• University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
FindA University Ltd Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
Swansea University Featured Masters Courses
"bionics"×
0 miles

Masters Degrees (Bionics)

We have 7 Masters Degrees (Bionics)

  • "bionics" ×
  • clear all
Showing 1 to 7 of 7
Order by 
This programme is the first taught Masters programme in medical visualisation in the UK. Offered jointly by the University of Glasgow and the Glasgow School of Art, it combines actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation. Read more
This programme is the first taught Masters programme in medical visualisation in the UK. Offered jointly by the University of Glasgow and the Glasgow School of Art, it combines actual cadaveric dissection with 3D digital reconstruction, interaction and visualisation.

Why this programme

◾You will examine human anatomy and reconstruct it in a real-time 3D environment for use in education, simulation, and training.
◾You will have access to the largest stereo 3D lab in Europe, and its state-of-the-art facilities such as laser scanner (for 3D data acquisition), stereo 3D projection, full body motion capture system, haptic devices and ambisonic sound.
◾You will also have access to the Laboratory of Human Anatomy at the University of Glasgow, one of the largest in Europe.
◾The programme has excellent industry connections through research and commercial projects and there are possible internship opportunities. You will benefit from guest lectures by practitioners, researchers and experts from industry.
◾This programme is accredited by the Institute of Medical Illustrators.

Programme structure

You will split your time between the Glasgow School of Art (Digital Design Studio) and the University of Glasgow (Laboratory of Human Anatomy). The programme is structured into three stages.

Stage one: digital technologies applied to medical visualisation (delivered by the Digital Design Studio at the Glasgow School of Art)

Core courses
◾3D modelling and animation
◾Applications in medical visualisation
◾Volumetric and 3D surface visualisation
◾Core research skills for postgraduates.

Stage two: human anatomy (delivered by the Laboratory of Human Anatomy at the University of Glasgow).

Core courses
◾Introduction to anatomy
◾Structure and function of the human body
◾Cadaveric dissection techniques.

In stage three you will complete a self-directed final project, supported throughout with individual supervision.

Career prospects

Career opportunities exist within the commercial healthcare device manufacturer, the public and private healthcare sectors, as well as in academic medical visualisation research. Students with medical, biomedical, anatomy, or health professional backgrounds will be able to gain 3D visualisation skills that will enhance their portfolio of abilities; students with computer science or 3D graphics background will be involved in the design and development of healthcare related products through digital technology, eg diagnostic and clinical applications, creating content involving medical visualisation, simulation, cardiac pacemakers, and biomechanically related products for implantation, such as knee, hip and shoulder joint replacements.

Here are some examples of roles and companies for our graduates:
◾Interns, Clinical Assistants and Clinical Researchers at Toshiba Medical Visualisation Systems
◾Research Prosector (GU)
◾3D printing industry
◾Demonstrators in Anatomy
◾PhD studies - medical history, medical visualisation
◾Medical School
◾Dental School
◾Digital Designer at Costello Medical
◾Lead Designer at Open Bionics
◾Founder of Axial Medical Printing Ltd
◾Digital Technician at University of Leeds
◾Digital Project Intern at RCPSG
◾Researcher and Factual Specialist at BBC
◾Graduate Teaching Assistants
◾Freelance Medical Illustration
◾Numerous successful placements on PhD programmes (medical visualisation, anatomy, anatomy education, medical humanities)
◾MBChB, BDS courses

Read less
Would you like to discover new materials and develop smart devices to help solve some of today’s most challenging global problems?. Read more

Study for a Research Masters Degree in Australia

Would you like to discover new materials and develop smart devices to help solve some of today’s most challenging global problems?

This is your chance.

As a student in the world-first Master of Philosophy (Electromaterials) course, your study will be hands-on – discovering new materials, using cutting-edge characterisation techniques and assembling new materials into electrochemical devices for applications in clean energy, health or advanced manufacturing. You’ll be working with leading, world-renowned researchers in electromaterials through the ARC Centre of Excellence for Electromaterials Science.

You’ll choose from a variety of unique research projects – anything from medical bionics to sustainable energy generation, robotic hands to solar water splitting and the next generation of battery designs.

Deakin University and the University of Wollongong have teamed up to offer this unique opportunity. Core units will be streamed live between the two campuses, so you get the best of both worlds.

Find out more about how you can play a part in developing solutions for global issues through the Master of Philosophy (Electromaterials).

Deakin University

Deakin University is a top-rated university with world-class graduates. Deakin is ranked in the top 3% of universities worldwide and has a strong reputation for student satisfaction.
Industry-focused degree programs and a strong international outlook mean that Deakin graduates are ready for the global workplace.
Our approach to learning puts emphasis on real-world experience and professional practice, but without sacrificing our commitment to high quality research. Deakin is a young, dynamic university that offers research students the chance to innovate and prosper.
Students in the M(Phil) Electromaterials will be hosted by the Institute for Frontier Materials (IFM) and work as part of a team with IFM researchers, developing innovative solutions for the clean energy, human health and next generation manufacturing industries.

ARC Centre of Excellence for Electromaterials Science (ACES)

The Federal Government funded ACES through the Australian Research Council in 2014 to turn our knowledge of materials into the next generation of ‘smart devices’ for the benefit of the community.
ACES is led by the University of Wollongong and incorporates six Australian collaborators and five international partner organisations known for their expertise in materials and device fabrication.
Through its network of collaborating and partner organisations, ACES has access to world-class facilities and capabilities that can help advance our research and industrial objectives.

More information

http://www.deakin.edu.au/future-students/courses/course.php?course=F801&stutype=local&keywords=electromaterials&study_level=All+levels
http://www.electromaterials.edu.au/masters-degree-in-electromaterials/

Read less
This programme aims to provide students with knowledge and skills in the key aspects of communication, semiconductor, medical and embedded electronics. Read more

This programme aims to provide students with knowledge and skills in the key aspects of communication, semiconductor, medical and embedded electronics. Students can specialise in either communications electronics (embedded systems, networking, etc.) or cognitive electronics (sensors, sensor networks, medical diagnostics, measurement systems). The programme is supported by the ELIKO Competence Centre and the CEBE Centre of Excellence.

The students also have a chance to take part in significant research projects (e.g. implantable devices for cardiac monitors, sensors and monitors for transplanted organs and tissues, material quality measurement systems, smart home and city systems).

The research and study areas are situated in modern facilities and are equipped with modern computers, software, measurement equipment and tools that provide excellent opportunities for the students to either study or conduct research. All students of the IT-field are offered practical placement and job opportunities in Estonia or abroad already during the studies which provides professional experience in the field.

Key features

  • Develops high-level skills in aspects of semiconductor, medical and embedded electronics and communication technology
  • Telecommunications and bionics
  • Teaching staff are specialists in the field who are involved in key research projects
  • Guest lecturers from the industry
  • Enhances and broadens career opportunities in the rapidly changing communicative electronics industry

Curriculum

Structure of curriculum

Future career options

The programme provides the specialist knowledge and skills needed for a career leading to high-end technical or technology roles in communicative electronics. Possible future work positions include: designer of computer or automation systems and components, designer of electronics, monitoring and communication systems and their components, senior engineer, hardware developer, project manager, software engineer, etc.

An incomplete list includes the majority of famous worldwide electronics and communication engineering companies, particularly: Stoneridge Estonia, Ericsson Estonia, ABB, AS Siemens, Intel Europe, Texas Instruments, Liewenthal Electronics, Incap Electronics, UTU Elektrotehnika AS, Skype Technologies OÜ, Eesti Energia, LDI Innovation OÜ, Domestic and international hospitals like PERH, ITK, Tartu University clinicum, etc.



Read less
Biomedical Engineering has enormous potential to make a positive impact on human health. Biomedical engineers address healthcare problems from a unique perspective, blending an understanding of biomedical science with specialist knowledge of engineering techniques and problem-solving skills. Read more

Biomedical Engineering has enormous potential to make a positive impact on human health.

Biomedical engineers address healthcare problems from a unique perspective, blending an understanding of biomedical science with specialist knowledge of engineering techniques and problem-solving skills.

You will focus on human systems, the design and operation of devices and processes, and the application of engineering skills to new medical treatments, instruments and machines.

Our reputation for biomedical innovation in areas such as medical bionics, prostheses and tissue engineering, ensures you are learning from leaders in the field, who are working on exciting projects aimed at solving major health dilemmas.

The Master of Engineering (Biomedical) will lead to a formal qualification in biomedical engineering at the Masters level.

Step into the world of medical device development through BioDesign Innovation, an interdisciplinary biomedical engineering subject, where you work in a team with MBA students to create a prototype and develop a supporting business plan.

CAREER OUTCOMES

Biomedical engineers: develop new drug therapies; study the electrical and/or mechanical activity of organs such as the brain, heart, muscle and bone; build artificial organs, limbs, heart valves and bionic implants to replace lost function; develop orthopaedic devices to treat bone and joint conditions; and grow living tissues to replace failing organs.

Employment opportunities exist in the biotechnology, biomedical, pharmaceutical, medical device and equipment industries, in research and innovation, in the health services and hospitals, in government and consulting, and for companies such as Cochlear, Sanofi, Cell Therapies, Compumedics, GlaxoSmithKline and Zimmer Biomet.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
Biomedical Engineering has enormous potential to make a positive impact on human health. Biomedical engineers address healthcare problems from a unique perspective, blending an understanding of biomedical science with specialist knowledge of engineering techniques and problem-solving skills. Read more

Biomedical Engineering has enormous potential to make a positive impact on human health.

Biomedical engineers address healthcare problems from a unique perspective, blending an understanding of biomedical science with specialist knowledge of engineering techniques and problem-solving skills.

You will focus on human systems, the design and operation of devices and processes, and the application of engineering skills to new medical treatments, instruments and machines.

Our reputation for biomedical innovation in areas such as medical bionics, prostheses and tissue engineering, ensures you are learning from leaders in the field, who are working on exciting projects aimed at solving major health dilemmas.

The Master of Engineering (Biomedical with Business) will lead to a formal qualification in biomedical engineering at the Masters level.

Step into the world of medical device development through BioDesign Innovation, an interdisciplinary biomedical engineering subject, where you work in a team with MBA students to create a prototype and develop a supporting business plan.

MASTER OF ENGINEERING (WITH BUSINESS)

The Master of Engineering (with Business) is designed to provide students with a formal qualification in engineering at the masters level, with a business specialisation that recognises the need for engineers to understand the management and workings of modern professional organisations.

Students who undertake the Master of Engineering (with Business) replace five advanced technical electives with five business subjects that have been tailored specifically for engineering students and co-developed with Melbourne Business School.

Graduates will have a grounding in financial, marketing and economic principles enabling them to work efficiently in any organisation, as well as the ability to apply the technical knowledge, creativity and team work skills learnt in their engineering training. This combination of knowledge and skills will be a powerful asset in the workplace.

Key features

  • Combine a technical specialisation with exposure to the business and management skills that can help fast-track your career.
  • Benefit from subjects co-developed by Melbourne Business School and tailored specifically for engineering students.
  • Tight integration of subjects ensures that you understand the business side of engineering applications.
  • Be empowered with strong technical skills, as well as the business skills to understand how organisations work.

Biomedical Engineering Career Pathways [PDF]

CAREER OUTCOMES

Biomedical engineers: develop new drug therapies; study the electrical and/or mechanical activity of organs such as the brain, heart, muscle and bone; build artificial organs, limbs, heart valves and bionic implants to replace lost function; develop orthopaedic devices to treat bone and joint conditions; and grow living tissues to replace failing organs.

Employment opportunities exist in the biotechnology, biomedical, pharmaceutical, medical device and equipment industries, in research and innovation, in the health services and hospitals, in government and consulting, and for companies such as Cochlear, Sanofi, Cell Therapies, Compumedics, GlaxoSmithKline and Zimmer Biomet.

PROFESSIONAL ACCREDITATION

This Master of Engineering (with Business) degree is professionally recognised under EUR-ACE®. Graduates can work as chartered professional engineers throughout Europe.

This Master of Engineering (with Business) degree is provisionally accredited by Engineers Australia. In line with Engineers Australia policy on granting accreditation to new courses, full accreditation cannot be granted until sufficient students have graduated from the program. Once full accreditation has been granted, it will be back-dated to include all graduates from the start of the program.



Read less
Electrical and electronic engineers play a key role in the design, implementation and management of electrical systems to solve practical problems, such as systems for automation, surveillance, energy conversion, power distribution, telecommunications and information processing. Read more

Electrical and electronic engineers play a key role in the design, implementation and management of electrical systems to solve practical problems, such as systems for automation, surveillance, energy conversion, power distribution, telecommunications and information processing.

You will develop technical skills through fundamental theory and practical laboratory work, learning from leading experts, who are working on a range of ground breaking projects from developing bionic implants and creating models and devices to better understand and treat diseases, such as autism and epilepsy, to creating energy efficient telecommunication systems and deploying sensor networks to monitor and manage the environment. You will have the opportunity to take part in a research project in electronic and photonic system design, telecommunications, power networks, signal processing and automatic control systems.

The Master of Engineering (Electrical) will lead to a formal qualification in electrical engineering.

CAREER OUTCOMES

Electrical Engineering Career Pathways [PDF]

Design and create a range of technical solutions, in areas ranging from medical bionics and neural engineering, to energy conversion, power distribution and communications networks. Career opportunities exist as technical specialists and managers in fields such as the power industry, telecommunications, electronics, biotechnology, manufacturing, automation, transport, defence and the computer industry, as well as roles in research and innovation.

You will find employment with companies such as Telstra, Siemens, Airbus Group Australia Pacific, BHP Billiton, Chevron, Alcoa, Compumedics and Cochlear Ltd.

PROFESSIONAL ACCREDITATION

The Master of Engineering is professionally recognised under two major accreditation frameworks — EUR-ACE® and the Washington Accord (through Engineers Australia). Graduates can work as chartered professional engineers throughout Europe, and as professional engineers in the 17 countries of the Washington Accord.



Read less
Electrical and electronic engineers play a key role in the design, implementation and management of electrical systems to solve practical problems, such as systems for automation, surveillance, energy conversion, power distribution, telecommunications and information processing. Read more

Electrical and electronic engineers play a key role in the design, implementation and management of electrical systems to solve practical problems, such as systems for automation, surveillance, energy conversion, power distribution, telecommunications and information processing.

You will develop technical skills through fundamental theory and practical laboratory work, learning from leading experts, who are working on a range of ground breaking projects from developing bionic implants and creating models and devices to better understand and treat diseases, such as autism and epilepsy, to creating energy efficient telecommunication systems and deploying sensor networks to monitor and manage the environment. You will have the opportunity to take part in a research project in electronic and photonic system design, telecommunications, power networks, signal processing and automatic control systems.

The Master of Engineering (Electrical with Business) will lead to a formal qualification in electrical engineering. 

MASTER OF ENGINEERING (WITH BUSINESS)

The Master of Engineering (with Business) is designed to provide students with a formal qualification in engineering at the masters level, with a business specialisation that recognises the need for engineers to understand the management and workings of modern professional organisations.

Students who undertake the Master of Engineering (with Business) replace five advanced technical electives with five business subjects that have been tailored specifically for engineering students and co-developed with Melbourne Business School.

Graduates will have a grounding in financial, marketing and economic principles enabling them to work efficiently in any organisation, as well as the ability to apply the technical knowledge, creativity and team work skills learnt in their engineering training. This combination of knowledge and skills will be a powerful asset in the workplace.

Key features

  • Combine a technical specialisation with exposure to the business and management skills that can help fast-track your career.
  • Benefit from subjects co-developed by Melbourne Business School and tailored specifically for engineering students.
  • Tight integration of subjects ensures that you understand the business side of engineering applications.
  • Be empowered with strong technical skills, as well as the business skills to understand how organisations work.

CAREER OUTCOMES

Electrical Engineering Career Pathways [PDF]

Design and create a range of technical solutions, in areas ranging from medical bionics and neural engineering, to energy conversion, power distribution and communications networks. Career opportunities exist as technical specialists and managers in fields such as the power industry, telecommunications, electronics, biotechnology, manufacturing, automation, transport, defence and the computer industry, as well as roles in research and innovation.

You will find employment with companies such as Telstra, Siemens, Airbus Group Australia Pacific, BHP Billiton, Chevron, Alcoa, Compumedics and Cochlear Ltd.

PROFESSIONAL ACCREDITATION

This Master of Engineering (with Business) degree is professionally recognised under EUR-ACE®. Graduates can work as chartered professional engineers throughout Europe.

This Master of Engineering (with Business) degree is provisionally accredited by Engineers Australia. In line with Engineers Australia policy on granting accreditation to new courses, full accreditation cannot be granted until sufficient students have graduated from the program. Once full accreditation has been granted, it will be back-dated to include all graduates from the start of the program.



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X