• Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Coventry University Featured Masters Courses
University of Manchester Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"biophysics"×
0 miles

Masters Degrees (Biophysics)

We have 76 Masters Degrees (Biophysics)

  • "biophysics" ×
  • clear all
Showing 1 to 15 of 76
Order by 
Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. . Read more

Our Molecular Biophysics for Medical Sciences MRes offers you the chance to learn about biophysics, molecular biology and bioinformatics, and to undertake an extensive research project. This course is excellent preparation for a PhD or a foundation for high-level entry into the industry. 

Key benefits

  • Possibility to carry out research projects in biophysics in Singapore
  • 95% of students have gone on to study for PhD at top tier Universities and Institutions over the past 8 years
  •   Students often obtain a publication in a top quality journal (high Impact Facto) from their project research
  • Broad range of research topics to choose from.
  • Up-to-date biophysics expertise is increasingly valued by pharmaceutical and biotechnology laboratories.
  • Located in the heart of London.

Description

This Molecular Biophysics for Medical Sciences MRes programme will give you a thorough exposure to practical biophysics research in a world-leading centre that has been at the forefront of biophysics research since it opened 60 years ago. Our early successes include the elucidation of the structure of DNA and the development of the sliding filament model of muscle. More recently we have pioneered breakthroughs in the areas of muscle and immunoglobulin function, molecular-tweezers development, cell motility, DNA recognition, and the development of new techniques in cellular microscopy.

The research component of your MRes will be complemented by a series of in-depth modules in molecular biophysics and molecular biology.

You will also have the exciting option of carrying out your research project in Singapore to produce outstanding science.

Quantitative skills in biology will be incredibly important for the next generation of professional scientists working in industry and academia. We recognise this, and our MRes offers you an integrated training programme ideally suited to instruct you in the biophysical techniques to meet this challenge.

Our MRes will give you an excellent foundation for a career in academic research, but it also provides a robust foundation for entering industry at a high level, where biophysics has applications ranging from drug formulation and delivery to structure-based drug discovery and the development of medical and scientific imaging techniques.

Course purpose

Acquiring quantitative skills in biology is of paramount importance for the next generation of professional scientists working in industry and academia. The MRes (Master of Research) in Molecular Biophysics at King's College London offers an integrated training programme ideally suited to learn biophysical techniques crucially important to meet this challenge.

We deliver an excellent foundation for students wishing to pursue careers in academic research. Equally, our MRes provides a robust foundation for high level entry into industry where biophysics has applications ranging from drug formulation and delivery, structure-based drug discovery, and the development of medical and scientific imaging techniques.

Our Master is designed for outstanding graduates in the Life and Physical sciences (Biology, Biochemistry, Chemistry, Physics) who want to apply their knowledge to biological problems at the research level. Taught modules cover biophysics and molecular biology techniques with elements of bioinformatics.

Course format and assessment

Teaching

We will provide you with seven hours of lectures and seminars each week. In your first semester you’ll also have 10 to 12 hours of lab work and 35 hours in your second semester. We will expect you to undertake 15 to 20 hours of self-study.

Typically, one credit equates to ten hours of work.

Assessment

We will assess you through a combination of exams, coursework and practical assessment for your first two modules. For the Molecular Biophysics Research Project, we will assess you through a thesis, a viva and a presentation.

The study time and assessment methods detailed above are typical and give you a good indication of what to expect. However they are subject to change. 

Career prospects

Many of our graduates continue to study PhDs. Others transfer their skills and knowledge to careers in the pharmaceutical and biotechnology industry, cancer research, medicine, scientific administration within research councils and scientific publishing.



Read less
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. Read more
Biophysics provides structural and mechanistic insights into the biological world and uses this knowledge to create solutions for major global problems, such as food production, climate change, environmental damage and drug production. It spans the distance between the vast complexity of biological systems and the relative simplicity of the physical laws that govern the universe.

Our Biophysics and Molecular Life Sciences MSc provides interdisciplinary training by bringing together concepts from chemistry, physics and the life sciences. It is taught by staff actively pursuing research in these areas and from members of BrisSynBio, a flagship centre for synthetic biology research in the UK.

The programme gives you an opportunity to gain knowledge and practical experience by studying molecular interactions and mechanisms at the level of the cell to the single molecule. Topics for study include molecular structure determination, dynamic molecular mechanisms, molecular simulation, molecular design and single-molecule technologies. You can also choose an additional unit that reflects your personal interests, allowing you to broaden your knowledge of biomedical subjects whilst focusing on biophysics. You will also learn about the commercialisation of research outcomes, including intellectual property, setting up a business, getting investment, marketing and legal issues.

Graduates from this programme will be well-prepared for a PhD programme in biophysics or related fields. Additionally, the numerical, problem-solving, research and communication skills gained on this programme are highly desired by employers in a variety of industries.

Robust evidence is the cornerstone of science and on this programme you will gain research experience in laboratories equipped with state-of-the-art equipment, including atomic force and electron microscopy, biological and chemical NMR, x-ray crystallography and mass spectrometry.

Your learning will be supported throughout the programme in regular, small-group tutorials.

Programme structure

Core units
Biophysics and Molecular Life Sciences I
-The unit begins with a short series of lectures that introduce the general area of molecular life sciences for the non-specialist. The remaining lectures cover a variety of molecular spectroscopies, molecular structure determination, an introduction to systems approaches using proteomics, and the mechanistic characterisation of biomolecules using a variety of biophysical techniques.

Biophysics and Molecular Life Sciences II
-The unit describes highly specialised techniques at the interface of physics, chemistry and the life sciences. This includes techniques for studying biomolecules at the level of a single-molecule, synthetic biology, bioinformatics and molecular simulations.

Core Skills
-A series of practical classes, lecture-based teaching sessions, and tutorials that prepare you for the practical project, provide a foundation for further studies and develop a range of transferable skills.

Literary Project
-An extended essay on a subject chosen from an extensive list covering the topics described above. You work independently under the guidance of a member of staff.

Project Proposal and Research Project
-You work independently under the guidance of a member of staff to produce a written project proposal. This is followed by a 12-week research project investigating your chosen topic. The research project forms the basis for a dissertation.

Lecture-based option
You will study one lecture-based unit from:
-Cancer Biology
-Cardiovascular Research
-The Dynamic Cell
-Infection, Immunology and Immunity
-Neuroscience
-Pharmacology

Careers

Typically, biophysics careers are laboratory-based, conducting original research within academia, a government agency or private industry, although the transferable skills gained on the course are ideal for many other careers outside of science, including business and finance.

Read less
What is the Master of Biophysics, Biochemistry and Biotechnology all about?. The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised. Read more

What is the Master of Biophysics, Biochemistry and Biotechnology all about?

The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised: the determination of molecular structures, molecular and supramolecular modelling, the spectroscopy of biomolecules, the physical modelling of complex systems and the study of these models, the transport through ion channels in membranes, and the study of molecular interactions and physical principles in vitro, in complex biological machineries and in the living cell.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

Students may select one of two tracks - Biophysics or Biochemistry and Biotechnology. The track Biochemistry and Biotechnology has three orientations: Physiological, Molecular and Cellular. 

Alternatively, students who are not considering a research career can opt for Applied Biophysics.

Elective Courses 

Students choose courses from an additional list, which are different from their research orientation. Students may select courses from the entire programme offered by the university if they have the approval of the programme director. Students have to make sure that the entire programme of the master contains at least 120 credits.

International

We encourage students to complete part of their Master's training at another European university, preferably during the second year, when they can work on their Master's thesis or take specific subjects at one of the universities in our Erasmus exchange programme.

Department

The Department of Biology is committed to excellence in teaching and research and is comprised of four divisions with diverse research activities ranging from molecular and physiological research at the level of cells and organisms to ecological research on populations, communities, and ecosystems. Although many research groups conduct in-depth analyses on specific model organisms, as a whole the department studies an impressive diversity of lifeforms.

Our research is internationally renowned and embedded in well-established worldwide collaborations with other universities, research institutes, and companies. Our primary goal is to obtain insight into patterns and processes at different levels of biological organisation and to understand the basis and evolution of the mechanisms that allow organisms to adapt to their constantly changing environment. This knowledge often leads to applications with important economic or societal benefits. The department attracts many students and hosts approximately 250 staff members.

Objectives

Upon completing the programme, the graduate will have acquired:

  • thorough understanding of the properties of biomolecules, their functions and interactions with other molecules at a cellular and higher level, and particularly their structure-function relationship;
  • profound knowledge of recent developments in disciplines such as biophysical modelling, bioinformatics, genome and proteome analysis, and ability to integrate this knowledge and to apply it to new problems;
  • abilities to thoroughly familiarise oneself in a reasonably short time with several subject areas of biophysics and biochemistry, and to keep oneself informed of relevant developments in the field of study; this implies the abilities to consult and understand relevant literature, to acquire new insights and to formulate new hypothesis based on these sources;
  • abilities to independently identify and analyse physical and molecular aspects of a biophysical problem, to plan a strategy for the solution and to propose and perform appropriate experiments;
  • appropriate attitudes to work in a team environment and to make a constructive contribution to scientific research at an international level, at the university, in the biotechnological and pharmaceutical industries, at research institutions or public services;
  • abilities to make a systematic and critical report of personal biophysical or (applied) biochemical research and to present this to an audience of specialists;
  • attitudes of continued attention to the risks associated with the conducted experiments, with respect to safety and the environment, and to thoroughly analyse these risks.

Career perspectives

A range of career options are available in the pharmaceutical and bioscience industries, where structure determination, modelling and the direct study of molecular interactions in the living cell play a major role. Because of the growing importance of the bioscience industry in today's society and the increasing need for sophisticated high-tech instruments and research methods, the demand for biophysicists and biochemists is expected to exceed supply in the near future.

Graduates may also pursue a career in medical sciences research or academic research. A considerable number of graduates, particularly those who choose for a research route, go on to undertake a PhD at one of our associated research laboratories.



Read less
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. Read more
A University of Hertfordshire research degree is an internationally recognised degree signifying high levels of achievement in research. It develops extensive subject expertise and independent research skills which are honed over an extended period, depending on the level of the award. You would undertake a substantial, original research project for the duration of the degree, under the supervision and guidance of two or more academic members of staff. Your supervisory team provides guidance both in the selection of a research topic and in the conduct of the research. You are also supported by attendance at postgraduate seminar series to develop subject specific knowledge and research skills relevant to your field of research. The degree is assessed solely on the basis of the final research output, in the form of a substantial written thesis which must be "defended" in a viva. During the course of the degree, you would be given opportunities to present your work at major conferences and in refereed research publications.

Why choose this course?

-An internationally recognised research qualification
-Developing advanced subject expertise at postgraduate level
-Develop research skills through practice and extensive research experience
-Employers are looking for high calibre graduates with advanced skills who can demonstrate independence through research

Careers

Graduates with this degree will be able to demonstrate to employers a highly-valued ability to work independently on a substantial and challenging original project and to maintain that focus over an extended period, and will have developed much sought after, highly refined research skills.

Teaching methods

Research degrees are not taught programmes, however, programmes of supporting studies are a key element. The School of Pharmacy conducts high quality research in the areas of of dermal, transderrmal, buccal and airway drug delivery, patient safety, medicines management, drug mis-use and psycho-pharmacology. The School has a large number of postgraduate students undertaking full-time research in these disciplines leading to the awards of MSc by Research, MPhil or PhD. There are also a number of industry-based graduates registered for research degrees on a full-time or part-time basis. Research in the discipline areas is headed by internationally recognised staff with positions on many national and international associations and professional bodies.

Read less
The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines. Read more

MSc Molecular Life Sciences

The Molecular Life Sciences programme focuses on the molecular aspects of the fields of nutrition, health, nature and the living environment and works in close coordination with colleagues from different disciplines.

Programme summary

The Molecular Life Sciences programme focuses on molecules and their properties. It seeks to discover relationships between the physical and chemical properties of molecules, particularly the role of complex molecules in living systems. It is an interdisciplinary programme that combines chemistry, physics and biology. The aim of the programme is to enable students to conduct independent research at the interface of chemistry, biology and physics, or in an applied field such as medicine, the environment, food sciences or (bio) nanotechnology. The programme is tailormade and thesis-oriented, with the thesis being the culmination of the study.

Specialisations

Biological Chemistry
By combining the principles of chemistry, biochemistry, molecular biology, cell biology, microbiology, genetics and bioinformatics, this specialisation enables students to contribute new insights to the life sciences. Increasingly complex areas are studied, such as the molecular regulation of growth and cell differentiation, gene control during development and disease, and the transfer of genetic traits. Another important field is enzymology where enzyme mechanisms are studied with the aim of understanding and modifying their properties to make new compounds or biological membranes.

Physical Chemistry
This specialisation uses the most advanced technologies to focus on the chemical and physical properties of molecules and their behaviour in chemical and biochemical processes. The processes in nature are used as models for studying and synthesising new compounds with interesting chemical or physical properties for applications such as LCDs, biosensors or food science. Students can major in the fields of biophysics, organic chemistry or physical chemistry and colloid science.

Biomedical Research
This specialisation equips graduates with key skills in the natural sciences and enables them to use these skills as part of an integrated approach. Many recent breakthroughs in biomedical research have taken place at the interface between chemistry, biology and physics, so it is logical that many of our graduates enter careers in biomedical research. The explicit aim of this specialisation is to prepare students for careers at a medical research institute, academic hospital or a company in the pharmaceutical industry. As a result, students also complete their internships at such locations.

Physical Biology
Students in this specialisation learn to view biomolecules from a physical point of view. They use techniques in biophysics, physical chemistry, microspectroscopy and magnetic resonance (MRI) to contribute to areas such as cell-cell communication, transformation of light into chemical energy, and protein interactions. Students can major in fields such as biochemistry, biophysics, microbiology, molecular biology, plant physiology, physical chemistry and colloid science.

Your future career

By combining the power of chemistry, physics and biology, graduates are able to make a significant contribution to fundamental and/or applied research in fields such as (bio) nanotechnology, biotechnology, environmental research, biomedical research, nutrition and the food sciences. Our graduates enter careers at universities, research institutes and industrial laboratories. The first job for many of our graduates is a four year PhD project at a university or research institute. This is not only an excellent preparation for a research career, but it also prepares you for management positions. Others become science journalists, teachers or consultants in government or industry.

Project Flu Vaccination for bacteria.
Together with his colleagues of the Laboratory of Microbiology, professor John van der Oost unravelled part of the working of the immune systems of bacteria that had been infected by a virus. Theoretically, this knowledge allows for other bacteria to be protected against specific viruses and, thus, may be considered to be a flu vaccination for bacteria. Understanding this process in simple organisms on a molecular level, is the first step in revealing the mechanism of viral infection in the human body. This can be the starting point for a whole new line of medicines.

Related programmes:
MSc Biotechnology
MSc Food Technology
MSc Bioinformatics
MSc Nutrition and Health
MSc Plant Biotechnology
MSc Biology

Read less
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy. Read more
We offer postgraduate research degrees in Physics at the MPhil and PhD level in all of our major research areas such as Emerging Technology and Materials, Applied Mathematics, and Photoelectron Spectroscopy.

We supervise MPhil students whose interests match the expertise we have in our four main research themes.

Condensed matter and nanoscale physics

We research electronic, optical, structural and magnetic properties of novel solid-state materials, particularly novel semi-conductor structures and nanostructured materials such as nanocrystals and nanowires. Theoretical studies use quantum mechanical approaches and involve massively parallel supercomputing.

Our development of new approaches to quantum modelling is changing the size and complexity of systems that can be modelled. Experimental work takes place at synchrotron facilities in Europe and America and related work takes place with colleagues in the Emerging Technology and Materials (ETM) Group in the School of Electrical, Electronic and Computer Engineering.

Biophysics

Our research in biophysics explores the structure and function of cells with the aim of creating artificial life and building machines based on biological parts. Projects include protocell development and the construction of a cyborg robot. An understanding of biological physics is needed that uses techniques including single molecule manipulation, atomic force microscopy and scanning tunnelling microscopy.

Astrophysics

Galaxies and the interstellar medium, the source of the galactic magnetic field and its influence on the structure of the galaxy form the focus of our research in astrophysics. There is also interest in cosmology, particularly the early universe and its origin in the big bang.

Ultrafast optics

Our research focuses on coherent optical control of atomic collisions in ultracold gases by femtosecond laser light for studies of problems in fundamental physics, such as the measurement of time dependence of the fundamental constants of nature. We also research metrological protocols for characterisation of broadband light, specifically those relating to foundational aspects of quantum mechanics and its application.

Read less
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Read more
This MSc is designed for graduates from the physical sciences and relevant engineering disciplines who wish to develop skills in this new and exciting area. Nanotechnology is rapidly establishing itself as a key technology, in industries ranging from microelectronics to healthcare, with a consequent demand for appropriately trained graduates.

Degree information

The programme introduces students to and provides training in the skills essential for almost all fields of nanotechnology research, including key laboratory skills and techniques in planning, building devices, analysis, and results comparison. The core lecture programme covers essential topics in physics, electrical and electronic engineering, and biology.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (75 credits), three optional modules (45 credits) and a research project (60 credits). A Postgraduate Diploma (120 credits) is offered. The diploma consists of six core modules (75 credits) and three optional modules (45 credits).

Core modules
-Physical Science for Nanotechnology
-Nanoscale Processing and Characterisation for Advanced Devices
-Instrumentation and Physical Techniques in the Life Sciences
-Experimental Techniques for Nanotechnology
-Nanotechnology and Society
-Nanoelectronic Devices

Optional modules
-Quantum Computation and Communication
-Order and Excitations in Condensed Matter
-Molecular Biophysics
-Molecular Physics
-Entrepreneurship: Theory and Practise
-Plastic and Molecular Electronics
-Physics and Optics of Nano-Structures
-Nanotechnology in Healthcare
-Innovation Practices

Dissertation/report
All students undertake an extensive research project on an experimental or theoretical topic which is assessed through two interim reports, dissertation and oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, laboratory classes, tutorials and seminars. Student performance is assessed through coursework, laboratory notebooks, case studies, written examination, a dissertation, and written and oral presentations.

Careers

Recent graduates have gone on to work as engineers for companies including EDF Energy and Intel, as analysts and consultants for firms including Standard Bank PLC and DN Capital, or to undertake PhD study at the Universities of Oxford, Bath and Glasgow.

Employability
This MSc programme provides a broad and comprehensive coverage of the technological and scientific foundations of nanotechnology, from the basis of the fabrication of nanostructures for advanced device applications, to fundamental quantum information and molecular biophysics, from nanotechnology in life science to nanotechnology in healthcare, and from experimental technology to theoretical modelling. Nanotechnology MSc graduates are expertly equipped either to pursue PhD study or become consultants or engineers in a wide range of nanotechnology fields.

Why study this degree at UCL?

The London Centre for Nanotechnology (LCN) is a new UK-based multidisciplinary enterprise operating at the forefront of science and technology.

Forming a bridge between the physical and biomedical sciences, it brings together two of the world's leading institutions in nanotechnology, UCL (University College London) and Imperial College London.

The centre aims to provide leading-edge training in nanotechnology and students on this programme benefit from excellent new facilities, including a £14 million research building furnished with state-of-the art equipment, and a £1million teaching facility in UCL Electronic and Electrical Engineering.

Read less
Our MSc Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills in physics. Read more

Our MSc Physics programme will provide you with exposure to a very wide range of world-leading teaching and research skills in physics. As well as the modules offered by the Department of Physics, many optional modules are available from across the University of London, such as Queen Mary University of London, Royal Holloway University of London and University College London. You will undertake an extended research project supervised by one of our academic staff.

Key benefits

  • Located in the heart of London, giving unparalleled access to research facilities.
  • You will be studying innovative modules covering modern theories of physics.
  • Research-led study programme taught by staff who are recognised leaders in their field.
  • Opportunity to study the state of the experimental art nanoplasmonics, bio-imaging, near-field optics and nanophotonics, with access to the laboratories of the London Centre for Nanotechnology (LCN). You will be offered our flagship module in "Advanced Photonics".
  • Excellent tutorial support, extensive programme-specific interactive teaching and regular classroom discussions.

Description

The programme consists of taught components combining specialised taught material in current areas of Physics and related disciplines, general research techniques, transferable skills and specialised research techniques together with a major research project. The project starts in January carrying through to the end of the programme. Experts in the chosen field will act as project supervisors.

The programme is run by the Department of Physics with some modules provided by the Department of Mathematics, the Randall Division of Cell and Molecular Biophysics and other University of London Colleges. 

Topics include: nanotechnology, biophysics, photonics, cosmology and particle physics.

Course purpose

The MSc programme provides experience of research in rapidly developing areas of physics and related disciplines. Provides experience of the planning, administration, execution and dissemination of research, and equips students with the background knowledge and transferable and generic skills required to become an effective researcher.

Course format and assessment

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

Average per week: Lectures x 9 hours, small group tutorials x 2 hour, seminar x 1 hour.

Each module in your degree is worth a number of credits. You are expected to spend approximately 10 hours of effort for each credit (so for a typical module of 15 credits this means 150 hours of effort). These hours cover every aspect of the module: lectures, tutorials, labs (if any), independent study base on lecture notes, tutorial preparation and extension, lab preparation and extension, coursework preparation and submission, examination revision and preparation, and examinations.

Assessment

Assessment methods will depend on the modules selected. The primary method of assessment for this course is written examination. You may also be assessed by laboratory reports, class tests, coursework and oral presentations.

Career destinations

Many students go on to do a PhD in Physics, work in scientific research, teaching or work in the financial sector.



Read less
Doctorate study in Computational Physics is an opportunity to engage in rigorous scholarly pursuit, and to contribute original research to a body of academia. Read more
Doctorate study in Computational Physics is an opportunity to engage in rigorous scholarly pursuit, and to contribute original research to a body of academia.

At the School of Mathematics and Physics, you will have the opportunity to advance your knowledge of computational physics, while developing your research skills and working with specialists. Computational Physics is a fundamental area of study that underpins a vast array of topics. During your research, you may have the opportunity to develop national and international collaborations.

Research in Computational Physics covers a broad spectrum, including the distinct areas of nanostructured soft matter, active matter, materials science and molecular biophysics. You benefit from dedicated academic supervisors, in-depth training programmes and specialist computational facilities.

Research Areas, Projects & Topics

Main Research Areas:
-Nanostructured Soft Matter
-Active Matter
-Materials Science
-Molecular Biophysics

For detailed information about the School’s research activity please visit: http://www.lincoln.ac.uk/home/smp/research/

How You Study

You can benefit from specialist computational facilities, training programmes to enhance your research skills and support from dedicated academic supervisors. You will be supported and encouraged to submit papers to international scientific journals, present your findings at conferences and share knowledge with colleagues across the University.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

A PhD is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic.

Career and Personal Development

This research programme is designed to allow you to expand your knowledge and expertise in an area of specific interest. It provides the opportunity to develop an in-depth foundation for further research or progression to careers across the broad spectrum of computational physics-related industries and in academia.

Read less
At the School of Mathematics and Physics, you will have the opportunity to advance your knowledge of computational physics, while developing your research skills and working alongside specialists. Read more
At the School of Mathematics and Physics, you will have the opportunity to advance your knowledge of computational physics, while developing your research skills and working alongside specialists.

Computational Physics is a fundamental area of study that underpins a vast array of topics. During your research, you will have the opportunity to work with specialists in the field and may have the chance to develop strong national and international collaborations.

Research in Computational Physics covers a broad spectrum, including the distinct areas of nanostructured soft matter, active matter, materials science and molecular biophysics. You benefit from dedicated academic supervisors, in-depth training programmes and specialist computational facilities.

Research Areas, Projects & Topics

Research Areas:
-Nanostructured Soft Matter
-Active Matter
-Materials Science
-Molecular Biophysics

How You Study

You can benefit from specialist computational facilities, training programmes to enhance your research skills and support from dedicated academic supervisors. You will be supported and encouraged to submit papers to international scientific journals, present your findings at conferences and share knowledge with colleagues across the University.

Due to the nature of postgraduate research programmes, the vast majority of your time will be spent in independent study and research. You will have meetings with your academic supervisor, however the regularity of these will vary depending on your own individual requirements, subject area, staff availability and the stage of your programme.

How You Are Assessed

The MSc by Research involves writing a Master's thesis under the supervision of a member of academic staff on a topic to be agreed with your supervisor. The MSc by Research is usually awarded based on the quality of your thesis and your ability in an oral examination (viva voce) to present and successfully defend your chosen research topic.

Career and Personal Development

This research programme is designed to allow you to expand your knowledge and expertise in an area of specific interest. It seeks to provide an in-depth foundation for further research or progression to careers across the broad spectrum of computational physics-related industries and in academia.

Read less
Go deeper into the physical world. Understand the physical universe/world, including modern technologies and biology systems, in the most fundamental way. Read more

Go deeper into the physical world

Understand the physical universe/world, including modern technologies and biology systems, in the most fundamental way.

Find out more about the Master of Science parent structure.

Massey University’s Master of Science (Physics) gives you the opportunity to use the latest equipment across a broad range of disciplines to make your own discoveries in the field of science.

Broad range of equipment and facilities - or make your own

Unlike some other institutions you will have easy access to a range of techniques and equipment, making it easier to progress your research in a timely and comprehensive fashion. Massey has modern biophysics research facilities and access to specialist equipment like optical tweezers and a Bio-NMR (Nuclear Magnetic Resonance) to help your research meet global standards.

Accessible lecturers

At Massey you will have the advantage of small classes, giving you more access to your lecturers and supervisors.

Deepen your knowledge

Take your undergraduate science study and progress your knowledge in areas you are interested in like: mathematical physics, particle physics, biophysics or chemical physics.

Friendly environment - passionate scientists

There is a well-established community of scientists and postgraduate science students at Massey, including FUSSTA - the Fundamental Scientists and Students Association on the Manawatu campus. We work together to share discoveries and research and provide peer support.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles.

Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study. It takes you to a new level in knowledge and expertise especially in planning, time management, setting goals and milestones and undertaking research.



Read less
Chemical biology is the application of chemical tools and ideas to biological and medical problems. Read more

Chemical biology is the application of chemical tools and ideas to biological and medical problems. This programme is designed to build on an existing knowledge of chemical structure and reactivity to give you a thorough grounding in contemporary chemical biology and drug discovery as well as introducing you to topics from the research frontier.

You’ll be taught by experts from across the Astbury Centre in chemical biology, biophysics and medicinal chemistry using a "problem-based" approach. Visiting lecturers from the pharmaceutical industry will share their expertise in industrially-relevant applications of chemical biology and drug design with you.

Bridging the gap between your undergraduate degree in a core subject, and interdisciplinary research in chemical biology, you’ll develop the skills to solve real-life research problems, benefitting from a multi-million pound investment in fantastic research facilities. Rather than focusing on a single discipline, you’ll learn to use either chemical or biological approaches to tackle the problem in hand.

Accreditation

Royal Society of Chemistry Accreditation

The University of Leeds launched the first taught MSc degree in Chemical Biology in the UK. The course was one of the first two MSc courses in the UK to receive accreditation from the Royal Society of Chemistry; graduates from the programme with an appropriate first degree in chemistry satisfy the academic requirements for the award of Chartered Chemist (CChem) status.



Read less
In a fast-moving society, the professional image-maker has a powerful role in the way science is communicated to the world. The professional imager is vital to modern research, science communication, commerce and industry. Read more
In a fast-moving society, the professional image-maker has a powerful role in the way science is communicated to the world. The professional imager is vital to modern research, science communication, commerce and industry. The MSc Biological Photography and Imaging is ideal for students wishing to pursue a career in professional imaging. The study programme incorporates the areas of biological research, imaging (both industrial and media production) and communication. Developing your imaging skills during the course will allow you to integrate scientific and technical aspects with commercial applications. Graduates of our course have gone on to further study in molecular biology and biophysics, or pursued various careers such as medical imaging or wildlife filmmaking.

You are expected to have a high quality undergraduate degree in the biological or related sciences. Applicants with degrees in other disciplines may be accepted at the discretion of the Course Director. Applicants with professional experience at a level equivalent to that of a first degree will also be considered.

Applicants to this programme are expected to have their own digital SLR camera. Systems normally used on this course are Nikon or Canon; if you wish to operate a different system, you need to discuss this with the Course Director.

Key facts

Throughout the course you will have access to technical advice from a dedicated team of staff, high-spec computer equipment, photography studios and photographic stereo and compound microscopes. We also maintain a museum of biological specimens for you to use in assignments.
Teaching on our biology courses was rated as excellent (23/24) in the most recent Teaching Quality Assessment Exercise.
You will take part in a range of field trips in order to develop every aspect of your photography skills. Experts, such as professional wildlife photographers, are closely involved with these trips.
You will receive tuition in the leading industry-standard web design and animation software and will have the opportunity to set up an online portfolio of your work.
This course includes a business component, enabling you to present your skills to the competitive marketplace.

Read less
This course is ideal both for graduates who would like to undertake original research without committing themselves to a three-year PhD, and for students who want to gain a research-based Master's before embarking on their PhD. Read more
This course is ideal both for graduates who would like to undertake original research without committing themselves to a three-year PhD, and for students who want to gain a research-based Master's before embarking on their PhD.

The major element of this course is a research project which is carried out under supervision. There is also a minor taught element, with classes covering a wide range of generic research-related topics.

See the website https://www.royalholloway.ac.uk/physics/coursefinder/mscphysicsbyresearch.aspx

Why choose this course?

- The Department of Physics is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and
Biophysics, as well as other areas.

- We offer exceptional teaching quality and are consistently near the top of the league tables.

- Our Masters courses are taught in collaboration with other University of London Colleges, providing a wide range of options.

Department research and industry highlights

The Physics Department at Royal Holloway is one of the major centres for physics research within the University of London and has research expertise in the following areas:
- Particle physics experiments at Large Hadron Collider
- Neutron and synchrotron x-ray scattering at ISIS and Diamond
- London Low Temperature Laboratory
- Centre for Nanophysics and Nanotechnology

Recent projects that the Department has worked on include:
- The ATLAS project at the LHC
- Thermoelectrics for conversion of waste heat into electrical power
- Quantum criticality in helium films
- Studies of nanostructures for quantum computing

Course content and structure

This courses consists of the major research element and a minor taught element:

- Major Project:
An original research project in one of the research areas of the Department, carried out under supervision. Makes up 75% of total mark.

On completion of the course graduates will have:
- developed research skills using a mix of experimental, theoretical and computational techniques

- developed communication skills through the writing of the project report and the presentation of an oral report at the viva

- transferable skills suitable for both continued research or the workplace.

Assessment

This course is assessed by the completion of a major research project (75% of the final mark) as well as other coursework assignments (25% of the final mark).

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different areas, including careers in industry, information technology and finance. This course also equips you with the subject knowledge and a solid foundation for continued studies in physics; around 50% of the graduates of this course progress onto PhD study at Royal Holloway.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
This is a two-year MSc offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities. Read more
This is a two-year MSc offered by Royal Holloway as part of its South East Physics Network Partnership (SEPnet). SEPnet is a consortium of six universities: University of Kent, Queen Mary University of London, Royal Holloway University of London, University of Southampton, University of Surrey, and University of Sussex. This consortium consists of around 160 academics, with an exceptionally wide range of expertise.

The first year consists mainly of taught courses in the University of London; the second research year can be at Royal Holloway or one of the other consortium members. This is a unique opportunity to collaborate with physics research groups and partner institutions in both the UK and Europe. You will benefit from consortium led events as well as state of the art video conferencing.

With some of the leading physics departments in the world, all the universities have their own accolades in both urban and countryside locations, with a wide choice of accommodation options, sporting facilities, international student organisations and careers services. South East England, with its close connections to continental Europe by air, Eurotunnel, and cross channel ferries, is an ideal environment for international students.

See the website https://www.royalholloway.ac.uk/physics/coursefinder/mscphysics(euromasters).aspx

Why choose this course?

- The course is taught in collaboration with other University of London Colleges and the Universities of Kent, Southampton, Surrey and Sussex, providing an incomparably wide range of options.

- The Department of Physics at Royal Holloway is known internationally for its top-class research. Our staff carry out research at the cutting edge of Nanoscience and Nanotechnology, Experimental Quantum Computing, Quantum Matter at Low Temperatures, Theoretical Physics, and Biophysics, as well as other areas.

- We offer exceptional teaching quality and are consistently near the top of the league tables.

- The Department has strong links with leading international facilities, including CERN, ISIS and Diamond.

- We hold a regular series of colloquia and seminars on important research topics and host a number of guest lectures from external organisations.

Department research and industry highlights

- The Physics Department is one of the major centres for Physics research within the University of London.

- We have excellent clean rooms for the nanofabrication and testing of devices within the centre for nanophysics and nanotechnology.

- The London Low Temperature Laboratory is a centre for fundamental research in the mK and μK temperature regime and the development of new instrumentation and thermometry.

- The Hubbard Theory Institute combines theoretical studies of strongly correlated matter with experimental activities on the Harwell Campus.

On completion of the course graduates will have:

- a systematic understanding of knowledge, and a critical awareness of current problems and/or new insights at the forefront of the discipline

- a comprehensive understanding of techniques applicable to their own research or advanced scholarship

- originality in the application of knowledge, together with a practical understanding of how established techniques of research and

- enquiry are used to create and interpret knowledge in the discipline.

Assessment

Assessment is carried out by a variety of methods including coursework, examinations and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different physics-related areas, including careers in industry, information technology and finance. This course also equips you with the subject knowledge and a solid foundation for continued studies in physics, and many of our graduates have gone on to study for a PhD.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less

Show 10 15 30 per page



Cookie Policy    X