• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Leeds Beckett University Featured Masters Courses
University of Leeds Featured Masters Courses
University of Leeds Featured Masters Courses
"biomedical" AND "statist…×
0 miles

Masters Degrees (Biomedical Statistics)

  • "biomedical" AND "statistics" ×
  • clear all
Showing 1 to 15 of 128
Order by 
Medical statistics is a fundamental scientific component of health research. Medical statisticians interact with biomedical researchers, epidemiologists and public health professionals and contribute to the effective translation of scientific research into patient benefits and clinical decision-making. Read more
Medical statistics is a fundamental scientific component of health research. Medical statisticians interact with biomedical researchers, epidemiologists and public health professionals and contribute to the effective translation of scientific research into patient benefits and clinical decision-making. As new biomedical problems emerge, there are exciting challenges in the application of existing tools and the development of new superior models.

Degree information

The UCL Medical Statistics degree provides students with a sound background in theoretical statistics as well as practical hands-on experience in designing, analysing and interpreting health studies, including trials and observational studies. The taught component equips students with analytical tools for health care economic evaluation, and the research project provides experience in using real clinical datasets.

Students undertake modules to the value of 180 credits.

The programme consists of a foundation course, six core modules (90 credits) two optional modules (30 credits) and the research dissertation (60 credits).

Core modules
-Foundation Course (not credit bearing)
-Statistical Inference
-Statistical Models and Data Analysis
-Medical Statistics I
-Medical Statistics II
-Statistical Computing
-Applied Bayesian Methods

Optional modules - at least one from:
-Statistics for Interpreting Genetic Data
-Bayesian Methods in Health Economics

and at least one from:
-Epidemiology
-Statistical Design of Investigations

Dissertation/report
All MSc students undertake an individual research project, culminating in a dissertation of approximately 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. External organisations deliver technical lectures and seminars where possible. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics, for example, the presentation of statistical graphs and tables.

Careers

Medical statisticians enable the application of the best possible quantitative methods in health research and assist in the reliable translation of research findings to public and patients’ health care.

The National Institute of Health Research (NIHR) has identified Medical Statistics as one of the priority areas in their capacity building strategy and has awarded UCL two studentships annually for this MSc.

Top career destinations for this degree:
-Graduate Bio-Statistician, PRA International
-Statistical and Epidemiological Modeller, University of Oxford
-Biostatistician, Boehringer Ingelheim
-PhD Statistical Science, University College London (UCL)

Employability
There is an acute shortage of medical statisticians in the UK and employment opportunities are excellent. Recent graduates from this programme have been employed by clinical trials units, pharmaceutical industry, NHS trusts and Universities (e.g. London School of Hygiene and Tropical Medicine, UCL).

Why study this degree at UCL?

One of the strengths of UCL Statistical Science is the breadth of expertise on offer; the research interests of staff span the full range from foundations to applications, and make important original contributions to the development of statistical science.

UCL is linked with four NHS hospital trusts and hosts three biomedical research centres, four clinical trial units and an Institute of Clinical Trials and Methodology. Established links between the Department of Statistical Science, the NIHR UCLH/UCL Biomedical Research Centre and the Clinical Trial Units provide high-quality biomedical projects for Master's students and opportunities for excellent postgraduate teaching and medical research.

The programme has been accredited by the Royal Statistical Society. Graduates will automatically be granted the society's Graduate Statistician status on application.

Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
◾The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
◾The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
◾You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses
◾Applications of biomedical engineering
◾Biological fluid mechanics
◾Cellular biophysics
◾Energy in biological systems
◾Medical imaging
◾Statistics for biomedical engineering
◾MSc project.

Optional courses
◾Advanced imaging and therapy
◾Applied engineering mechanics
◾Bioinformatics and systems biology
◾Biomechanics
◾Biosensors and diagnostics
◾Microscopy and optics
◾Nanofabrication
◾Rehabilitation engineering
◾Scaffolds and tissues
◾Signal processing of bio-signatures
◾Tissue and cell engineering.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Biomedical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects
Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]
The MSc Biomedical Engineering is accredited in the “Further Learning” category accredited by the Institution of Engineering and Technology (IET) and the Institute of Physics and Engineering in Medicine (IPEM).

This means that a student with an accredited BEng undergraduate degree can take the accredited "Further Learning" MSc to top-up their academic qualifications in order to meet the full academic requirements for conferral of the title of Chartered Engineer. This is an alternative route to the 5-year undergraduate MEng route.

Industry links and employability

◾The MSc in Biomedical Engineering has been developed for students with different backgrounds in engineering who wish to enter the field of Biomedical Engineering; and it is particularly suitable if you intend to work in Biomedical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.

Read less
The Master's programme familiarises you with issues of research design, data collection, analysis methods and statistical tools as applied to biomedical, behavioural and social sciences. Read more

Methodology and Statistics for the Behavioural, Biomedical and Social Sciences

The Master's programme familiarises you with issues of research design, data collection, analysis methods and statistical tools as applied to biomedical, behavioural and social sciences.

The field of methodology and statistics is by its nature interdisciplinary, as it relates to all fields of behavioural, biomedical and social research. Social science methodology concentrates on central issues in research design and data collection, with the aim of improving the quality of empirical research. In addition, the complex theories and research designs currently used call for advanced analysis methods, which in turn require mastery of the statistical foundations of these methods, and training in their skilled use.

Finally, there are strong interconnections between methodology and statistics. Modern social, biomedical and behavioural research uses highly advanced quantitative methods, while, at the same time, no amount of statistics can compensate for fundamental flaws in a study's design or data collection.

This selective Master’s programme combines the research expertise of the following departments at Utrecht University (UU) and the University of Twente (UT):
-Department of Methodology and Statistics (UU)
-Department of Biostatistics, University Medical Centre Utrecht (UU)
-Department of Research Methodology, Measurement and Data Analysis (UT)

Read less
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field. Read more
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field.

Degree information

The overall aim of the programme is for students to develop an advanced understanding of the development, structure and function of biological systems, together with an understanding of the mechanisms underlying normal function and dysfunction at molecular, cellular and systems levels. Students will acquire and put into practice the research methods skills necessary to investigate mechanisms and develop knowledge in this field.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits) optional 15 and 30-credit modules available in the Biosciences Division (to a total of 90 credits) and a research dissertation (60 credits).

Core modules
-The Practice of Science

Optional modules - optional modules include:
-Advances in the Neurosciences
-Physiology in Health and Disease
-Advances in Human Genetics
-Cancer and Personalised Medicines
-Cell Signalling
-Neurodegenerative Diseases
-Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of up to 10,000 words.

Teaching and learning
Taught modules are delivered through a combination of lectures, tutorials, practical exercises, computer simulation, data analysis exercises and self-directed learning. Assessment is through coursework (including projects, reports and presentations), unseen written examination, dissertation and oral presentation.

Careers

The Biomedical Sciences MSc provides opportunities for students to develop and broaden their knowledge and research skills and better prepare for future employment or specialist postgraduate research.

Top career destinations for this degree:
-PhD in Biomedical Science, McGill University
-PhD in Biomedical Sciences, University of Oxford
-PhD in Gene Discovery, Queen Mary, University of London (QMUL)
-Healthcare Assistant, Ealing Hospital (NHS)
-Trainee Biomedical Scientist, Epsom and St Helier University Hospitals NHS Trust

Employability
Biomedical Sciences MSc graduates significantly enhance their employability by developing their subject-specific knowledge in the field of biomedical science and their analytical and research skills. Students gain an appreciation of how important biomedical science is to global healthcare and can approach international employers with confidence. In addition, the programme enhances student presentational and key skills enabling students to compete effectively in the job market.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biological and biomedical science.

The Division of Biosciences is in a unique position to offer tuition, research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of biosciences research.

You will have the advantages of studying in a multi-faculty university with a long tradition of excellence, situated at the heart of one of the world's greatest cities.

Read less
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field. Read more
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field.

Radboud University aims to educate the best biomedical scientists with not just a thorough understanding of the molecular, individual and population aspects of human health and disease, but also with unique areas of expertise. To do this we have constructed a Master’s programme in Biomedical Sciences that gives students the opportunity to construct their own programme based on personal academic and professional interests. Students choose one of three specialisations belonging to one of the research institutes and combine that with one of three career profiles. The research institute will be your learning environment, and a mentor of the institute will help you design your programme.

Biomedical Sciences specialisations and research institutes

For Molecular and cellular research, chose Radboud Institute for Molecular Life Sciences (RIMLS)
For Intervention, clinical and population research, chose Radboud Institute for Health Sciences (RIHS)
For Medical neuroscience, chose Donders Centre for Neuroscience
The programme provides students with a solid base in research methodology, statistics and biostatistics, laboratory research and communication skills. Leading scientists in fields ranging from metabolism, membrane transport, neuromuscular disease and inflammation to screening efficacy, clinical interventions and evidence-based medicine are involved in the teaching programme as lecturers and tutors.

A majority of our graduates become researchers in government departments, research organisations, universities and medical or pharmaceutical companies. Graduates also opt for careers as communication advisors or scientific consultant/advisor with a background in biomedical science, an expertise that is much in demand.

Why study Biomedical Sciences at Radboud University?

Possibility of specialising in any aspect of biomedical sciences from molecule (2 specialisations) to man (1 specialisation) to population (3 specialisations).
You can design your own programme so you can make it truly fit your academic and professional interests. A tutor will help you set up the best possible programme.
The programme has a strong career-driven focus with embedding in a research institute as a starting professional, room for long internships and the possibility to choose between a career profile in research, communication or consultancy.
Health care issues and biomedical research are placed in context. In the programme links are made between research and patient care (from bench to bedside), and vice versa.
Biomedical Sciences at Radboud University has a great reputation and graduates are highly valued by research institutes and health-care organisations all over the world.
Each of the three research institutes has its own mentors that are responsible for maintaining the quality of the programme as well as for coaching students in their specialist area. This system provides intensive career consultancy – an extremely valuable feature which is often lacking in other educational programmes in this field.

Change perspective

Thanks to the flexibility of designing a personal programme, graduates of the Radboud University’s Master’s programme in Biomedical Sciences will have developed a truly unique expertise in the field of biomedical science. You can broaden your view from molecule to man to population, or go in-depth into just one of these areas. Either way, you will have gained a new and refreshing perspective. And the intensive internships will guarantee you are prepared to enter the work force so that you can quickly start to play a vital role in improving human health.

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science.

You gain advanced knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop practical skills in our well-equipped teaching laboratories.

As well as studying the fundamentals of pathology, you can choose one specialist subject from:
Cellular pathology
-Microbiology and immunology
-Blood sciences.

Your work focuses on the in vitro diagnosis of disease. You develop the professional skills needed to further your career. These skills include: research methods and statistics; problem solving; the role of professional bodies and accreditation; regulation and communication.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects and our tutors are experts in these techniques.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where full-time students are assigned to a tutor who is an active research in the biomedical research centre. Part-time students carry out their research project within the workplace under the guidance of a workplace and university supervisor.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into: cancer; musculoskeletal diseases; human reproduction; neurological disease; hospital acquired infection; immunological basis of disease.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biomedical-sciences

Professional recognition

This course is accredited by the Institute of Biomedical Science (IBMS) who commended us on:
-The excellent scientific content of our courses
-The supportive nature of the staff which provides a positive student experience
-The laboratory and teaching facilities, which provide an excellent learning environment

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The certificate and diploma are shorter January and September intakes.

Course structure
The masters (MSc) award is achieved by successfully completing 180 credits.

Core modules
-Biomedical laboratory techniques (15 credits)
-Evidence based laboratory medicine (15 credits)
-Cell biology (15 credits)
-Molecular diagnostics (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Optional modules
45 credits from
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Human genomics (subject to approval) (15 credits)
-Blood sciences (30 credits)
-Cellular pathology (30 credits)
-Microbiology and immunology (subject to approval) (30 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework such as: problem solving exercises; case studies; reports from practical work; presentations. Research project assessment includes a written report, presentation and portfolio.

Read less
This MSc teaches advanced analytical and computational skills for success in a data rich world. Read more
This MSc teaches advanced analytical and computational skills for success in a data rich world. Designed to be both mathematically rigorous and relevant, the programme covers fundamental aspects of machine learning and statistics, with potential options in information retrieval, bioinformatics, quantitative finance, artificial intelligence and machine vision.

Degree information

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the area of machine learning and statistics. Graduates of this programme will have had the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits). Please note that not all combinations of optional modules will be available due to timetabling restrictions.

Core modules
-Supervised Learning
-Statistical Modelling and Data Analysis
-Graphical Models or Probabilistic and Unsupervised Learning
Plus one of:
-Applied Bayesian Methods
-Statistical Design of Investigations
-Statistical Computing
-Statistical Inference

Optional modules - students select 60 credits from the following list:
-Advanced Topics in Machine Learning
-Affective Computing and Human-Robot Interaction
-Applied Bayesian Methods
-Approximate Inference and Learning in Probabilistic Models
-Computational Modelling for Biomedical Imaging
-Information Retrieval and Data Mining
-Machine Vision
-Selected Topics in Statistics
-Optimisation
-Statistical Design of Investigations
-Statistical Inference
-Statistical Natural Language Programming
-Stochastic Methods in Finance
-Stochastic Methods in Finance 2
-Advanced Topics in Statistics
-Mathematical Programming and Research Methods
-Intelligent Systems in Business

Dissertation/report
All MSc students undertake an independent research project, which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, discussions, practical sessions and project work. Student performance is assessed through unseen written examinations, coursework, practical application and the project assessment process.

Careers

There is a strong national and international demand for graduates with skills at the interface of traditional statistics and machine learning. Substantial sectors of UK industry, including leading, large companies already make extensive use of computational statistics and machine learning techniques in the course of their business activities. Globally there are a large number of very successful users of this technology, many located in the UK. Areas in which expertise in statistics and machine learning is in particular demand include; finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, Chicago, as well as at UCL. The MSc is also ideal preparation for a PhD, in statistics, machine learning or a related area.

Top career destinations for this degree:
-Statistical and Algorithm Analyst, Telemetry
-Decision Scientist, Everline
-Computer Vision Researcher, Slyce
-Data Scientist, YouGov
-Research Engineer, DeepMind

Employability
Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. CSML graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our CSML graduates. Similarly graduates now work in companies in, amongst others, Germany, Iceland, France and the US in large-scale data analysis. The finance sector has also hired several graduates recently.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning having coordinated the PASCAL European Network of Excellence.

Coupled with the internationally renowned Gatsby Computational Neuroscience and Machine Learning Unit, and UCL Statistical Science, this MSc programme draws on world-class research and teaching talents. The centre has excellent links with world-leading companies in internet technology, finance and related information areas.

The programme is designed to train students in both the practical and theoretical sides of machine learning. A significant grounding in computational statistics is also provided.

Read less
Advance your career by broadening your understanding of research methods and their applications within biomedical sciences. You will enhance your specialist expertise in a specific area and develop your professional ability as a research-oriented scientist with excellent communications skills. Read more
Advance your career by broadening your understanding of research methods and their applications within biomedical sciences. You will enhance your specialist expertise in a specific area and develop your professional ability as a research-oriented scientist with excellent communications skills. Your study will focus on an in-depth research project working alongside experts from our Centre for Biomedical Research.

You'll get to discuss and appraise the latest biomedical science research which will become the basis for taught modules during this course. Your analytical, data handling and presentation skills are developed predominantly in the laboratory environment by carrying out a series of experiments and statistics exercises.

With our new biomedical sciences research laboratory you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

- Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008

Visit the website http://courses.leedsbeckett.ac.uk/appliedbiomedicalresearch_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will be well prepared to go on to study for a PhD or to follow a career in biomedical sciences research.

- Biomedical Scientist
- Medical Research Scientist
- Microbiologist

Careers advice:
Our dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course benefits

With our new dedicated biomedical sciences research laboratory (opened in 2013) you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment. You will develop the skills needed for a successful research career.

Your research project will be closely linked to the areas of our research expertise with the opportunity to explore topics such as:

- the use of molecular methods to detect adulterated food
- studies on protein expression in bacteria
- pain science and non drug approaches to pain relief
- nutritional biochemistry
- development and validation of ELISA techniques
- the interactions of pyocyanin with host biochemistry
- the Effects of Bacterial Metabolism on pH of Simulated Wound Conditions
- development and Testing of New Smart-Bandage Sensing Technologies.

As a postgraduate student you will work alongside many other students, both undergraduate and postgraduate, and be closely linked to active research work in biomedical sciences. Our teaching team is often highly commended by students and staff for their innovative teaching methods and support for students.

Margarita Gomez Escalada

Senior Lecturer

"Our courses are heavily research orientated - we teach research methods, laboratory techniques and students undertake an extended research project."

Margarita recently produced internationally-recognised research treating acne with herbal compounds. Working with a student, she discovered that an extract of thyme was more effective than traditional chemical-based creams.

Facilities

- Biomedical Research Laboratory
The latest scientific testing equipment lets you put your learning into practice and break new ground in biomedical research.

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Food Inspection Laboratory
Our hygienic laboratory can be used to develop practical food specimen inspection skills.

Read less
Degree. Master of Science (two years) with a major in Biomedical Engineering. Teaching language. English. Read more
Degree: Master of Science (two years) with a major in Biomedical Engineering
Teaching language: English

Biomedical Engineering encompasses fundamental concepts in engineering, biology and medicine to develop innovative approaches and new devices, materials, implants, algorithms, processes and systems for the medical industry. These could be used for the assessment and evaluation of technology; for prevention, diagnosis, and treatment of diseases; for patient care and rehabilitation and for improving medical practice and health care delivery.

The first year of the Biomedical Engineering programme is focused on mandatory courses expanding students’ engineering skills and knowledge in areas like anatomy and physiology but also biology and biochemistry. Courses in mathematics, statistics, multidimensional biomedical signal generation and analysis, combined with medical informatics and biomedical modelling and simulation, create a solid foundation for the continuation of the programme.

In the second year, three areas of specialisation, medical informatics, medical imaging and bioengineering, are introduced. Coinciding with the specialisation, a course in philosophy of science is mandatory, preparing and supporting the onset of the degree project.
A graduate of the Biomedical Engineering programme should be able to:

• formulate and solve engineering problems in the biomedical domain, encompassing the design of devices, algorithms, systems, and processes to improve human health and integrating a thorough understanding of the life sciences.
• use, propose and evaluate engineering tools and approaches.
• identify and manage the particular problems related to the acquisition, processing and interpretation of biomedical signals and images.
• integrate engineering and life science knowledge, using modelling and simulation techniques.
• communicate engineering problems in the life science domain.

The Biomedical Engineering curriculum supports and sustains "Engineering for Health" through a relevant mixture of mandatory and elective courses. This enables both broad-based and in-depth studies, which emphasises the importance of multidisciplinary and collaborative approaches to real-world engineering problems in biology and medicine.

Welcome to the Institute of Technology at Linköping University

Read less
This Masters in Biostatistics will provide you with knowledge and experience of the principles, theory and practical skills of statistics; previous study of statistics is not required. Read more
This Masters in Biostatistics will provide you with knowledge and experience of the principles, theory and practical skills of statistics; previous study of statistics is not required.

Why this programme

-The Statistics Group at Glasgow is a large group, internationally renowned for its research excellence.
-Our Statistics MSc programmes benefit from close links lecturers have with industry and non-governmental organisations such as NHS and SEPA.
-The University of Glasgow’s School of Mathematics and Statistics is ranked 4th in Scotland (Complete University Guide 2015).
-Our expertise spans topics including: biostatistics and statistical genetics; environmental statistics; statistical methodology; statistical modelling and the scholarship of learning and teaching in statistics.
-You will develop a thorough grasp of statistical methodology, before going on to apply statistical skills to solve real-life problems.
-You will be equipped with the skills needed to begin a career as a professional statistician; previous study of statistics is not required.
-With a 94% overall student satisfaction in the National Student Survey 2014, the School of Mathematics and Statistics combines both teaching excellence and a supportive learning environment.

Programme structure

Modes of delivery of the Masters across the Statistics programmes include lectures, laboratory classes, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

Core courses (compulsory)
-Bayesian statistics
-Biostatistics
-Generalised linear models
-Introduction to R programming
-Probability 1
-Regression models
-Statistical inference 1
-Statistics project and dissertation.

Optional courses (five chosen, but at least one course must be from Group 1)
Group 1
-Data analysis
-Professional skills.

Group 2
-Data management and analytics using SAS
-Design of experiments
-Functional data analysis
-Spatial statistics
-Statistical genetics
-Time series

Any student who, in the course of study for his or her first degree, has already completed the equivalent of the Probability and/or Statistical inference courses can substitute these courses by any other optional course (including optional courses offered as part of the MRes in Advanced Statistics). The choice of substituting courses is subject to approval by the Programme Director.

Summer (May – August)
Statistics project and dissertation (60) - applying statistical methods and modelling to data collected from research in a biomedical discipline, assessed by a dissertation.

Career prospects

Our graduates have an excellent track record of gaining employment in many sectors including medical research, the pharmaceutical industry, finance and government statistical services, while others have continued to a PhD.

Read less
Whether you want to get ahead in your career faster, or improve your knowledge, a Monash postgraduate degree can give you a distinct advantage. Read more
Whether you want to get ahead in your career faster, or improve your knowledge, a Monash postgraduate degree can give you a distinct advantage.

Visit the website http://www.study.monash/courses/find-a-course/2016/biomedical-science-preliminary-2970?domestic=true

The Master of Biomedical Science Preliminary is designed for students interested in undertaking postgraduate research in biomedical sciences. A candidate is required to carry out a prescribed program of research for a specified period under the direct supervision of a member of the academic staff. The supervisor, in consultation with the candidate, is responsible for developing the research program to be followed by the candidate, and for reporting at regular intervals on the candidates progress.

The MBiomedSci Preliminary is designed for students who do not have the equivalent of a class 1 or class 2A honours degree in a relevant discipline. For graduates with only a Bachelor degree in a relevant field and who have not attempted honours in that field, admission to MBiomedSci Preliminary will normally require at least a credit grade average in 24 points of relevant third-year units, or appropriate additional training and experience.

Candidates must complete the MBiomedSci Preliminary program and obtain results equivalent to class 2A honours (H2A) or better for admission into Master of Biomedical Science. The MBiomedSci Preliminary is not an awardable degree. Candidates should complete their program of study within 12 months full-time or 24 months part-time. Students who pass MBiomedSci Preliminary of the program but who do not wish to continue or do not achieve class 2A honours or above will be offered the exit award of the Postgraduate Diploma in Biomedical Sciences.

Candidates will be required to undertake a major research thesis of 75% of the entire course. The thesis should embody the results of the candidates investigation, which demonstrates independence of thought and the candidates ability to carry out research in that discipline. The remaining 25% of the course will comprise coursework such as a literature review and/or statistics classes, and is specified by the enrolling department.

Career opportunities

Students who have completed the course will demonstrate an understanding of relevant research techniques in their field through a review of the relevant literature. They will demonstrate their ability, under supervision to apply relevant research techniques to their chosen field of study. Students will be able to present high-quality written work suitable for publication in appropriate scholarly journals, and be able to critically evaluate both their own and others' written work in their chosen field.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/medicine

Faculty of Medicine, Nursing and Health Sciences

The Faculty is also home to a number of leading medical and biomedical research institutes and groups, and has contributed to advances in many crucial areas: in vitro fertilisation, obesity research, drug design, cardiovascular physiology, functional genomics, infectious diseases, inflammation, psychology, neurosciences and mental health.

Notwithstanding the relatively short history of our University, the Faculty is ranked in the top 50 in the world for its expertise in life sciences and biomedicine by the Times Higher Education and QS World University 2012 benchmarks.

Courses offered by the Faculty include medicine, nursing, radiography and medical imaging, nutrition and dietetics,emergency health studies, biomedical sciences, physiotherapy, occupational therapy, and social work. A range of research and coursework postgraduate programs is also offered.

The Faculty takes pride in delivering outstanding education in all courses, in opening students to the possibilities offered by newly discovered knowledge, and in providing a nurturing and caring environment.

Further details may be found at: http://www.med.monash.edu.au/about.html

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/biomedical-science-preliminary-2970?domestic=true#making-the-application

Read less
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017. Read more
If you’re an international fee-paying student you could be eligible for a £3,000 discount when you start your course in January 2017.
http://www.shu.ac.uk/VCAwardJanuary2017

You gain advanced level knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop relevant practical skills.

As well as studying the fundamentals of pathology, you can choose one specialist subject from:
-Cellular pathology
-Microbiology and immunology
-Blood sciences.
If you choose the MSc route you also take a project module.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects, and our tutors are experts in these techniques

You develop the professional skills needed to further your career. These skills include:
-Research methods and statistics.
-Problem solving.
-The role of professional bodies and accreditation.
-Regulation.
-Communication.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where you are assigned to a tutor who is an active researcher in the Biomolecular Sciences Research Centre.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The professional development and research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into:
-Cancer.
-Musculoskeletal diseases.
-Human reproduction.
-Neurological disease.
-Hospital acquired infection.
-Immunological basis of disease.

For more information, see the website: https://www.shu.ac.uk/study-here/find-a-course/mscpgdippgcert-biomedical-laboratory-sciences

Course structure

Full time – 14 months to Masters. Part time – typically 2 years to Masters. The diploma and certificate are shorter. January and September intakes.

Course structure
The masters (MSc) award is achieved by successfully completing 180 credits.
Core modules
-Biomedical laboratory techniques (15 credits)
-Professional development (15 credits)
-Cell biology (15 credits)
-Molecular diagnostics (15 credits)
-Research methods and statistics (15 credits)
-Research project (60 credits)

Options
45 credits from
-Applied biomedical techniques (15 credits)
-Cellular and molecular basis of disease (15 credits)
-Cellular and molecular basis of cancer (15 credits)
-Evidence based laboratory medicine (15 credits)
-Blood sciences (30 credits)
-Infection and immunity (30 credits)
-Cellular pathology (30 credits)

The Postgraduate Certificate (PgCert) is achieved by successfully completing 60 credits. The Postgraduate Diploma (PgDip) is achieved by successfully completing 120 credits.

Assessment
Assessment methods include written examinations and coursework, such as: problem solving exercises; case studies; reports from practical work. Research project assessment involves a written report and viva voce.

Read less
* One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Read more

Studentships

* One-year masters studentships are available for this stream. Each studentship will be worth £5000 and can be taken either as a reduction in fees or as a bursary. Studentships will be awarded based on academic merit and are open to all applicants, regardless of fee status (home/EU/overseas). Please indicate 'Data Science' in the first line of your personal statement.

* Two PhD Studentships targeted at successful graduates from this stream. Two 3-year PhD studentships will be on offer, targeted at students obtaining a minimum of a Pass with Merit on the Data Science stream. These studentships will cover the cost of tuition fees for home/EU applicants and a stipend at standard Research Council rates.

Stream overview

The Data Science stream provides an interdisciplinary training in analysis of ‘big data’ from modern high throughput biomolecular studies. This is achieved through a core training in multivariate statistics, chemometrics and machine learning methods, along with research experience in the development and application of these methods to real world biomedical studies. There is an emphasis on handling large-scale data from molecular phenotyping techniques such as metabolic profiling and related genomics approaches. Like the other MRes streams, this course exposes students to the latest developments in the field through two mini-research projects of 20 weeks each, supplemented by lectures, workshops and journal clubs. The stream is based in the Division of Computational and Systems Medicine and benefits from close links with large facilities such as the MRC-NIHR National Phenome Centre, the MRC Clinical Phenotyping Centre and the Centre for Systems Oncology. The Data Science stream is developed in collaboration with Imperial’s Data Science Institute.

Who is this course for?

Students with a degree in physical sciences, engineering, mathematics computer science (or related area) who wish to apply their numeric skills to solve biomedical problems with big data.

Stream Objectives

Students will gain experience in analysing and modelling big data from technologically advanced techniques applied to biomedical questions. Individuals who successfully complete the course will have developed the ability to:

• Perform novel computational informatics research and exercise critical scientific thought in the interpretation of results.
• Implement and apply sophisticated statistical and machine learning techniques in the interrogation of large and complex
biomedical data sets.
• Understand the cutting edge technologies used to conduct molecular phenotyping studies on a large scale.
• Interpret and present complex scientific data from multiple sources.
• Mine the scientific literature for relevant information and develop research plans.
• Write a grant application, through the taught grant-writing exercise common to all MRes streams.
• Write and defend research reports through writing, poster presentations and seminars.
• Exercise a range of transferable skills by taking short courses taught through the Graduate School and the core programme of the
MRes Biomedical Research degree.

Projects

A wide range of research projects is made available to students twice a year. The projects available to each student are determined by their stream. Students may have access from other streams, but have priority only on projects offered by their own stream. Example projects for Data Science include (but are not limited to):

• Integration of Multi-Platform Metabolic Profiling Data With Application to Subclinical Atherosclerosis Detection
• What Makes a Biological Pathway Useful? Investigating Pathway Robustness
• Bioinformatics for mass spectrometry imaging in augmented systems histology
• Processing of 3D imaging hyperspectral datasets for explorative analysis of tumour heterogeneity
• Fusion of molecular and clinical phenotypes to predict patient mortality
• 4-dimensional visualization of high throughput molecular data for surgical diagnostics
• Modelling short but highly multivariate time series in metabolomics and genomics
• Searching for the needle in the haystack: statistically enhanced pattern detection in high resolution molecular spectra

Visit the MRes in Biomedical Research (Data Science) page on the Imperial College London web site for more details!

Read less
Our rankings. No 1 on Research Power in Scotland and 4th in the UK. You'll receive the highest-quality teaching in the leading Institute of Pharmacy & Biomedical Sciences in Scotland. Read more
Our rankings: No 1 on Research Power in Scotland and 4th in the UK

Why this course?

You'll receive the highest-quality teaching in the leading Institute of Pharmacy & Biomedical Sciences in Scotland.

Strathclyde Institute of Pharmacy & Biomedical Sciences was ranked No 1 on Research Power in Scotland and 4th in the UK (REF 2014).

Our course will provide you with a comprehensive three-part postgraduate life sciences training.

Firstly, unlike many MSc courses, we offer you dedicated training in a broad suite of bioinformatics and practical laboratory skills. They will not only be great preparation for future research careers, but also a way to make the most of your summer research project.

Secondly, our taught classes capture the excitement of cutting-edge research fields.

The substantial choice of classes means that you'll get to select a clinical-oriented or basic life science research pathway to suit your future aspirations.

Together, the course provides the perfect springboard to future training at PhD level or gives you a range of experience that will prove attractive to employers from industry or the health-care provision sector.

You’ll study

This course will provide training on fundamental techniques for the four disciplines:

biochemistry
immunology
microbiology
pharmacology

Aligned with the taught component of this course, these disciplines will form the grounding for your summer project.

You'll also learn vital transferable skills in statistics, communication, ethics, science writing and critical analysis of data – the perfect way to prepare for any future career.

Facilities

The course is taught in the Strathclyde Institute for Pharmacy & Biomedical Sciences. It’s located in our new building with state-of-the-art laboratories.

Course content

This is a new course design and so there may be minor adjustments to content before September 2016.

Our aim is to provide you with classes that present the cutting-edge of our subject area, delivered using exciting and engaging teaching methods matched to the needs of postgraduate-level students. Please feel free to contact us if you want further details in the meantime.

Careers

Biomedical scientists work in healthcare to diagnose disease and evaluate the effectiveness of treatment through the analysis of fluids and tissue samples from patients.

They work at the heart of modern medicine, with 70% of diagnoses based on the pathology results provided by laboratory services.

After graduating you should be ideally qualified for positions in biomedical and pharmaceutical industries as well as hospitals and universities.

You may wish to continue studies for an MPhil or PhD.

This course provides the background training for a career in:

-clinical biochemistry
-pharmaceutical & biotechnology industry laboratory research posts
-laboratory technical support
-medical/pharmaceutical/life science sales
-academia – following a further PhD route

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X