speak to the team!



Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. Read more
Biochemical Engineering concerns the use of biological organisms or processes by manufacturing industries. It is a multidisciplinary subject, requiring the integration of engineering and bioscience knowledge to design and implement processes used to manufacture a wide range of products; from novel therapeutics such as monoclonal antibodies for treating cancer, vaccines and hormones, to new environmentally-friendly biofuels. It is also essential in many other fields, such as the safe manufacture of food and drink and the removal of toxic compounds from the environment..

This course will provide you with the skills you need to start an exciting career in the bioprocess industries, or continue research in the area of bioprocessing or industrial biotechnology.

Industry involvement

As this is a highly industrially-led subject area, we have secured guest lectures from Cobra Biologics (contract manufacturing), Biocats Ltd (Enzyme manufacture) and the Centre for Process Innovation Ltd (biological process development) and are currently seeking additional industrial lectures.

Academics working at Birmingham have strong links with industry, through collaborative projects, so allow students to make contact with companies. Graduates from the MSc programme have gone on to careers in biochemical engineering world-wide, in large and small companies working in diverse areas.

There are also guest lectures from academics working at other institutions.

Practical experience

You will gain practical experience of working with industrially applicable systems, from fermentation at laboratory scale to 100 litre pilot scale, in the Biochemical Engineering laboratories. Theory learned in lectures will be applied in practical terms. In addition, theoretical aspects will be applied in design case studies in a number of modules, including the Design Project.

All MSc students complete a summer research project, working on a piece of individual, novel research within one of the research groups in the school. These projects provide an ideal experience of life as a researcher, from design of experimental work, practical generation of data, analysis and communication of findings. Many students find this experience very useful in choosing the next steps in their career.

Special Features

The lecture courses are supplemented with tutorials, seminars and experimental work. Industrial visits and talks by speakers from industrial and service organisations are also included in the course programme.

Pilot Plant

The Biochemical Engineering building houses a pilot plant with large-scale fermentation and downstream processing equipment. The newly-refurbished facility includes state-of-the-art computer-controlled bioreactors, downstream processing equipment and analytical instruments.

Course structure

The MSc is a 12-month full-time advanced course, comprising lectures, laboratory work, short experimental projects and a research project. You will take an introductory module, four core modules, and then choose 50 credits of optional themed modules. The course can also be taken on a part-time basis. The Postgraduate Diploma (PGDip) lasts for 8 months from the end of September until June.

For the first eight months you have lectures, tutorials and laboratory work. Core module topics include:

Fermentation and cell culture
Bioseparations
Process monitoring and control
Systems and synthetic biology approaches
Optional module include:

Biopharmaceutical development and manufacture
Food processing
Business skills for the process industries
The programme is strongly design-orientatedand you complete a full process plant design exercise. You also have practical experience of working in the newly-refurbished pilot plant of the Biochemical Engineering building.

From June to September you gain research training on your own project attached to one of the teams working in the bioprocessing research section.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. Read more

State of The Art

Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. On the one hand that is due to progress made in biomedical research, leading to the development of new diagnostic and therapeutic procedures. At the same time the chemical industry is showing a growing interest in biotechnological processes to reduce its environmental footprint and increase the efficiency of the methods employed. In addition to the pharmaceutical, chemical and food industries, which make use of biotechnological processes in varying degrees, there is now a biotechnology-based industry in its own right, in which added value is generated primarily with the help of biotechnological principles.

Curriculum

The Master’s program in Biotechnology is designed to communicate the knowledge, methodological skills and problem-solving competence needed to tackle a very wide range of scientific and engineering problems.

Excellent Education Guarantee

First-class faculty from the worlds of science, engineering and business, a strong industry orientation and the limited number of places guarantee excellent conditions for study and student support in keeping with the MCI’s motto “Mentoring the Motivated” plus attractive prospects for the future. As a technical university program positioned at the interface with business and management, the Master’s program satisfies the highest international standards.

Contents

With its focus on industrial and pharmaceutical biotechnology, the study program is designed to enable graduates to convert laboratory
results in the field of bioscience into full-scale industrial processes.

The Master’s program combines various methodological modules – such as molecular biotechnology, bioprocess engineering, biotechnological separation processes, bioanalytics and bioinformatics – with applications-oriented modules covering the whole field of biotechnology, including pharmaceutical biotechnology, food biotechnology and industrial biotechnology.

The program is also designed to take account of the growing interest shown in trade and industry in graduates with the ability to fulfill overarching functions like quality, project and process management, including the relevant key competences (working methods, social competence, team working skills, etc). In addition to solving technical problems, graduates are also in a position to evaluate the economic impacts of the decisions taken. Thanks to project-based learning, industry visits, practicals and laboratory work, the study program also has a strong focus on practical relevance.

Find out more about this course of study:

https://www.mci.edu/en/study-program/master/biotechnology

Admission

Applications for this study program can be submitted at any time. Applications for admission to the Master of Engineering, Environmental & Biotechnology program must be submitted online using the standardized application form accompanied by the required documents within the period stipulated. You can sign up for the upcoming semester here:

https://tasks.mci.edu/index.php?option=com_onlinebewerbung&view=register&lang=en&fromstg=Master-MAUVBT

Download the latest brochure here:

https://www.mci.edu/index.php?option=com_phocadownload&view=category&download=224&Itemid=1115

Read less
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Read more
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Graduate programs lead to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). The MEng program differs from the MASc and PhD programs in that it is oriented to learning through prescribed courses rather than through research.

The department attracts a dynamic professorial staff with outstanding international reputations. Many graduate students work closely with industrial partners during their studies. Research is funded by the government and industry, often by means of a consortium of companies. The experience of dealing with real-world problems prepares graduates for successful professional careers.

Research and teaching are the foundations of the department. Research is clustered into eight major categories:
-Biomolecular and Biomedical Engineering
-Bioprocess Engineering
-Chemical and Materials Process Engineering
-Engineering Informatics
-Environmental Science and Engineering
-Pulp and Paper
-Surface and Interface Engineering
-Sustainable Energy

Read less
Application period/deadline. November 1, 2017 - January 24, 2018. In-depth training in understanding structure-function relationships of proteins and their characterisation. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• In-depth training in understanding structure-function relationships of proteins and their characterisation

• Strong focus on practical skills and use of most modern equipment in protein expression and analysis

• Highly flexible degree aimed at students with an interest in a research career, taught by an international staff

The International Master’s Degree Programme in Protein Science and Biotechnology is a two-year programme planned around the early integration of M.Sc. students into research groups and the hands-on use of modern biochemical and molecular biology equipment by individual students. Early exposure to research work provides insights into cutting edge approaches in structural and enzymology characterisation as well as cell and molecular biology methods. A completion of a minimum of 120 study units equivalent to ECTS credits is required to complete the master’s degree studies. The flexible programme includes courses in:

• Protein production and analysis (compulsory)

• Biochemical methodologies (compulsory)

• 3-6 week orientation to research work periods in research groups (compulsory)

• Basic aspects of crystallographic methods

• Structural enzymology

• Biochemistry of protein folding

• Systems biology

• Bioinformatics and biocomputing

• Structure-based drug discovery

Additional optional studies include (but are not limited to):

• Advanced biotechnology/bioprocess engineering

• Immunology

• Animal use in research

• Yeast genetics and genomics

• Information skills for foreign degree students

• Bioreactor technology

• Molecular bases of disease

In addition, up to 15 credits can be taken from other suitable courses taught at the Oulu University or any other university, as long as they are of the appropriate level and connected to biochemistry or logically support some aspect of the Protein Science and Biotechnology programme.

Due to the range of courses available in the programme, a wide variety of expertise that can be obtained during M.Sc. level studies at FBMM. The official diploma title received after successful completion of our international M.Sc. programme will be M.Sc. in Protein Science and Biotechnology. Depending on the course choices, the training received may also provide you with excellent proficiency in molecular and cellular biology.

The duration of the M.Sc. thesis research work is flexible depending on the interest of the students and may be three months (more courses/lectures taken) or eight months (longer M.Sc. thesis research period).

Significant number of students spend orientation to research work periods outside the Faculty of Biochemistry and Molecular Medicine or carry out the research work for their MSc thesis abroad

The Faculty of Biochemistry and Molecular Medicine offers a highly international environment of cutting edge research in Protein Structure analysis, Enzymology, Proteomics, Bioimaging, Developmental Biology, Matrix Biology and Metabolism research. About fifty percent of our staff are native to other countries than Finland, and research groups are well connected globally to other specialists and research groups in their fields of study. Many students holding an M.Sc. from our faculty have gone on to Ph.D. programmes of other prestigious institutions all over the world, and many have stayed at FBMM Oulu to continue in our Ph.D. programme.

The skills gained in the programme offer you the academic training and expertise required to succeed in a research environment, but will also open opportunities in biomedical and related industries.

Successful applicants should hold a B.Sc. or higher degree in Biochemistry, Chemistry or a related field in the natural or life sciences and have a good command of technical English language in biochemistry and molecular biology.

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact



Read less
Through the interdisciplinary NAWI Graz master’s programme Biotechnology, internationally recognized instructors provide you with knowledge about technological processes occurring in biosystems as well as about the development and use of biotechnological applications and methods. Read more

Through the interdisciplinary NAWI Graz master’s programme Biotechnology, internationally recognized instructors provide you with knowledge about technological processes occurring in biosystems as well as about the development and use of biotechnological applications and methods. The core areas are molecular biotechnology, biocatalysis, and environmental, food, enzyme and bioprocess technology. Students benefit from access to the excellently equipped laboratories and modern infrastructure.

Content

  • You learn working and analytical methods used in the fields of microbiology, molecular biology, biochemistry, and gene, enzyme and fermentation technology.
  • You independently perform cutting-edge scientific and technological experiments.
  • You assess the results of experiments, identify problems and propose solutions.
  • You learn to develop new strategies by considering and assessing current research findings.
  • You use modern information technology in bioinformatics.
  • You work in teams and present results.

Core areas

  • Molecular Biotechnology and Bioinformatics
  • Bioprocess Technology
  • Environmental and Food Biotechnology

Specialisation subjects

You may choose 2 of the following areas of specialisation:

  • Enzyme and Protein Technology
  • Systems and Synthetic Biotechnology
  • Bioprocess Engineering
  • Environmental and Food Biotechnology

For the individual courses, please see the semester plan.

Career Options

Graduates are employed in leading positions in both the basic and applied sciences in academia and industry. Biotechnologists plan experiments and analyses, implement these and examine existing solutions. Their problem-solving skills are needed for research and technological development.

Graduates work in the following areas:

  • industrial biotechnology,
  • chemical manufacturing using biocatalytic processes,
  • pharmaceutical research,
  • food technology,
  • environmental biotechnology,
  • agricultural research,
  • in relevant university and non-university research institutions and
  • with public authorities or in public offices.


Read less
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. Read more
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing.
Systems biology of biotechnological processes and approaches to the analysis of proteomicsbased discovery data will be covered in detail, together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. You will also receive a comprehensive business education. You will learn to identify and solve business problems in local and international settings, enhance your communication and leadership skills, and improve your ability for independent thinking and developing creative solutions.

Key Fact

The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD
Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Course Content and Structure

90 credits 60 credits 30 credits
taught masters taught modules project modules
The structure of the programme is as follows:
Semester 1
• Professional Career Development
• Management & Org. Behaviour
• Corporate Accounting & Finance
• Business of Biotechnology & Science
• Biotherapeutic Pipeline I
• Recombinant DNA Technology
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development
Semester 2
• Professional Career Development
• Biotherapeutic Pipeline II
• Systems Biology in Drug Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
Semester 3
• Valuation and Commercialisation of Biotherapeutics
• Biotherapeutics Case Study
Modules and topics shown are subject to change and are not guaranteed by UCD.

Career Opportunities

This advanced graduate degree in Biotherapeutics and Business has been developed in consultation with employers and therefore will be recognised and valued by them. A key feature is the opportunity to carry out a business development plan, which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation.
Prospective employers include: Abbott; Allergan; Amgen; Baxter Healthcare;
Eli Lilly and Co.; Dignity Sciences; GlaxoSmithKline; Icon Clinical Research;
ImmunoGen Inc.; Janssen Pharmaceutical Ltd.; Johnson & Johnson Ltd.; Merck
Sharp & Dohme; Quintiles; Quest International; Sandoz; Seroba Kernel.

Facilities and Resources

Students on this programme will benefi t from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O’Brien Centre for Science.

Read less
The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. Read more

Programme Description

The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing. Systems biology of biotechnological processes and approaches to the analysis of proteomics-based discovery data will be covered in detail together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. A practical drug discovery laboratory project will form a significant component of the experience of how candidates are identified and brought through the development pipeline.

Key Fact

This programme is the culmination of close collaboration between the UCD School of Biomolecular and Biomedical Science, Systems Biology Ireland and the Biopharmaceutical Industry in Ireland and across the world.

Course Content and Structure

The structure of the programme is as follows:

Semester 1
• Biotherapeutic Discovery and Development I
• Professional Career Development
• Recombinant DNA Technology
• Business of Biotechnology & Science
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development

Semesters 2 & 3
• Biotherapeutic Discovery and Development II
• Systems Biology in Drug Development
• Professional Career Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
• Project – Biotherapeutic Development

Career Opportunities

This advanced graduate degree in Biotherapeutics has been developed in consultation with the Biopharmaceutical industry and is recognised and valued by them. A key feature is the undertaking of a significant drug discovery and development laboratory project which is reviewed by industry partners. This engagement is designed to help graduates identify opportunities in the industry at the earliest stage. Prospective employers include: Novartis, Glaxo SmithKline, Eli Lilly, Johnson & Johnson, Pfizer, Janssen Biologics, AstraZeneca, MSD, Bristol Myers Squibb, Abbott, Sanofi.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities
in the new O'Brien Centre for Science.

Read less

Show 10 15 30 per page



Cookie Policy    X