• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
King’s College London Featured Masters Courses
National Film & Television School Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"biomedical" AND "statist…×
0 miles

Masters Degrees (Biomedical Statistics)

We have 131 Masters Degrees (Biomedical Statistics)

  • "biomedical" AND "statistics" ×
  • clear all
Showing 1 to 15 of 131
Order by 
Looking for high-quality training in statistics for research or for professional life? If so, consider KU Leuven's MSc in Statistics, an interdisciplinary programme whose teaching is grounded in internationally-recognised research. Read more

Looking for high-quality training in statistics for research or for professional life? If so, consider KU Leuven's MSc in Statistics, an interdisciplinary programme whose teaching is grounded in internationally-recognised research. Choose from a number of approaches: biometrics, social behavioural and educational statistics, business statistics, industrial statistics, general statistical methodology, or an all-round statistics profile.

What is the Master of Statistics all about?

This master’s programme is offered by the Leuven Statistics Research Centre (LStat) of KU Leuven. It is accredited by the Royal Statistical Society. You’ll be trained intensively in both the theoretical and practical aspects of statistics. The programme will also help you develop a problem-solving attitude and teach you how to apply statistical methodology.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

The 120-ECTS programme consists of a common core curriculum (one semester), option-specific courses (one semester), elective courses (one semester), and a master’s thesis.

  • Common core curriculum (30 ECTS): these course are compulsory for every student.
  • Option-specific courses (min. 32 ECTS). Within your selected option, you choose courses worth a total of minimum 32 ECTS.
  • Elective courses (30 ECTS)

To tailor the programme to your needs and interests, you choose one of the following options:

  • Biometrics;
  • Social, Behavioural, and Educational Statistics;
  • Business Statistics;
  • Industrial Statistics;
  • General Statistical Methodology;
  • Official Statistics;
  • All-round Statistics.

Department

LStat hosts international experts and is a stimulating environment for multidisciplinary statistical research. LStat is a privileged meeting space for statistics researchers from a range of domains:

  • Biostatistics;
  • Social, Behavioural and Educational Statistics;
  • Business and Industrial Statistics;
  • Statistical Methodology.

Objectives

The master of Statistics:

KNOWLEDGE AND INSIGHT

  • possesses thorough knowledge of and insight in the field of Statistics
  • has a perspective on the research and consulting aspects of one or more statistical fields within at least one of the following: biometry, industrial statistics, social behavioral and educational statistics, business statistics, statistical methodology, official statistics.
  • understands similarities and differences between different statistical methodology and practice across different sub-fields of statistics.

APPLYING KNOWLEDGE AND INSIGHT

  • has the competences and the insight to take the following steps in their own scientific research within a research team
  • can handle scientific quantitative research questions in the application area, independently, effectively, creatively, and correctly using state-of-the-art design and analysis methodology and software.
  • has the skills and the habit to assess data quality and integrity.
  • is aware of the ethical, moral, legal, policy making, and privacy context of statistics and shows conduct accordingly.

DEVELOPING AN OPINION

  • appreciates the international nature of the field of statistical science.
  • is aware of the societal relevance of statistics.
  • can critically appraise methodology and challenge proposals for reported results of data analysis.

COMMUNICATION

  • can work in an intercultural, and international team, and understands the need and importance of working in a multidisciplinary team.
  • is an effective written and oral communicator, as well as an effective negotiator, both within their own field as well as towards other disciplines in the context of multidisciplinary projects.
  • is aware of the common stakeholders and the need for assertive and empathic interaction with them.

LEARNING SKILLS

  • is capable of acquiring new knowledge.

DEPENDING ON THE CHOSEN OPTION, THE STUDENT MASTERS FOLLOWING ADDITIONAL LEARNING OUTCOMES:

  • the master can act as a statistical consultant to subject-matter scientists and practitioners or/and as a collaborative researcher in an area of specialisation.

Career perspectives

As statistician, you'll be recruited by industry, banks or government institutions. You may find yourself designing clinical trials and supporting the biomedical sector, coaching research for new medicines, setting up and analysing psychological tests and surveys, performing financial risk analyses, statistically managing R&D projects and quality controls, or developing statistical software. And don't forget the academic world. The applications of statistics are very diverse, just like your professional options. 



Read less
Medical statistics is a fundamental scientific component of health research. Medical statisticians interact with biomedical researchers, epidemiologists and public health professionals and contribute to the effective translation of scientific research into patient benefits and clinical decision-making. Read more
Medical statistics is a fundamental scientific component of health research. Medical statisticians interact with biomedical researchers, epidemiologists and public health professionals and contribute to the effective translation of scientific research into patient benefits and clinical decision-making. As new biomedical problems emerge, there are exciting challenges in the application of existing tools and the development of new superior models.

Degree information

The UCL Medical Statistics degree provides students with a sound background in theoretical statistics as well as practical hands-on experience in designing, analysing and interpreting health studies, including trials and observational studies. The taught component equips students with analytical tools for health care economic evaluation, and the research project provides experience in using real clinical datasets.

Students undertake modules to the value of 180 credits.

The programme consists of a foundation course, six core modules (90 credits) two optional modules (30 credits) and the research dissertation (60 credits).

Core modules
-Foundation Course (not credit bearing)
-Statistical Inference
-Statistical Models and Data Analysis
-Medical Statistics I
-Medical Statistics II
-Statistical Computing
-Applied Bayesian Methods

Optional modules - at least one from:
-Statistics for Interpreting Genetic Data
-Bayesian Methods in Health Economics

and at least one from:
-Epidemiology
-Statistical Design of Investigations

Dissertation/report
All MSc students undertake an individual research project, culminating in a dissertation of approximately 10,000–12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials and classes, some of which are dedicated to practical work. External organisations deliver technical lectures and seminars where possible. Assessment is through written examination and coursework. The research project is assessed through the dissertation and a 15-minute presentation.

Workshops running during the teaching terms provide preparation for this project and cover the communication of statistics, for example, the presentation of statistical graphs and tables.

Careers

Medical statisticians enable the application of the best possible quantitative methods in health research and assist in the reliable translation of research findings to public and patients’ health care.

The National Institute of Health Research (NIHR) has identified Medical Statistics as one of the priority areas in their capacity building strategy and has awarded UCL two studentships annually for this MSc.

Top career destinations for this degree:
-Graduate Bio-Statistician, PRA International
-Statistical and Epidemiological Modeller, University of Oxford
-Biostatistician, Boehringer Ingelheim
-PhD Statistical Science, University College London (UCL)

Employability
There is an acute shortage of medical statisticians in the UK and employment opportunities are excellent. Recent graduates from this programme have been employed by clinical trials units, pharmaceutical industry, NHS trusts and Universities (e.g. London School of Hygiene and Tropical Medicine, UCL).

Why study this degree at UCL?

One of the strengths of UCL Statistical Science is the breadth of expertise on offer; the research interests of staff span the full range from foundations to applications, and make important original contributions to the development of statistical science.

UCL is linked with four NHS hospital trusts and hosts three biomedical research centres, four clinical trial units and an Institute of Clinical Trials and Methodology. Established links between the Department of Statistical Science, the NIHR UCLH/UCL Biomedical Research Centre and the Clinical Trial Units provide high-quality biomedical projects for Master's students and opportunities for excellent postgraduate teaching and medical research.

The programme has been accredited by the Royal Statistical Society. Graduates will automatically be granted the society's Graduate Statistician status on application.

Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why this programme

◾The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
◾Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
◾The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
◾This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
◾The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
◾You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses
◾Applications of biomedical engineering
◾Biological fluid mechanics
◾Cellular biophysics
◾Energy in biological systems
◾Medical imaging
◾Statistics for biomedical engineering
◾MSc project.

Optional courses
◾Advanced imaging and therapy
◾Applied engineering mechanics
◾Bioinformatics and systems biology
◾Biomechanics
◾Biosensors and diagnostics
◾Microscopy and optics
◾Nanofabrication
◾Rehabilitation engineering
◾Scaffolds and tissues
◾Signal processing of bio-signatures
◾Tissue and cell engineering.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Biomedical Engineering. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects
Examples of projects can be found online

*Posters shown are for illustrative purposes

[[Accreditation ]]
The MSc Biomedical Engineering is accredited in the “Further Learning” category accredited by the Institution of Engineering and Technology (IET) and the Institute of Physics and Engineering in Medicine (IPEM).

This means that a student with an accredited BEng undergraduate degree can take the accredited "Further Learning" MSc to top-up their academic qualifications in order to meet the full academic requirements for conferral of the title of Chartered Engineer. This is an alternative route to the 5-year undergraduate MEng route.

Industry links and employability

◾The MSc in Biomedical Engineering has been developed for students with different backgrounds in engineering who wish to enter the field of Biomedical Engineering; and it is particularly suitable if you intend to work in Biomedical Engineering industries.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in a wide range of industries.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.

Read less
The Master's programme familiarises you with issues of research design, data collection, analysis methods and statistical tools as applied to biomedical, behavioural and social sciences. Read more

Methodology and Statistics for the Behavioural, Biomedical and Social Sciences

The Master's programme familiarises you with issues of research design, data collection, analysis methods and statistical tools as applied to biomedical, behavioural and social sciences.

The field of methodology and statistics is by its nature interdisciplinary, as it relates to all fields of behavioural, biomedical and social research. Social science methodology concentrates on central issues in research design and data collection, with the aim of improving the quality of empirical research. In addition, the complex theories and research designs currently used call for advanced analysis methods, which in turn require mastery of the statistical foundations of these methods, and training in their skilled use.

Finally, there are strong interconnections between methodology and statistics. Modern social, biomedical and behavioural research uses highly advanced quantitative methods, while, at the same time, no amount of statistics can compensate for fundamental flaws in a study's design or data collection.

This selective Master’s programme combines the research expertise of the following departments at Utrecht University (UU) and the University of Twente (UT):
-Department of Methodology and Statistics (UU)
-Department of Biostatistics, University Medical Centre Utrecht (UU)
-Department of Research Methodology, Measurement and Data Analysis (UT)

Read less
1. Big Challenges being addressed by this programme – motivation. Human health and quality of life is one of the most critical challenges facing humanity. Read more

About the Course

1. Big Challenges being addressed by this programme – motivation

• Human health and quality of life is one of the most critical challenges facing humanity.
• The challenge is all the greater due to a rapidly increasing and rapidly aging global population that now exceeds 7 billion.
• Biomedical Engineering addresses these issues directly, with engineers innovating, analysing, designing and manufacturing new medical implants, devices and therapies for the treatment of disease, injuries and conditions of the human body, to restore health and improve quality of life.
• CNN lists Biomedical Engineering as No. 1 in the “Best Jobs in America” 2013.

2. Programme objectives & purpose

The objective of the programme is to generate graduates with a sound grounding in engineering fundamentals (analysis, design and problem solving), but who also have the multi-disciplinary breadth that includes knowledge of human biology and clinical needs and applications, to be able to make an immediate impact in the field on graduation, in either the academic research or medical technology industry domains. Ultimately the programme aims to generate the future leaders of the national and international medical technology industry, and of academic research and teaching in biomedical engineering.

3. What’s special about CoEI/NUIG in this area:

• NUI Galway pioneered the development of educational programmes in Biomedical Engineering in Ireland, introducing the country’s first bachelor’s degree in Biomedical Engineering in 1998, that was the first to achieve professional accreditation from Engineers Ireland in 2004, and at the graduate level with the Structured PhD programme in Biomedical Engineering and Regenerative Medicine (BMERM) in 2011.
• NUI Galway has been at the forefront of world-class research in biomedical engineering for over 20 years and has pioneered multi-disciplinary research in biomedical engineering and science, with the establishment of the National Centre for Biomedical Engineering Science (NCBES) in 1999, and up to the present day with the announcement of NUI Galway as the lead institution in a new Science Foundation Ireland funded Centre for Research in Medical Devices (CÚRAM).
• NUI Galway has a very close and deep relationship with the medical device industry locally, nationally and internationally, at many levels, from industry visits, guest lectures and student placements, up to major research collaborations.
• Many of our engineering graduates now occupy senior management and technical positions in the medical device industry nationally and internationally.

4. Programme Structure – ECTS weights and split over semester; core/elective, etc.:

• 90ECTS programme
• one full year in duration, beginning September and finishing August
• comprises:
- Foundational taught modules (20 ECTS)
- Advanced taught modules (40 ECTS)
- Research/Industry Project (30 ECTS).

5. Programme Content – module names

Sample Modules:

Advanced Finite Element Methods
Advanced Computational Biomechanics
Advanced Biomaterials
Mechanobiology
Bioinstrumentation Design
Medical and Surgical Practice
Stem Cells and Gene Therapy
Translational Medicine
Polymer Engineering
Advanced Engineering Statistics
Systems Reliability
Lean Systems
Research Methods for Engineers
Financial Management
Regulatory Affairs and Case Studies
Technology, Innovation and Entrepreneurship

6. Any special funding arrangements – e.g. Irish Aid

Comment (PMcH): CoEI scholarships a great idea.

7. Opportunity for number of Industrial & Research internships.

Students enrolled on this programme will have an opportunity to apply for a one-year post-graduation internship in either a related industry or research group in Ireland.

8. Testimonials.

“The Biomedical Engineering programme at NUI Galway has given me the fundamental engineering skills and multi-disciplinary background in biology and clinical application that I needed to be able to make an immediate impact in industry and to be able to design and develop new medical implants and devices. My graduate education through my PhD in bone biomechanics was also very important in this because I directly combined engineering and biological analysis techniques to better understand how stem cells generate new bone, showing me how biomedical engineers can play a critically important role in generating new knowledge on how the body works, and how new treatments can be developed for diseases and injuries, such as osteoporosis.” Evelyn Birmingham, BE Biomedical Engineering (2009), PhD Biomedical Engineering (2014), R&D Engineer, Medtronic Vascular, Galway.

For further details

visit http://nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/

How to Apply:

Applications are made online via the Postgraduate Applications Centre (PAC): https://www.pac.ie
Please use the following PAC application code for your programme:

M.Sc. Biomedical Engineering - PAC code GYE24

Scholarships :

Please visit our website for more information on scholarships: http://www.nuigalway.ie/engineering-informatics/internationalpostgraduatestudents/feesandscholarships/

Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

WHY THIS PROGRAMME

The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

Applications of biomedical engineering
Biological fluid mechanics
Cellular biophysics
Energy in biological systems
Medical imaging
Statistics for biomedical engineering
MSc project.
Optional courses

Advanced imaging and therapy
Applied engineering mechanics
Bioinformatics and systems biology
Biomechanics
Biosensors and diagnostics
Microscopy and optics
Nanofabrication
Rehabilitation engineering
Scaffolds and tissues
Signal processing of bio-signatures
Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.

Read less
This MSc is for biomedical scientists registered with the Health and Care Professions Council wishing to undertake flexible, part-time study towards a masters qualification in a specialist area of clinical pathology. Read more
This MSc is for biomedical scientists registered with the Health and Care Professions Council wishing to undertake flexible, part-time study towards a masters qualification in a specialist area of clinical pathology.

The degree programme has been informed by consultation with laboratory managers and NHS training staff. It consists of specialist modules in the cellular sciences that explore the theoretical, applied and professional aspects of clinical histopathology and cytopathology.

Designed to complement the professional qualifications of the Institute of Biomedical Science (IBMS), the course allows you to expand your knowledge and skills in diagnostic laboratory medicine; to apply these skills to clinical diagnosis, laboratory management and research; and to develop as a reflective practitioner, all within the context of the Modernising Scientific Careers (MSC) initiative.

Course structure

You will attend university for a maximum of one day per week. A typical week consists of six hours of teaching time (lectures, seminars and workshops) and a further six hours of student-centred learning, for example directed reading and assessment preparation.

Assessment methods vary between modules, but all contain coursework assignments such as essays and presentations, while only some have examination components.

The course is designed to be flexible and to fit in with your personal and professional circumstances. For example, you can study the blood sciences modules alone to qualify for a PGCert, take additional modules for a PGDip or commit to the research project for the full MSc.

The MSc qualification is normally achieved after three years of part-time study.

Areas of study

You will study:

• two cellular sciences modules: exploring theoretical, applied and professional aspects of clinical histopathology and cytopathology
• two modules that focus on the professional area of practice and work-based learning to deepen your knowledge of biomedical science. These modules are only available to part-time students who are employed in clinical pathology departments
• applied molecular biology modules
• service delivery in clinical pathology modules
• a special topic option: you can select a topic from a range available in the School of Pharmacy and Biomolecular Sciences; examples include diabetes, biomedical statistics, and oxidative stress and human disease
• research methods module: you will focus on research methods and project design. This module includes preparation for the research project
• a laboratory-based research project: so you can explore the discipline of blood sciences in depth. The project is based on a topic within blood sciences and includes work conducted in the clinical pathology laboratory workplace.

You will study some of the listed modules with students from the Infection Sciences and Blood Sciences masters, allowing for a multidisciplinary environment where different perspectives on clinical pathology can be shared.

Modules:

Cellular Pathology and Special Topics in Pathobiology
Seminars in Cellular Sciences
Applied Molecular Biology
Service Delivery in Clinical Pathology
Advanced Professional Practice in Clinical Pathology
Research Methods
Research project

Options include:

Diabetes
Oxidative Stress and Human Disease
Pharmacogenomics
Advanced Instrumental Analysis
Biomedical Statistics
Clinical and Applied Immunology

Careers and Employability

The Cellular Sciences MSc contains both professional elements and discipline-specific content, and is a suitable part of training and development for the role of a band 7 healthcare scientist.

Read less
This MSc is for biomedical scientists registered with the Health and Care Professions Council (HCPC) who want to undertake flexible, part-time study towards a masters qualification in a specialist area of clinical pathology. Read more
This MSc is for biomedical scientists registered with the Health and Care Professions Council (HCPC) who want to undertake flexible, part-time study towards a masters qualification in a specialist area of clinical pathology.

The degree programme has been informed by consultation with laboratory managers and NHS training staff. It consists of specialist modules in the blood sciences that explore the theoretical, applied and professional aspects of clinical haematology, transfusion science and biochemistry.

Designed to complement the professional qualifications of the Institute of Biomedical Science (IBMS), the course allows you to expand your knowledge and skills in diagnostic laboratory medicine; to apply these skills to clinical diagnosis, laboratory management and research; and to develop as a reflective practitioner, all within the context of the Modernising Scientific Careers (MSC) initiative.

Course structure

You attend university for a maximum of one day per week. A typical week consists of six hours of teaching time (lectures, seminars and workshops) and a further six hours of student-centred learning, for example directed reading and assessment preparation.

Assessment methods vary between modules, but all contain coursework assignments such as essays and presentations, while only some have examination components.

The course is designed to be flexible and fit in with a variety of personal and professional circumstances. For example, you can study the blood sciences modules alone to qualify for a PGCert, take additional modules for a PGDip or commit to the research project for the full MSc.

The MSc qualification is normally achieved after three years of part-time study.

Areas of study

If you follow the full MSc programme, you will study:

• two blood sciences modules exploring theoretical, applied and professional aspects of clinical haematology, transfusion science and biochemistry
• two modules that focus on the professional area of practice and work based learning to deepen your knowledge of biomedical science.
These modules are only available to part-time students who are employed in clinical pathology departments
• applied molecular biology modules
• service delivery in clinical pathology modules
• a special topic option: you can select a topic from a range available in the School of Pharmacy and Biomolecular Sciences; examples include diabetes, biomedical statistics, and oxidative stress and human disease
• research methods module: you will focus on research methods and project design. This module includes preparation for the research project
• a laboratory-based research project: so you can explore the discipline of blood sciences in depth. The project is based on a topic within blood sciences and includes work conducted in the clinical pathology laboratory workplace.

You will study some of the listed modules with students from the Cellular Sciences and the Infection Sciences masters, allowing for a multidisciplinary environment where different perspectives on clinical pathology can be shared.

Modules:

Clinical Haematology and Transfusion Science
Clinical Biochemistry
Seminars in Blood Sciences
Applied Molecular Biology
Service Delivery in Clinical Pathology
Advanced Professional Practice in Clinical Pathology
Research Methods
Research project

Options include:

Diabetes
Oxidative Stress and Human Disease
Pharmacogenomics
Advanced Instrumental Analysis
Biomedical Statistics
Clinical and Applied Immunology

Careers and Employability

The Blood Sciences MSc contains both professional elements and discipline-specific content, and is therefore a suitable part of training and development for the role of a band 7 healthcare scientist.

Read less
The Infection Sciences MSc is for biomedical scientists registered with the Health and Care Professions Council (HCPC) who wish to undertake flexible, part-time study towards a masters qualification in their specialist area of clinical pathology. Read more
The Infection Sciences MSc is for biomedical scientists registered with the Health and Care Professions Council (HCPC) who wish to undertake flexible, part-time study towards a masters qualification in their specialist area of clinical pathology.

Designed to complement the professional qualifications of the Institute of Biomedical Science (IBMS), the course allows you to expand your knowledge and skills in diagnostic laboratory medicine, learn to apply these skills to clinical diagnosis, laboratory management and research, and to develop as a reflective practitioner, all within the context of the Modernising Scientific Careers (MSC) initiative.

You will take specialist modules in infection sciences, exploring the theoretical, applied and professional aspects of medical microbiology. You will also engage in a large amount of work-related learning and gain support from clinical practitioners.

The course has been developed in consultation with senior managers, laboratory managers and training staff from the NHS biomedical science profession.

Course structure

You attend university for a maximum of one day per week. A typical week consists of six hours of teaching contact through lectures, seminars and workshops, and six hours of student-centered learning through directed reading and assessment preparation.

Assessment methods vary between modules, but all of them have a significant coursework component, which involves case-studies, essays, presentations and reflective evaluation. Some modules have examination components such as interim tests and end of module exams.

The course has been designed to fit in with a variety of personal and professional circumstances. You can take the infection sciences modules alone for the PGCert, additional modules for the PGDip or complete a research project as well for the full MSc qualification.

The MSc qualification is normally achieved after three years of part-time study.

Areas of study

Students following the full MSc programme take:

•two infection sciences modules: exploring theoretical, applied and professional aspects of medical microbiology
•two modules that focus on the professional area of practice and work based learning to deepen your knowledge of biomedical science. These modules are only available to part-time students who are employed in clinical pathology departments
•applied molecular biology modules.
•service delivery in clinical pathology modules.
•a special topic option: you can select a topic from a range available in the School of Pharmacy and Biomolecular Sciences; examples include diabetes, biomedical statistics, and oxidative stress and human disease
research methods module: you will focus on research methods and project design. This module includes preparation for the research project
•a laboratory-based research project: so you can explore the discipline of blood sciences in depth. The project is based on a topic within blood sciences and includes work conducted in the clinical pathology laboratory workplace.

You will study some of the listed modules with students from the Cellular Sciences MSc and the Blood Sciences MSc, allowing for a multidisciplinary environment where different perspectives on clinical pathology can be shared.

Modules:

Clinical Microbiology
Infection Control and Public Health in Infection Sciences
Seminars in Infection Sciences
Applied Molecular Biology
Service Delivery in Clinical Pathology
Advance Professional Practice in Clinical Pathology
Research Methods
Research Project

Options include:

Diabetes
Oxidative Stress and Human Disease
Pharmacogenomics
Advanced Instrumental Analysis
Biomedical Statistics
Clinical and Applied Immunology

Careers and Employability

The Infection Sciences MSc contains both professional elements and discipline-specific content, and is therefore a suitable part of training and development for the role of a band 7 healthcare scientist.

Read less
If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science. Read more

If you have a background in biomedical science, biology, medicine and life sciences, this course allows you to develop your knowledge in selected areas of biomedical science.

You gain advanced knowledge and understanding of the scientific basis of disease, with focus on the underlying cellular processes that lead to disease. You also learn about the current methods used in disease diagnosis and develop practical skills in our well-equipped teaching laboratories.

As well as studying the fundamentals of pathology, you can choose one specialist subject from • cellular pathology • microbiology and immunology • blood sciences. Your work focuses on the in vitro diagnosis of disease. You develop the professional skills needed to further your career. These skills include • research methods and statistics • problem solving • the role of professional bodies and accreditation • regulation and communication.

This course is taught by active researchers in the biomedical sciences who have on-going programmes of research in the Biomolecular Sciences Research Centre together with experts from hospital pathology laboratories.

Most of your practical work is carried out in our teaching laboratories which contain industry standard equipment for cell culture, quantitative nucleic acid and protein analysis and a sophisticated suite of analytical equipment such as HPLC and gas chromatography.

Many of our research facilities including flow cytometry, confocal microscopy and mass spectrometry are also used in taught modules and projects and our tutors are experts in these techniques.

The teaching on the course is split between formal lectures and tutorials, and laboratory-based work. A third of the course is a laboratory-based research project, where full-time students are assigned to a tutor who is an active research in the biomedical research centre. Part-time students carry out their research project within the workplace under the guidance of a workplace and university supervisor.

Three core modules each have two full-day laboratory sessions and the optional module applied biomedical techniques is almost entirely lab-based. Typically taught modules have a mixture of lectures and tutorials. The research methods and statistics modules are tutorial-led with considerable input from the course leader who acts as personal tutor.

The course content is underpinned by relevant high quality research. Our teaching staff regularly publish research articles in international peer-reviewed journals and are actively engaged in research into • cancer • musculoskeletal diseases • human reproduction • neurological disease • hospital acquired infection • immunological basis of disease.

Professional recognition

This course is accredited by the Institute of Biomedical Science (IBMS) who commended us on

  • the excellent scientific content of our courses
  • the supportive nature of the staff which provides a positive student experience
  • the laboratory and teaching facilities, which provide an excellent learning environment

Course structure

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits.

Core modules

  • Biomedical laboratory techniques (15 credits)
  • Evidence based laboratory medicine (15 credits)
  • Cell biology (15 credits)
  • Molecular diagnostics (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules

  • Applied biomedical techniques (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)
  • Human genomics and proteomics (15 credits)
  • Blood sciences (30 credits)
  • Cellular pathology (30 credits)
  • Microbiology and immunology (30 credits)

Assessment

Assessment methods include written examinations and coursework such as

  • problem solving exercises
  • case studies
  • reports from practical work
  • presentations.

Research project assessment includes a written report, presentation and portfolio. 

Employability

This course enables you to start to develop your career in various applications of biomedical science including pathology, government funded research labs or the life sciences industry. It is also for scientists working in hospital or bioscience-related laboratories particularly as biomedical scientists who want to expand their knowledge and expertise in this area.



Read less
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field. Read more
The Biomedical Sciences MSc provides opportunities for a broad learning experience in biomedical sciences and research training that will enhance students' ability to be competitive in the biomedical employment field, continue their learning if already in employment and/or develop a research career in this field.

Degree information

The overall aim of the programme is for students to develop an advanced understanding of the development, structure and function of biological systems, together with an understanding of the mechanisms underlying normal function and dysfunction at molecular, cellular and systems levels. Students will acquire and put into practice the research methods skills necessary to investigate mechanisms and develop knowledge in this field.

Students undertake modules to the value of 180 credits.

The programme consists of one core module (30 credits) optional 15 and 30-credit modules available in the Biosciences Division (to a total of 90 credits) and a research dissertation (60 credits).

Core modules
-The Practice of Science

Optional modules - optional modules include:
-Advances in the Neurosciences
-Physiology in Health and Disease
-Advances in Human Genetics
-Cancer and Personalised Medicines
-Cell Signalling
-Neurodegenerative Diseases
-Statistics

Dissertation/report
All MSc students undertake an independent research project which culminates in a dissertation of up to 10,000 words.

Teaching and learning
Taught modules are delivered through a combination of lectures, tutorials, practical exercises, computer simulation, data analysis exercises and self-directed learning. Assessment is through coursework (including projects, reports and presentations), unseen written examination, dissertation and oral presentation.

Careers

The Biomedical Sciences MSc provides opportunities for students to develop and broaden their knowledge and research skills and better prepare for future employment or specialist postgraduate research.

Top career destinations for this degree:
-PhD in Biomedical Science, McGill University
-PhD in Biomedical Sciences, University of Oxford
-PhD in Gene Discovery, Queen Mary, University of London (QMUL)
-Healthcare Assistant, Ealing Hospital (NHS)
-Trainee Biomedical Scientist, Epsom and St Helier University Hospitals NHS Trust

Employability
Biomedical Sciences MSc graduates significantly enhance their employability by developing their subject-specific knowledge in the field of biomedical science and their analytical and research skills. Students gain an appreciation of how important biomedical science is to global healthcare and can approach international employers with confidence. In addition, the programme enhances student presentational and key skills enabling students to compete effectively in the job market.

Why study this degree at UCL?

UCL is recognised as one of the world's best research environments within the field of biological and biomedical science.

The Division of Biosciences is in a unique position to offer tuition, research opportunities in internationally recognised laboratories and an appreciation of the multidisciplinary nature of biosciences research.

You will have the advantages of studying in a multi-faculty university with a long tradition of excellence, situated at the heart of one of the world's greatest cities.

Read less
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field. Read more
Biomedical scientists want to minimise the impact of diseases for humans and humankind. Smart, global visionaries are needed who want to solve health care issues in the lab and in the field.

Radboud University aims to educate the best biomedical scientists with not just a thorough understanding of the molecular, individual and population aspects of human health and disease, but also with unique areas of expertise. To do this we have constructed a Master’s programme in Biomedical Sciences that gives students the opportunity to construct their own programme based on personal academic and professional interests. Students choose one of three specialisations belonging to one of the research institutes and combine that with one of three career profiles. The research institute will be your learning environment, and a mentor of the institute will help you design your programme.

Biomedical Sciences specialisations and research institutes

For Molecular and cellular research, chose Radboud Institute for Molecular Life Sciences (RIMLS)
For Intervention, clinical and population research, chose Radboud Institute for Health Sciences (RIHS)
For Medical neuroscience, chose Donders Centre for Neuroscience
The programme provides students with a solid base in research methodology, statistics and biostatistics, laboratory research and communication skills. Leading scientists in fields ranging from metabolism, membrane transport, neuromuscular disease and inflammation to screening efficacy, clinical interventions and evidence-based medicine are involved in the teaching programme as lecturers and tutors.

A majority of our graduates become researchers in government departments, research organisations, universities and medical or pharmaceutical companies. Graduates also opt for careers as communication advisors or scientific consultant/advisor with a background in biomedical science, an expertise that is much in demand.

Why study Biomedical Sciences at Radboud University?

Possibility of specialising in any aspect of biomedical sciences from molecule (2 specialisations) to man (1 specialisation) to population (3 specialisations).
You can design your own programme so you can make it truly fit your academic and professional interests. A tutor will help you set up the best possible programme.
The programme has a strong career-driven focus with embedding in a research institute as a starting professional, room for long internships and the possibility to choose between a career profile in research, communication or consultancy.
Health care issues and biomedical research are placed in context. In the programme links are made between research and patient care (from bench to bedside), and vice versa.
Biomedical Sciences at Radboud University has a great reputation and graduates are highly valued by research institutes and health-care organisations all over the world.
Each of the three research institutes has its own mentors that are responsible for maintaining the quality of the programme as well as for coaching students in their specialist area. This system provides intensive career consultancy – an extremely valuable feature which is often lacking in other educational programmes in this field.

Change perspective

Thanks to the flexibility of designing a personal programme, graduates of the Radboud University’s Master’s programme in Biomedical Sciences will have developed a truly unique expertise in the field of biomedical science. You can broaden your view from molecule to man to population, or go in-depth into just one of these areas. Either way, you will have gained a new and refreshing perspective. And the intensive internships will guarantee you are prepared to enter the work force so that you can quickly start to play a vital role in improving human health.

Read less
This MSc teaches advanced analytical and computational skills for success in a data rich world. Read more
This MSc teaches advanced analytical and computational skills for success in a data rich world. Designed to be both mathematically rigorous and relevant, the programme covers fundamental aspects of machine learning and statistics, with potential options in information retrieval, bioinformatics, quantitative finance, artificial intelligence and machine vision.

Degree information

The programme aims to provide graduates with the foundational principles and the practical experience needed by employers in the area of machine learning and statistics. Graduates of this programme will have had the opportunity to develop their skills by tackling problems related to industrial needs or to leading-edge research.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), four optional modules (60 credits) and a research project (60 credits). Please note that not all combinations of optional modules will be available due to timetabling restrictions.

Core modules
-Supervised Learning
-Statistical Modelling and Data Analysis
-Graphical Models or Probabilistic and Unsupervised Learning
Plus one of:
-Applied Bayesian Methods
-Statistical Design of Investigations
-Statistical Computing
-Statistical Inference

Optional modules - students select 60 credits from the following list:
-Advanced Topics in Machine Learning
-Affective Computing and Human-Robot Interaction
-Applied Bayesian Methods
-Approximate Inference and Learning in Probabilistic Models
-Computational Modelling for Biomedical Imaging
-Information Retrieval and Data Mining
-Machine Vision
-Selected Topics in Statistics
-Optimisation
-Statistical Design of Investigations
-Statistical Inference
-Statistical Natural Language Programming
-Stochastic Methods in Finance
-Stochastic Methods in Finance 2
-Advanced Topics in Statistics
-Mathematical Programming and Research Methods
-Intelligent Systems in Business

Dissertation/report
All MSc students undertake an independent research project, which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, discussions, practical sessions and project work. Student performance is assessed through unseen written examinations, coursework, practical application and the project assessment process.

Careers

There is a strong national and international demand for graduates with skills at the interface of traditional statistics and machine learning. Substantial sectors of UK industry, including leading, large companies already make extensive use of computational statistics and machine learning techniques in the course of their business activities. Globally there are a large number of very successful users of this technology, many located in the UK. Areas in which expertise in statistics and machine learning is in particular demand include; finance, banking, insurance, retail, e-commerce, pharmaceuticals, and computer security. Graduates have gone on to further study at, for example, the Universities of Cambridge, Helsinki, Chicago, as well as at UCL. The MSc is also ideal preparation for a PhD, in statistics, machine learning or a related area.

Top career destinations for this degree:
-Statistical and Algorithm Analyst, Telemetry
-Decision Scientist, Everline
-Computer Vision Researcher, Slyce
-Data Scientist, YouGov
-Research Engineer, DeepMind

Employability
Scientific experiments and companies now routinely generate vast databases and machine learning and statistical methodologies are core to their analysis. There is a considerable shortfall in the number of qualified graduates in this area internationally. CSML graduates have been in high demand for PhD positions across the sciences. In London there are many companies looking to understand their customers better who have hired our CSML graduates. Similarly graduates now work in companies in, amongst others, Germany, Iceland, France and the US in large-scale data analysis. The finance sector has also hired several graduates recently.

Why study this degree at UCL?

The Centre for Computational Statistics and Machine Learning (CSML) is a major European Centre for machine learning having coordinated the PASCAL European Network of Excellence.

Coupled with the internationally renowned Gatsby Computational Neuroscience and Machine Learning Unit, and UCL Statistical Science, this MSc programme draws on world-class research and teaching talents. The centre has excellent links with world-leading companies in internet technology, finance and related information areas.

The programme is designed to train students in both the practical and theoretical sides of machine learning. A significant grounding in computational statistics is also provided.

Read less
Advance your career by broadening your understanding of research methods and their applications within biomedical sciences. You will enhance your specialist expertise in a specific area and develop your professional ability as a research-oriented scientist with excellent communications skills. Read more
Advance your career by broadening your understanding of research methods and their applications within biomedical sciences. You will enhance your specialist expertise in a specific area and develop your professional ability as a research-oriented scientist with excellent communications skills. Your study will focus on an in-depth research project working alongside experts from our Centre for Biomedical Research.

You'll get to discuss and appraise the latest biomedical science research which will become the basis for taught modules during this course. Your analytical, data handling and presentation skills are developed predominantly in the laboratory environment by carrying out a series of experiments and statistics exercises.

With our new biomedical sciences research laboratory you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment.

- Research Excellence Framework 2014: twice as many of our staff - 220 - were entered into the research assessment for 2014 compared to the number entered in 2008

Visit the website http://courses.leedsbeckett.ac.uk/appliedbiomedicalresearch_msc

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

You will be well prepared to go on to study for a PhD or to follow a career in biomedical sciences research.

- Biomedical Scientist
- Medical Research Scientist
- Microbiologist

Careers advice:
Our dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course benefits

With our new dedicated biomedical sciences research laboratory (opened in 2013) you will be able to conduct project work in a dedicated research environment and will benefit from an enhanced range of equipment. You will develop the skills needed for a successful research career.

Your research project will be closely linked to the areas of our research expertise with the opportunity to explore topics such as:

- the use of molecular methods to detect adulterated food
- studies on protein expression in bacteria
- pain science and non drug approaches to pain relief
- nutritional biochemistry
- development and validation of ELISA techniques
- the interactions of pyocyanin with host biochemistry
- the Effects of Bacterial Metabolism on pH of Simulated Wound Conditions
- development and Testing of New Smart-Bandage Sensing Technologies.

As a postgraduate student you will work alongside many other students, both undergraduate and postgraduate, and be closely linked to active research work in biomedical sciences. Our teaching team is often highly commended by students and staff for their innovative teaching methods and support for students.

Margarita Gomez Escalada

Senior Lecturer

"Our courses are heavily research orientated - we teach research methods, laboratory techniques and students undertake an extended research project."

Margarita recently produced internationally-recognised research treating acne with herbal compounds. Working with a student, she discovered that an extract of thyme was more effective than traditional chemical-based creams.

Facilities

- Biomedical Research Laboratory
The latest scientific testing equipment lets you put your learning into practice and break new ground in biomedical research.

- Library
Our Library is one of the only university libraries in the UK open 24/7 every day of the year. However you like to study, our Library has you covered with group study, silent study, extensive e-learning resources and PC suites.

- Food Inspection Laboratory
Our hygienic laboratory can be used to develop practical food specimen inspection skills.

Read less
Degree. Master of Science (two years) with a major in Biomedical Engineering. Teaching language. English. Read more
Degree: Master of Science (two years) with a major in Biomedical Engineering
Teaching language: English

Biomedical Engineering encompasses fundamental concepts in engineering, biology and medicine to develop innovative approaches and new devices, materials, implants, algorithms, processes and systems for the medical industry. These could be used for the assessment and evaluation of technology; for prevention, diagnosis, and treatment of diseases; for patient care and rehabilitation and for improving medical practice and health care delivery.

The first year of the Biomedical Engineering programme is focused on mandatory courses expanding students’ engineering skills and knowledge in areas like anatomy and physiology but also biology and biochemistry. Courses in mathematics, statistics, multidimensional biomedical signal generation and analysis, combined with medical informatics and biomedical modelling and simulation, create a solid foundation for the continuation of the programme.

In the second year, three areas of specialisation, medical informatics, medical imaging and bioengineering, are introduced. Coinciding with the specialisation, a course in philosophy of science is mandatory, preparing and supporting the onset of the degree project.
A graduate of the Biomedical Engineering programme should be able to:

• formulate and solve engineering problems in the biomedical domain, encompassing the design of devices, algorithms, systems, and processes to improve human health and integrating a thorough understanding of the life sciences.
• use, propose and evaluate engineering tools and approaches.
• identify and manage the particular problems related to the acquisition, processing and interpretation of biomedical signals and images.
• integrate engineering and life science knowledge, using modelling and simulation techniques.
• communicate engineering problems in the life science domain.

The Biomedical Engineering curriculum supports and sustains "Engineering for Health" through a relevant mixture of mandatory and elective courses. This enables both broad-based and in-depth studies, which emphasises the importance of multidisciplinary and collaborative approaches to real-world engineering problems in biology and medicine.

Welcome to the Institute of Technology at Linköping University

Read less

Show 10 15 30 per page



Cookie Policy    X