• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Kent Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
University of Kent Featured Masters Courses
"biomimetic"×
0 miles

Masters Degrees (Biomimetic)

  • "biomimetic" ×
  • clear all
Showing 1 to 3 of 3
Order by 
The Nanoscale Engineering master is a two-year program corresponding to 120 ECTS credits. Students receive a universal and profound training in physics, materials science and electronics at the nanoscale, but also in nanobiotechnology. Read more
The Nanoscale Engineering master is a two-year program corresponding to 120 ECTS credits. Students receive a universal and profound training in physics, materials science and electronics at the nanoscale, but also in nanobiotechnology.

Elective courses can be followed by the students in their desired area of specialization and/or to broaden their horizons. The entire curriculum is taught in English.

A key educational concept of the program is that each student is immersed in a high-quality research environment for at least half of the time in the curriculum. Throughout the academic year, lab practicals and projects are carried out in research institutions that participate in the program, and thesis projects are undertaken in research laboratories or in nanotechnology companies.

In addition to the scientific and technological aspects, ethical issues and the societal impact of nanotechnology, as well as business considerations, are addressed in specialized seminars and courses.

Structure of the Curriculum

First Year (60 ECTS)

The major part of semester 1 is dedicated to lectures: The students follow 7 courses from the core modules and 2 elective modules. Laboratory practicals and mini-projects ensure a smooth transition into semester 2 with its four-month internship in a research group. This internship is prepared in semester 1 already with a dedicated literature survey. Seminars of speakers from both academia and industry complement the educational program throughout the entire first year.

Second Year (60 ECTS)

Semester 3 is again dedicated to lectures, featuring 5 slots for core modules and 3 for electives, as well as some ancillary courses. The entirety of semester 4 is taken up by the six-month Master thesis project, which can be conducted in a research laboratory or in a company, in France or abroad. As in the first year, seminars of speakers from both academia and industry complement the educational program.

Modules and Courses

Core Modules

These courses impart the fundamental knowledge in the nanotechnology field applied to physics, electronics, optics, materials science and biotechnology. Students are required to follow at least twelve core module courses during the two-year program.

Core modules in the first year There are four obligatory core modules in the first year:

Introduction to Nanoscale Engineering
Micro- and Nanofabrication, part 1
Characterization Tools for Nanostructures
Quantum Engineering

Furthermore, there is a remedial physics course to which students are assigned based on the results of a physics test at the beginning of semester 1:

Basics of Physics

Finally, students have to select a minimum of three courses from the following list for their first year:

Solid State Physics at the Nanoscale
Continuum Mechanics
Physics of Semiconductors, part 1
Physical Chemistry and Molecular Interactions
Biomolecules, Cells, and Biomimetic Systems

Core modules in the second year Students have to choose at least four courses from the following selection for their second year:

Nano-Optics and Biophotonics
Surface-Analysis Techniques
Physics of Semiconductors, part 2
Micro- and Nanofluidics
Micro- and Nanofabrication, part 2
Biosensors and Biochips
Computer Modeling of Nanoscale Systems

Elective Modules

These courses cover a wide range of nanotechnology-related disciplines and thus allow the students to specialize according to their preferences as well as to broaden their expertise. Elective modules in the first year Three courses from the following list have to be chosen for the first year:

Nanomechanics
MEMS and NEMS
Introduction to System Design
Drug-Delivery Systems

Elective modules in the second year Students follow a minimum of three courses from the following selection in the second year:

Multi-Domain System Integration
Solar Cells and Photovoltaics
Nanomagnetism and Spintronics
Nanoelectronics
Tissue and Cell Engineering

Experimental Modules

Students conduct lab practicals that are integrated into the various courses, during which they familiarize themselves hands-on with all standard techniques for fabrication and characterization of nanostructures. They furthermore have the opportunity to work more independently on individual or group projects.

Ancillary Courses and Seminars

This module deals with complementary know-how, relevant both for academia and in an industrial environment. Students follow a course on intellectual-property issues. Ethical aspects and the societal impact of nanotechnology are covered in specialized seminars, which also allow for networking with national and international nanotechnology companies and research laboratories. Communication skills are likewise developed through written and oral presentations of all experimental work that is carried out during the Master program.

Internship

In the second semester, students conduct two-month internships in two of the research laboratories participating in the program. The students choose their projects and come into contact with their host laboratories earlier in the academic year already, by spending some time in these laboratories to carry out an extensive literature survey and to prepare their research projects under the guidance of their supervisors.

Master Thesis Project

The final six-month period of the program is devoted to the master project, which can be carried out either in an academic research laboratory or in an industrial environment. Students have the option to conduct their thesis project anywhere in France or abroad.

Read less
Are you dismayed, disturbed and totally disenchanted with what is happening to the only real planetary home we have? So are we. But are you also excited by the opportunities and prospects this opens up for us to create a better, brighter and more beautiful world? So are we. Read more
Are you dismayed, disturbed and totally disenchanted with what is happening to the only real planetary home we have? So are we.

But are you also excited by the opportunities and prospects this opens up for us to create a better, brighter and more beautiful world? So are we.

Then join us in this innovative new postgraduate programme from Schumacher College in collaboration with the School of Architecture, Design and Environment at Plymouth University, the School of Design at Carnegie Mellon University, the Dartington Hall Trust and surrounding communities.

Ecological Design Thinking

Never has there been a more important time for a new approach for engaging with the challenging situations we face from the local to the global levels. In a rapidly changing dynamic situation, solutions rarely remain optimal for very long and continuous active participation is a necessary ingredient for success. Growing resilience in individuals and communities is the way to keep going despite the continuous change around us.

Our programme in Ecological Design Thinking embraces and explores this complex world of interactions with lively engagement and an optimistic approach. It offers powerful, practical and ecology-centred skills and knowledge to apply to a diverse range of practices from design, education and business to the more specific roles of leadership, management and consultancy.

The Ecological Design Thinking programme is trans-disciplinary, insightful and universal in its application; pragmatic and integrative in its operation. It brings together theoretical and practical discourses on ecologically inspired design, with methods of design thinking that are merged with the latest developments in anthropology, psychology and socio- political economics. It aims to create a novel ground for change makers at the forefront of our transition to sustainable societies.

Ecologically inspired design includes the study of ecological worldviews, systems dynamics and applied complexity theory alongside the philosophies and practices of permaculture and biomimetic design.

Design thinking is a well-established participatory technique grounded in the empathic understanding of the feelings, experiences and emotions of others. It engages people in lively conversations, visually stimulated interactions and playful prototyping. It frames problems as opportunities, forms insights and generates creative and collaborative solutions in complex situations.

The Ecological Design thinking programme aims to provide a nourishing environment for participants by incorporating short-courses led by internationally recognised thinkers, place-making projects in collaboration with the Dartington Hall Trust, the home of Schumacher College, and short placements offered by external partner organisations.

This programme is the fourth radical postgraduate programme developed at Schumacher College and contributes to and enhance the College’s ongoing collaborative inquiry into sustainable living – a live and networked inquiry of practice underway around the world by the College’s 20,000 alumni and others.

Who is this course for?

We would be delighted to receive your application whether you are coming directly from an undergraduate degree, taking time-out to study mid-career or wanting an opportunity to develop your understanding of a practice that is of great importance to all of our futures. We encourage applications from community practitioners and activists as well as planners, educators, architects, politicians and policy makers. You do not necessarily need a first degree in design to apply for this course. You only need to be enthusiastic, resilient and committed.

We are looking for enthusiastic agents of change who are ready to co-design new approaches to the way we live that are socially just and ecologically sustainable. We are looking for those prepared to take risks and stand on the cutting-edge of new practices in this area.

Schumacher College welcomes students from all over the world in a diverse mix of cultural experience and age that allows for rich peer- to- peer learning.

You Will Learn

The foundation of an ecological worldview through subjects such as ecology, deep ecology, systems thinking, complexity science and Gaia theory.
Living systems principles through the philosophy and practice of permaculture design, biophilia and biomimicry.
Creative and process-focused problem solving techniques by applying the methods and principles of design thinking
A multi-perspective appreciation of ethical issues and their implications for the future consequences of redesigning existing systems and creating new ones.
To apply ecological design thinking knowledge and skills to the design of social systems as a part of an emerging new economics
Personal and group enquiry practices to raise awareness of the interdependent relationship between the individual, society and nature and between theory and practice

Co-creative participatory practices and theoretical principles for new approaches to the ecological design process that include a range of stakeholders in the full lifecycle of projects, and you will apply these both in the studio, on the Dartington Hall Estate and in short placements on live projects

Special Features

An interdisciplinary programme integrating design methods with those of ecology and the social sciences.
An integrative design programme rooted in deep ecological understanding and practice and informed by cutting edge thinking in new economic approaches and social dynamics.
A balanced distribution of time and resources on skill-based and cognitive-based knowledge and between practice and theory.
Access to some of the world’s leading thinkers and practitioners in design, Gaia theory, complexity, climate science, systems thinking, new economics and social change.
Short courses led by internationally recognised thinkers and researchers.
Short practical placements with a range of partner organisations operating at the leading edge of social innovation.
An immersive, integrative and transformational teaching and learning approach rooted in the principles established by Schumacher College and Dartington Hall, and engaged in a living and working community on and around the Dartington Estate in Devon.

Where you will go?

Ecological Design Thinking can be applied to a wide range of contexts, from the personal to the societal. This programme aims to create a new generation of designers, entrepreneurs, policy-makers, educators, researchers, consultants and activists. Graduates will have the skills and knowledge to work for sustainable change in the public and private sectors as well as in civil society, or to set up their own projects or organisations that will contribute to the transformation of society.

Read less
Many future applications within electronics, telecommunication, information systems, medicine, and natural or artificial biosystems build upon progress in nanoscale technologies. Read more
Many future applications within electronics, telecommunication, information systems, medicine, and natural or artificial biosystems build upon progress in nanoscale technologies. On the nanoscale, new physical, chemical, and biological properties become important, and research often takes place on the borders between these disciplines. Proficiency in theoretical and practical aspects of these fields will therefore be important both within the industry and the academia. The nanotechnology programme is based on both physics and chemistry and will give you a thorough, yet advanced knowledge of the nanoscale system properties.

Programme description

Besides equipping you with a solid theoretical background in the physics, chemistry and technology of nanoscale systems the programme will also provide you with unique competencies, such as knowledge of the innovative possibilities of nanotechnology and ample hands-on experience in experimental techniques. You will be working in the MC2 cleanroom environment (one of few cleanrooms worldwide to allow Master's level student projects in the facilities) and other modern laboratories for both manufacturing and analysis, already during your first year. You will have the possibility to continue working in the laboratories as part of your Master's thesis.

Science on the nanoscale is typically carried out either in a “bottom-up” approach, where functional nanostructures are formed through molecular interactions, or by nanostructuring in a “top-down” approach. The core curriculum consists of a handful of compulsory courses that create a solid basis for both approaches. The programme also includes several semi-compulsory courses, creating a number of possible tracks within the program, as well as a number of courses that can be chosen to provide you with a deeper knowledge of your choice of area within nanotechnology. The conclusion of the programme consists of a thesis based on a half- or full-year research work carried out with some of the researchers in the area, either within our departments or with industrial partners.

The research conducted comprises three profile areas:
Nanophysics research, with a top-down perspective, includes studies of engineered nanosystems such as quantum computers, nanoelectronics and spintronics, applications and fundamental science of carbon nanotubes and graphene, nanosensors for bioanalytics and measurement technologies, and nano-optics with applications in, e.g. efficient solar energy production.

Nanochemistry, with a bottom-up focus, targets the ultimate miniaturization of electronics and photonics, molecular electronics, and the development of molecular methods to create nanodevices.

The Nanobiophysics activity, which forms a bridge between the other two and focuses on nanofluidics, soft matter nanotechnology, DNA-based self-assembly and biomimetic material science.

As a unique feature of the programme you will become part of this research and have access to our cleanroom and other world-class facilities for labs and group projects.

The Master’s Programme in Nanotechnology is tailored towards students aiming at international careers in the field of nanoscience and nanotechnology, both in fundamental nanoscience and in the design and creation of components on the nanoscale.

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X