• Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Durham University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Leeds Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Pennsylvania Featured Masters Courses
"biomolecular" AND "engin…×
0 miles

Masters Degrees (Biomolecular Engineering)

We have 39 Masters Degrees (Biomolecular Engineering)

  • "biomolecular" AND "engineering" ×
  • clear all
Showing 1 to 15 of 39
Order by 
The program is designed to help qualified engineers strengthen their management capability and technical expertise. Qualified engineers looking to specialise or update their skills could also consider this program. Read more
The program is designed to help qualified engineers strengthen their management capability and technical expertise. Qualified engineers looking to specialise or update their skills could also consider this program.
The Master of Engineering will allow you to build on your existing engineering undergraduate degree by developing specialised technical knowledge in your chosen major.
Course structure
This program comprises core units of study along with electives to broaden your knowledge. You will complete a sequence of specialist units that comprises a major in your chosen field. It has a strong focus on project work to enhance self-directed learning.
Professional engineering management subjects will enhance your leadership and commercial capabilities, providing you with greater opportunities to advance your career. They include:

sustainable design, engineering and management
entrepreneurship for engineers
project process planning and control
safety systems and risk management.
Research pathways are available within all majors, allowing you to complete a research project as preparation for a research degree.

Depending on the level and type of your prior studies, you may be eligible for recognition of prior learning. This will reduce the length of your degree.

Read less
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Read more
The Department of Chemical Engineering and Applied Chemistry offers graduate research in pure science, engineering fundamentals, and engineering applications. Graduate programs lead to the degrees of Master of Applied Science (MASc), Master of Engineering (MEng), and Doctor of Philosophy (PhD). The MEng program differs from the MASc and PhD programs in that it is oriented to learning through prescribed courses rather than through research.

The department attracts a dynamic professorial staff with outstanding international reputations. Many graduate students work closely with industrial partners during their studies. Research is funded by the government and industry, often by means of a consortium of companies. The experience of dealing with real-world problems prepares graduates for successful professional careers.

Research and teaching are the foundations of the department. Research is clustered into eight major categories:
-Biomolecular and Biomedical Engineering
-Bioprocess Engineering
-Chemical and Materials Process Engineering
-Engineering Informatics
-Environmental Science and Engineering
-Pulp and Paper
-Surface and Interface Engineering
-Sustainable Energy

Read less
Accredited by the the Institution of Chemical Engineers. Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. Read more

About the course

Accredited by the the Institution of Chemical Engineers

Develop the essential skills for a career in bioindustry or for further advanced research in next-horizon biotechnologies. You’ll learn from world-class researchers, including staff from Biomedical Science and Materials Science and Engineering. Our graduates work in biotechnology, biopharmaceutical and bioprocess organisations.

Take advantage of our expertise

Our teaching is grounded in specialist research expertise. Our reputation for innovation secures funding from industry,
UK research councils, the government and the EU. Industry partners, large and small, benefit from our groundbreaking work addressing global challenges.

You’ll have access to top facilities, including modern social spaces, purpose-built labs, the Harpur Hill Research Station for large-scale work, extensive computing facilities and a modern applied science library. There are high-quality research facilities for sustainable energy processes, safety and risk engineering, carbon capture and utilisation, and biological processes and biomanufacturing.

Studentships

Contact us for current information on available scholarships.

Course content

Four core modules including research project, a conversion module, and three optional modules.

Core modules

Biopharmaceutical Bioprocessing
Biosystems Engineering and Computational Biology
Bioanalytical Techniques
Research Project

Examples of optional modules

Any three from:

Microfluidics
Bio-energy
Synthetic Biology
Tissue Engineering Approaches to Failure in Living Systems
Bionanomaterials
Stem Cell Biology
Proteomics and Bioinformatics

Conversion modules:

Principles in Biochemical Engineering or
Principles in Biomolecular Sciences.

Read less
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Read more
The MSc Medical Imaging programme is intended to provide a Masters-level postgraduate education in the knowledge, skills and understanding of engineering design of advanced medical and biotechnology products and systems. Students will also acquire a working knowledge of the clinical environment to influences their design philosophy.

Why study Medical Imaging at Dundee?

With biotechnology replacing many of the traditional engineering disciplines within the UK, this programme will allow you to develop the skills to apply your engineering or scientific knowledge to technologies that further the developments in this field. As a result, employment opportunities will be excellent for graduates, both in research and in industry.

We have an active research group, and you will be taught by leading researchers in the field.

What's so good about Medical Imaging at Dundee?

The MSc in Medical Imaging at the University of Dundee will:

Provide knowledge, skills and understanding of medical imaging technologies, particularly in modern biomedical, radiological and surgical imaging instrumentation, biomaterials, biomechanics and tissue engineering

Enhance your analytical and critical abilities, competence in multi-disciplinary research & development

Provide broad practical training in biology and biomolecular sciences sufficient for you to understand the biomedical nomenclature and to have an appreciation of the relevance and potential clinical impact of the research projects on offer

Allow you to experience the unique environment of clinical and surgical aspects in medical imaging in order to provide an understanding of the engineering challenges for advanced practice

Provide core training in electrical, microwave, magnetic, acoustic and optical techniques relevant to the life sciences interface and

Provide broad experience of analytical and imaging techniques relevant for biology, biomolecular and clinical sciences
provide core training in acoustic ultrasound technologies.

Who should study this course?

This course is suitable for students who are recent graduates of mechanical engineering courses or other related programmes.

This course has two start dates - January & September, and lasts for 12 months.

How you will be taught

The programme will involve a variety of teaching formats including lectures, tutorials, seminars, hands-on imaging classes, laboratory exercises, case studies, coursework, and an individual research project.

The teaching programme will include visits to and seminars at IMSaT and clinical departments at Ninewells Hospital and Medical School and Tayside University Hospitals Trust, including the Clinical Research Centre, the Departments of Medicine, Surgery, Dentistry and ENT, the Vascular Laboratory and Medical Physics.

A high degree of active student participation will be encouraged throughout. Taught sessions will be supported by individual reading and study. You will be guided to prepare your research project plan and to develop skills and competence in research including project management, critical thinking and problem-solving, project report and presentation.

What you will study

The course is divided into two parts:

Part I has 60 credits:

Biomechanics (20 Credits)
Biomaterials (20 Credits)
Bioinstrumentation (10 Credits)
Introduction to Medical Sciences (10 Credits)

Part II has one taught module and a research project module. It starts at the beginning of the University of Dundee's Semester 2, which is in mid-January:

Taught module: Advanced Biomedical Imaging Technologies (30 Credits).
Research project (30 Credits for diploma or 90 Credits for MSc)

How you will be assessed

The taught modules will be assessed by a combination of written examinations and coursework. The research project will be assessed by a written thesis and oral presentation.

Careers

This Master's programme provides you with the skills to continue into research in areas such as biomedical and biomaterials engineering as well as progression into relevant jobs within the Mechanical Engineering and Mechatronics industries.

Read less
Nanoscale Science and Technology research students in nanoLAB cross the traditional disciplinary boundaries of medicine, engineering and the physical sciences. Read more
Nanoscale Science and Technology research students in nanoLAB cross the traditional disciplinary boundaries of medicine, engineering and the physical sciences. This gives you the chance to thrive on interdisciplinary challenges, collaborate with industrial partners and even create your own spin-off company to commercialise the results of your research.

MPhil supervision is available in:
-Micro and nanoscale design, fabrication, manufacturing and manipulation
-Top-down and bottom-up fabrication
-Nanoscale materials and electronics
-Applications of nano and microelectronics in medical science, including cell biology, neuroscience, human genetics and ageing
-Polymers
-Self-assembly
-Chemistry of nanoscale systems
-Biomolecular engineering - microfluids, bioprobes and biosensor systems, MEMS/NEMS-based sensors and devices

Many research projects cross the disciplinary boundaries of medicine, engineering and the physical sciences. Depending on the source of funding, your project may involve collaboration with an industry partner or you may work in a team with a number of students to develop an idea to the point where, following your degree, you can create a spin-off company to commercialise the results of your research.

There are opportunities for you to develop your business awareness and skills, with training in topics such as intellectual property protection. nanoLAB also hosts regular research seminars, conferences and workshops.

Read less
Chemical and biomolecular engineering is concerned with industrial processes in which material in bulk undergoes changes in its physical or chemical nature. Read more
Chemical and biomolecular engineering is concerned with industrial processes in which material in bulk undergoes changes in its physical or chemical nature. Chemical and biomolecular engineers design, construct, operate and manage these processes and in this they are guided by economic, environmental and societal considerations.

The Master of Professional Engineering (Chemical and Biomolecular) is a three year full-time course delivering technical and professional outcomes that will allow you to be recognised as an Australian graduate engineer in this field. This degree has been given full accreditation at the level of Professional Engineering by the industry governing body, Engineers Australia http://www.engineersaustralia.org.au/

If your bachelor's degree included foundational engineering units, you may be given advanced standing and be eligible to enrol either in a reduced length graduate certificate or directly into the Master of Professional Engineering. Entry pathways are available for students with widely varying backgrounds.

In this course you will engage in areas of study including cellular biophysics, biochemical engineering, chemical and biological processes, and process design. You will also have the opportunity to complete either an engineering project or research at the end of the course.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice

Read less
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD. Read more
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD.

Biomolecular Technology underpins the production of drug delivery systems, the making of healthier food products, the design of health-care products, the making of antisera and vaccines - and even the efficient extraction of oil from the harsh environment of a deep well: these are among the biotechnology processes which depend in fundamental terms on our ability to handle giant molecular complexes of living origin. Furthermore, molecular biologists and chemists are now increasingly able to ‘engineer’ new types of proteins and complexes over and beyond those which 3 billion years of evolution have provided.

Industry needs skilled personnel capable of understanding how these molecules may be used in an industrial context and the processes of gene cloning and protein engineering.

It is taught by the School of Biosciences in conjunction with the University's Schools of Pharmacy, Biomedical Sciences and Clinical Sciences and The School of Biosciences at the University of Leicester. Experts from local and national industry also contribute, ensuring access to the latest developments in the field.

A 3 month industrial placement module offers an exciting opportunity to discover first hand the needs of modern industry and provides advanced training for employment and further academic studies.
By suitable arrangement non-UK students can do this in their normal country of residence.

Applicants should hold first degrees at honours level in any Biological, Chemical or Physical Science subject (e.g. Biochemistry, Chemistry, Pharmacy, Genetics, Food Sciences, Plant Sciences, Physics). Suitably motivated candidates with Engineering or Mathematics degrees will also be considered.

A number of scholarships and European bursaries may be available.

Read less
The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Read more

Developing a state of mind

The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Therefore, our students will also be trained in different aspects of research communication and research management.

Discovery-based laboratory

The two-year programme has a strong emphasis on performing research. Its concept will require full-time attendance and will involve active participation in lectures and discovery-based laboratory work to develop the state of mind that drives the progress of science.
The program of the first year is composed of 4 modules, all of which have to be followed. The courses within each module are at advanced level and consist of 26 class hours and 6 days of practical training. The practical trainings link up with the advanced courses and will take place in the research labs under the guidance of experienced postdocs.
Protein structure and function (3x5 ECTS)
Applied Immunology (3x5 ECTS)
Advanced Molecular Biology (4x5 ECTS)
Bioinformatics (2x5 ECTS)
The program of the second year pays much attention to the acquisition of research competences. The program consists of three modules:
Elective courses (4x5 ECTS)
Master Proof (30 ECTS)
Research Communication and Management (10 ECTS)

Master Proof/Thesis

To obtain a Master degree, a student must carry out, under the direction and supervision of a promoter, an independent research project and prepare a dissertation, that is, a written account of the research and its results.

Research Communication and Management

This part of the program includes the writing of the results of the dissertation in a publication format, seminars on intellectual property rights, scientific writing, project development and the writing of a research proposal.
The latter can be a proposal for a continuation of the topic of the Master Proof, a proposal for a PhD project, or a proposal for another research project in Biomolecular Sciences, and is intended to help the students to continue their career in biomolecular research.

Read less
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge. Read more

The need to develop new strategies to combat diseases remains a major global challenge. This degree aims to enhance your employability and prepare you to tackle this challenge.

We’ll give you advanced training in the mechanisms underpinning a spectrum of infectious and non-infectious diseases, including viral, bacterial and parasitic infections, cancer, neurodegeneration, cardiovascular disease and chromosomal abnormalities. You’ll also explore current and emerging diagnostic and treatment strategies.

You’ll learn about the latest molecular, genetic and cellular approaches being used to understand, diagnose and treat human disease, including traditional methods such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), and novel methods involving genome and proteome analysis.

You’ll also have the opportunity to investigate the role of the immune system in the response to infection and disease, covering topics such as innate and adaptive immunity, allergy and immune evasion.

If you choose to study at Leeds, you’ll join a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014), and you’ll graduate with the solid base of scientific knowledge and specialist skills highly valued by employers.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular sciences. You’ll investigate five topic areas: molecular biology, structural biology, cell imaging and flow cytometry, high throughput techniques and transgenic organisms.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

To help you to develop and specialise, you’ll get substantial subject-specific training through an independent research project in an area of infection, immunity or human disease.

You’ll also take specialist taught modules covering topics such as infectious and non-infectious disease, advanced immunology, medical diagnostics and treatment of infectious diseases and cancer.

If you have previous experience of immunology, you could opt to investigate the structure, regulation and development of the pharmaceutical manufacturing sector, or explore aspects of human toxicology. These could include the actions of toxicants on the cardiovascular, immune and nervous systems, kidneys, liver and lungs, genetic toxicology and chemical carcinogenesis, and the effects of chemicals on fetal development.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

These are typical modules/components studied and may change from time to time. Read more in our Terms and conditions.

Compulsory modules

  • Advanced Immunology 10 credits
  • Infectious & Non-infectious Diseases 10 credits
  • Practical Bioinformatics 10 credits
  • Medical Diagnostics 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Treatment of Infectious Disease and Cancer 10 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Infection, Immunity and Human Disease MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Infection, Immunity and Human Disease MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our programmes.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.

Professional and career development

We take personal and career development very seriously. We have a proactive Industrial Advisory Board who advises us on what they look for in graduates and on employability related skills within our courses.

Our dedicated Employability and Professional Development Officer ensures that you are aware of events and opportunities to increase your employability. In addition, our Masters Career Development Programme will support you to:

  • explore career options and career planning
  • understand the PhD application process and optimise PhD application
  • learn how to use LinkedIn and other social media for effective networking and career opportunities
  • practice interviews for both job and PhD applications.


Read less
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Read more
Materials are substances or things from which something is or can be made. Technological development is often based on the development of new materials. Materials research plays an important part in solving challenging problems relating to energy, food, water, health and well-being, the environment, sustainable use of resources, and urbanisation.

An expert in materials research studies the chemical and physical bases of existing and new materials; their synthesis and processing, composition and structure, properties and performance. As an expert in materials research, your skills will be needed in research institutions, the technology industry (electronics and electrotechnical industry, information technology, mechanical engineering, metal industry, consulting), chemical industry, forest industry, energy industry, medical technology and pharmaceuticals.

This programme combines expertise from the areas of chemistry, physics and materials research at the University of Helsinki, which are ranked high in international evaluations. In the programme, you will focus on the fundamental physical and chemical problems in synthesising and characterising materials, developing new materials and improving existing ones. Your studies will concentrate on materials science rather than materials engineering.

Upon graduating from the programme you will have a solid understanding of the essential concepts, theories, and experimental methods of materials research. You will learn the different types of materials and will be able to apply and adapt theories and experimental methods to new problems in the field and assess critically other scientists’ work. You will also be able to communicate information in your field to both colleagues and laymen.

Depending on the study line you choose you will gain in-depth understanding of:
-The synthesis, processing, structure and properties of inorganic materials.
-Modelling methods in materials research.
-The structure and dynamics of biomolecular systems.
-The synthesis, structure and properties of polymers.
-Applications of materials research in industrial applications.
-The use of methods of physics in medicine.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

In the programme, all teaching is based on the teachers’ solid expertise in the fundamental chemistry and physics of materials. All teachers also use their own current research in the field in their teaching.

Your studies will include a variety of teaching methods such as lectures, exercises, laboratory work, projects and summer schools.

In addition to your major subject, you can include studies in minor subjects from other programmes in chemistry, physics and computer science.

Selection of the Major

At the beginning of your studies you will make a personal study plan, with the help of teaching staff, where you choose your study line. This programme has the following six study lines representing different branches of materials research.

Experimental Materials Physics
Here you will study the properties and processing of a wide variety of materials using experimental methods of physics to characterise and process them. In this programme the materials range from the thin films used in electronics components, future fusion reactor materials, and energy materials to biological and medical materials. The methods are based on different radiation species, mostly X-rays and ion beams.

Computational Materials Physics
In this study line you will use computer simulations to model the structures, properties and processes of materials, both inorganic materials such as metals and semiconductors, and biological materials such as cell membranes and proteins. You will also study various nanostructures. The methods are mostly atomistic ones where information is obtained with atomic level precision. Supercomputers are often needed for the calculations. Modelling research is closely connected with the experimental work related to the other study lines.

Medical Physics
Medical physics is a branch of applied physics encompassing the concepts, principles and methodology of the physical sciences to medicine in clinics. Primarily, medical physics seeks to develop safe and efficient diagnosis and treatment methods for human diseases with the highest quality assurance protocols. In Finland most medical physicists are licensed hospital physicists (PhD or Phil.Lic).

Polymer Materials Chemistry
In this line you will study polymer synthesis and characterisation methods. One of the central questions in polymer chemistry is how the properties of large molecules depend on the chemical structure and on the size and shape of the polymer. The number of applications of synthetic polymers is constantly increasing, due to the development of polymerisation processes as well as to better comprehension of the physical properties of polymers.

Inorganic Materials Chemistry
Thin films form the most important research topic in inorganic materials chemistry. Atomic Layer Deposition (ALD) is the most widely studied deposition method. The ALD research covers virtually all areas related to ALD: precursor synthesis and characterisation, film growth and characterisation, reaction mechanism studies, and the first steps of taking the processes toward applications. The emphasis has been on thin film materials needed in future generation integrated circuits, but applications of ALD in energy technologies, optics, surface engineering and biomaterials are also being studied. Other thin film deposition techniques studied include electrodeposition, SILAR (successive ionic layer adsorption and reaction) and sol-gel. Nanostructured materials are prepared either directly (fibres by electrospinning and porous materials by anodisation) or by combining these or other templates with thin film deposition techniques.

Electronics and Industrial Applications
Sound and light are used both to sense and to actuate across a broad spectrum of disciplines employing samples ranging from red hot steel to smooth muscle fibres. Particular interest is in exploiting the link between the structure and mechanics of the samples. The main emphasis is on developing quantitative methods suitable for the needs of industry. To support these goals, research concentrates on several applied physics disciplines, the main areas being ultrasonics, photoacoustics, fibre optics and confocal microscopy.

Read less
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. Read more
The MSc in Biotherapeutics and Business educates students on the practical uses of molecular advances in the discovery of proteins and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing.
Systems biology of biotechnological processes and approaches to the analysis of proteomicsbased discovery data will be covered in detail, together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. You will also receive a comprehensive business education. You will learn to identify and solve business problems in local and international settings, enhance your communication and leadership skills, and improve your ability for independent thinking and developing creative solutions.

Key Fact

The programme is the result of a close collaboration between the UCD School of Biomolecular and Biomedical Science and the UCD
Michael Smurfit Graduate School of Business, which is Ireland’s leading business school.

Course Content and Structure

90 credits 60 credits 30 credits
taught masters taught modules project modules
The structure of the programme is as follows:
Semester 1
• Professional Career Development
• Management & Org. Behaviour
• Corporate Accounting & Finance
• Business of Biotechnology & Science
• Biotherapeutic Pipeline I
• Recombinant DNA Technology
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development
Semester 2
• Professional Career Development
• Biotherapeutic Pipeline II
• Systems Biology in Drug Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
Semester 3
• Valuation and Commercialisation of Biotherapeutics
• Biotherapeutics Case Study
Modules and topics shown are subject to change and are not guaranteed by UCD.

Career Opportunities

This advanced graduate degree in Biotherapeutics and Business has been developed in consultation with employers and therefore will be recognised and valued by them. A key feature is the opportunity to carry out a business development plan, which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation.
Prospective employers include: Abbott; Allergan; Amgen; Baxter Healthcare;
Eli Lilly and Co.; Dignity Sciences; GlaxoSmithKline; Icon Clinical Research;
ImmunoGen Inc.; Janssen Pharmaceutical Ltd.; Johnson & Johnson Ltd.; Merck
Sharp & Dohme; Quintiles; Quest International; Sandoz; Seroba Kernel.

Facilities and Resources

Students on this programme will benefi t from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities in the new O’Brien Centre for Science.

Read less
The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. Read more

Programme Description

The MSc in Biotherapeutics educates students on the practical uses of molecular advances in the discovery of protein and other biomolecular drug candidates and their development into biotherapeutics. It will provide students with a comprehensive understanding of the development of biotherapeutics, beginning with pre-clinical modelling and target identification together with antibody engineering, biochemical and biophysical characterisation, and development issues for bioprocessing. Systems biology of biotechnological processes and approaches to the analysis of proteomics-based discovery data will be covered in detail together with mathematical modelling, bioinformatics analysis and data integration strategies. Regulatory issues, and innovation and commercialisation strategies, will also be covered. Mammalian cell culture and bioprocess laboratory structure will be comprehensively covered in addition to novel approaches to therapeutic development. A practical drug discovery laboratory project will form a significant component of the experience of how candidates are identified and brought through the development pipeline.

Key Fact

This programme is the culmination of close collaboration between the UCD School of Biomolecular and Biomedical Science, Systems Biology Ireland and the Biopharmaceutical Industry in Ireland and across the world.

Course Content and Structure

The structure of the programme is as follows:

Semester 1
• Biotherapeutic Discovery and Development I
• Professional Career Development
• Recombinant DNA Technology
• Business of Biotechnology & Science
• Biomedical Diagnostics
• High Content Screening Microscopy
• Pharmacology & Drug Development

Semesters 2 & 3
• Biotherapeutic Discovery and Development II
• Systems Biology in Drug Development
• Professional Career Development
• Bioprocessing Laboratory
• Emerging Issues in Biotechnology
• Regulatory Affairs
• Microbial & Animal Cell Products
• Project – Biotherapeutic Development

Career Opportunities

This advanced graduate degree in Biotherapeutics has been developed in consultation with the Biopharmaceutical industry and is recognised and valued by them. A key feature is the undertaking of a significant drug discovery and development laboratory project which is reviewed by industry partners. This engagement is designed to help graduates identify opportunities in the industry at the earliest stage. Prospective employers include: Novartis, Glaxo SmithKline, Eli Lilly, Johnson & Johnson, Pfizer, Janssen Biologics, AstraZeneca, MSD, Bristol Myers Squibb, Abbott, Sanofi.

Facilities and Resources

Students on this programme will benefit from the use of a research skills laboratory in the prestigious UCD Conway Institute, as well as state-of-the-art teaching and laboratory facilities
in the new O'Brien Centre for Science.

Read less
The increased understanding and use of textiles as both a decorative and technical material has led to a rapid expansion of the industry into areas such as architecture and engineering. Read more
The increased understanding and use of textiles as both a decorative and technical material has led to a rapid expansion of the industry into areas such as architecture and engineering.

This merging of textiles technology and aesthetics is complex and requires designers who are able to converse with engineers and scientists, handling technical information as well as expressing conceptual design ideas.

Through established links with the DR-i (Design Research Initiative) and Brighton's School of Pharmacy and Biomolecular Sciences, this MA is designed to stimulate such diversity in textile design thinking. We are seeking talented students who are keen to push the boundaries and perception of what we understand textiles to be.

This course is suitable both for recent graduates interested in furthering their skills or exploring new areas and markets, and for experienced designers who want to challenge their practice in a creative environment.

Due to the open and explorative nature of the course, students from non-textiles backgrounds such as 3D craft design, fine art, materials development, engineering and science are welcome to bring a fresh viewpoint and build on their existing specialist knowledge.

Semester 1

The first semester is made up of three modules and serves as a foundation to your learning experience, imparting key research skills, exploration beyond your discipline and initial explorative practice-based enquiry.

• Practice-Based Enquiry (Part One)
Spanning semesters one and two, this module provides a reflective environment for rigorous explorative practice-based enquiry and the development of design concepts identified in the self-initiated project proposal submitted at interview. Increasingly informed by research and critical awareness skills developed in the supporting modules, you will explore and reflect on novel design concepts and the application of practice-based research methods. You will also be encouraged to engage with live research, industry contacts and collaborative projects.

• Research Skills and Training
Through a series of lectures and seminar groups with active researchers, you will explore the value of research within a practice-based design context. You will develop research skills and an understanding of different methodologies and how research can be used as a design tool.

• Options module
Placed in the first semester to maximise the potential areas of study, the options module takes advantage of the range of subjects and learning experiences available from across the college. This module allows you to tailor your study and learning experience to complement and inform your specific area of interest from an early stage. Learning alongside students from varied disciplines, you will be able to explore areas of personal interest from subjects including design history, sustainable design, professional practice, and historical and critical studies.

Semester 2

The second semester encourages you to explore diverse cross-disciplinary sources to inform and contextualise your research project before focusing on your final proposal.

• Practice-Based Enquiry (Part Two)
Continuing from initial explorations in Practice-Based Enquiry (Part One), you will develop an increasingly focused, reflective body of work that demonstrates applied research methodologies and an understanding of their position within a broader textiles and industry context. You will conclude the module with a final 500-word proposal to define the area of study that you will undertake in your thesis.

• Creative and Contextual Enquiry
Informed by the learning undertaken in semester one, you will critically engage with and reflect on your subject area, exploring diverse cross-disciplinary influences that inform your practice. Through the use of relevant research methods, this creative contextual enquiry will stimulate awareness and rigorous critical evaluation of cultural, technological and research debates, both within and outside of your discipline.

Semester 3

In the third semester, you will fully integrate your previous learning into the realisation of your thesis.

• Practice-Based Textile Design Thesis
During this self-directed module, you will put into practice the skills acquired throughout the programme of study, working towards the realisation of the final proposal submitted at the end of semester two. You are expected to rigorously explore and fully resolve a body of practice-based textile design inquiry, which should be positioned at the forefront of your academic or professional discipline and advance design thinking within your stated field.

The module contains planned lectures, group seminars and individual tutorials delivered by lecturers who are active researchers or innovative design practitioners. You will have access to a diverse range of lecture series and conferences held at the university as well as exhibitions and trade fairs relevant to your study.

You will have the opportunity to extend your skills through advanced textiles technology, working closely with expert technical demonstrators. Relevant placements or access to external study are negotiable on an individual basis, determined by the requirements of your proposal.

Facilities

Our facilities range from traditional hand looms, screen printing equipment and knitting resources to advanced industrial textile technologies, including a Mimaki TX2 digital printer, Dornier industrial 20 shaft electronic dobby, twin rapier Powerloom, TC1 Electronic Jacquard Loom and Shima Seiki industrial knitting machine. We also make use of Scotweave design software.

Other resources that you can use include a 3D body scanner, laser cutter, rapid prototyping machine, CNC router and plasma cutter, and 5 axis milling machine. You will have access to our facilities through specialist workshops in knitted, printed and woven textiles, which are run by a highly skilled team of technical demonstrators.

Careers and employability

Successful completion of the course signifies specialist and transferable skills in design and research, and will prepare you for work across the textiles and allied design industries. You could also choose to pursue research in the commercial sector or continue your studies at doctoral level.

Many graduates of the Textiles MA hold high-level design and trend forecasting positions at international companies including Abercrombie and Fitch, Donna Karan, DKNY, Burberry, Alexander McQueen, Cath Kidston, H&M, WGSN and Forpeople.

Others have forged independent careers in the industry, from establishing design labels such as Marchesa, (Keren Craig), Eley Kishimoto (Mark Eley) and Julien Macdonald to textile design studios and consultancies (Larch Rose and Woven Studios).

Read less
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology. It draws on the tools and ideas of modern Physical Sciences (e.g. Read more
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology.

It draws on the tools and ideas of modern Physical Sciences (e.g. Chemistry, Mathematics, Physics and Engineering) and applies these to the solution of biological problems at the molecular level.

It is a discipline that is perfectly poised to address the next great challenge in biological science – to understand how gene products are used in and interact with the cellular environment.

The research element provides physical scientists with the ability to bridge disparate fields and gain the confidence to grapple with biomolecular research in a multidisciplinary environment.

Read less

Show 10 15 30 per page



Cookie Policy    X