• University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
University of Leeds Featured Masters Courses
University of Kent Featured Masters Courses
"biomedical" AND "robotic…×
0 miles

Masters Degrees (Biomedical Robotics)

  • "biomedical" AND "robotics" ×
  • clear all
Showing 1 to 15 of 34
Order by 
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to drive IT robotics and automation education in the UK.

Degree information

The programme provides an overview of robotic and computational tools for robotics and autonomous systems as well as their main computational components: kinetic chains, sensing and awareness, control systems, mapping and navigation. Optional modules in machine learning, human-machine interfaces and computer vision help students grasp fields related to robotics more closely, while the project thesis allows students to focus on a specific research topic in depth.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (60 credits).

Core modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Systems Engineering
-Robotic Vision and Navigation

Optional modules
-Acquisition and Processing of 3D Geometry
-Affective Computing and Human-Robot Interaction
-Artificial Intelligence and Neural Computing
-Image Processing
-Inverse Problems in Imaging
-Machine Vision
-Mathematical Methods, Algorithmics and Implementations
-Probabilistic and Unsupervised Learning
-Research Methods and Reading
-Supervised Learning
-Other selected modules available within UCL Computer Science
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercises.

Careers

Robotics is a growing field encompassing many technologies with applications across different industrial sectors, and spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MSc programme will have diverse job opportunities in the international marketplace with their knowledge of robotics and the underpinning computational and analytical fundamentals that are highly valued in the established and emerging economies. Students will also be well placed to undertake PhD studies in robotics and computational research specific to robotics but translational across different analytical disciplines or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
This programme prepares students to enter a robotics-related industry or any other occupation requiring engineering or analytical skills. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas. Read more
Robotics and autonomous systems (RAS) are set to shape innovation in the 21st century, underpinning research in a wide range of challenging areas: the ageing population, efficient health care, safer transport, and secure energy. The UCL edge in scientific excellence, industrial collaboration and cross-sector activities make it ideally placed to deliver this MRes, which uniquely covers the whole spectrum of potential RAS areas and application.

Degree information

The programme teaches students the essentials of robotic and computational tools for robotics and autonomous systems. The key aim of the principal project thesis is to cultivate a deep understanding of robotics research, with a particular focus on a specific research topic in robotics and autonomous systems.

Students undertake modules to the value of 180 credits. The programme consists of one core module (15 credits), two optional modules (30 credits), two elective modules (30 credits), and a dissertation/report (105 credits).

Core modules
-Robotic Systems Engineering

Optional modules
-Robotic Control Theory and Systems
-Robotic Sensing, Manipulation and Interaction
-Robotic Vision and Navigation
-Numerical Optimisation
-Students also choose two elective MSc modules from across UCL Computer Science, UCL Medical Physics & Biomedical Engineering, UCL Mechanical Engineering and UCL Bartlett School of Architecture.

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 30,000 words.

Teaching and learning
Teaching is delivered by lectures, tutorials, practical sessions, projects and seminars. Assessment is through examination, individual and group projects and presentations, and design exercices.

Careers

Robotics is a growing field encompassing many technologies with tremendous opportunities for research and development both in industry and in academia, and with diverse applications across different industrial sectors spanning manufacturing, security, mining, design, transport, exploration and healthcare. Graduates from our MRes programme will will have project-focused experience and knowledge in robotics and the underpinning computational and analytical fundamentals. These skills will position graduates to be well placed to undertake PhD studies or industrial research and development in robotics and computational research specific to robotics but translational across different analytical disciplines, or applied fields that will be influenced by new robotic technologies and capabilities.

Employability
The MRes will develop skills widely relevant to a career in engineering industries and analytical problem-solving occupations. Graduates with skills to develop new robotics solutions and solve computational challenges in automation are likely to be in high demand globally.

Why study this degree at UCL?

UCL was ranked first in the UK for computer science and informatics in the recent Research Excellence Framework (REF).

With the external project involvement anticipated, students on this programme will have the opportunity to interact and collaborate with key companies in the industry - Airbus, Shadow Hand, OC Robotics and Intuitive Surgical - and work on real-world problems through industry-supported projects.

Recent investment across UCL in the Faculty of Engineering and The Bartlett Faculty of the Built Environment has created the infrastructure for an exciting robotics programme, which will be interdisciplinary and unique within the UK and Europe.

Read less
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Read more
VIBOT is a two-year International Masters of Excellence in Vision and Robotics sponsored by the European Union under the Erasmus Mundus framework. Built as collaboration between three leading universities in Europe (Heriot-Watt University in Scotland, the Universitat de Girona in Spain and the Université de Bourgogne in France), it is a truly international degree where students not only learn cutting edge science and engineering but are also exposed to different cultures. Over 50 countries have been represented on the Vibot programs since its inception in 2006.

This is a highly competitive programme aiming at attracting the best European and Overseas students to study robotics and computer vision. A number of very attractive grants (up to €42000) covering the University fees and a stipend for living and travel expenses are offered to the best students in the limit of the available grants (typically 16/year). On average, one in ten student applying is selected for a grant.

In recent years, the amount of digital image information to be stored, processed and distributed has grown dramatically. The generalisation of the use of digital images, in video surveillance, biomedical and e-health systems, and remote sensing, creates new, pressing challenges, and automated management tools are key to enable the organisation, mining and processing of these important knowledge resources. The key subject areas taught are computer vision, pattern recognition and robotics. Research in these areas is very dynamic and relevant to a wide range of sectors, such as the autonomotive industry, autonomous systems, medical imaging and e-health. The course is over two years, students spend the first semester in France, the second in Spain and the third in Scotland. The fourth semester is reserved for Masters thesis.

Career Prospects:
All of our graduates find work in industry or research very quickly and are sought after by research laboratories and leading blue chip companies alike. More and more of our graduates choose an industrial career.

Started in 2006, the VIBOT program has become the leading computer vision and robotics program in Europe. A majority of the VIBOT students have graduated with distinction and around 50% of them continue on to PhD studies.

Links with industry:
Strong links with industry have been established and companies now routinely welcome our students for their final year project. Recently, a 2007-2009 VIBOT student won the BAe Systems Chairman Bronze award for his contribution to autonomous navigation of terrestrial robots, demonstrating that our student are well prepared not only for high academic achievement but also for industry.

Our industrial partners have commented on our program:

“We have hosted VIBOT MSc project for the past 3 years and found them to be of a high calibre - in fact - we hired one of them. Their training seems to equip them well for in medical image analysis research, and what they don't know they quickly learn. The course works them hard - requiring a dissertation, short paper, poster and presentation of their work. This serves us well since it ensures they leave behind a good documentary record in addition to the software output. We look forward to working with VIBOT students in the future.

Ian Poole, PhD.
Scientific Fellow - Image Analysis
Toshiba Medical Visualization Systems Europe, Ltd Bonnington Bond”

“BAE Systems has found the ViBOT students to be of a high calibre and full of enthusiasm. They have all managed to fit into our teams quickly and have made valuable technical contributions. We have hired one student following his placement. We find that, through the students, we can sometimes attempt innovative tasks and try new approaches that are off the critical path of our projects. This can help give us early initial experience of emerging methods or potential applications. The ViBOT students are usually from overseas which has the bonus of adding to the diversity of our student placements, who are typically coming from the UK.

Richard Brimble
Principal Scientist,
BAE SYSTEMS, Advanced Technology Centre,

Facilities:
Our world-class robotics facilities include state of the art robots and 3D scanners. We have several turtlebots (http://www.turtlebot.eu) for land robotics, equipped with state of the art sensing such as the kinect, several human robots (Nao) as well as a wide range of dedicated robots for air and subsea robotics.

Read less
The MSc in Biomedical Science (Online) is a part-time, distance learning programme designed for students working in a hospital/laboratory setting. Read more
The MSc in Biomedical Science (Online) is a part-time, distance learning programme designed for students working in a hospital/laboratory setting. The programme comprises 4 structured stand-alone online learning modules from the Biomed Online Learning Programme and a workplace based project.

Students apply for the MSc programme after completing four online modules and once they have their project idea approved. The project is conceived by the individual but carefully scrutinised by a suitably qualified team drawn from the university and workplace before implementation and normally conducted in the workplace under guidance of a suitably qualified practitioner, and the whole overseen by an academic supervisor from the university. This helps to ground the programme with relevance to workplace requirements.

The online learning modules each offer Continuing Professional Development credits and each has been designed to be relevant to workplace practice. Students are given a free choice of modules, currently sixteen, so that they can tailor their studies to the needs of their workplace and their individual areas of interest. The online modules run for two intakes each year - October to January, and April to July.

The programme is not intended to be an 'end point' in an individual's personal development, but as a stage from which they can continue career development and increase their potential to make greater contributions to overall employer needs.

The Biomed Online Learning programme is managed by a consortium of NHS Trusts, Pathology Joint Ventures, Public Health England and the University of Greenwich.

For further Information please contact the Biomed Admin Manager:
E-mail:
Phone: 020 8331 9978

The aims of the programme are:

- To provide an appropriate knowledge base in specialised areas of biomedical science, with the intention of building on individuals' skills and knowledge base obtained at undergraduate level or its equivalent and in the workplace

- To provide part of the lifelong learning that plays an essential role in biomedical science generally

- To provide continuing professional development in selected areas within that field of endeavour.

Visit the website http://www2.gre.ac.uk/study/courses/pg/bio/bio

Science - Biosciences

Bioscience in essence is the use of science to explain human physiology and disease and to use the knowledge of science to develop treatments. It is the application of science rather than the study of things for their own sake.

Bioscience degrees are a result of the ever advancing needs of specialist knowledge as new scientific breakthroughs are made. They are partly a product of this specialisation and partly a response to students interested in human-focused study.

What you'll study

Distance learning
- Year 1:
Students are required to choose 60 credits from this list of options.

Lung Disease (30 credits)
Renal Disease (30 credits)
Diagnosis of Breast Cancer (30 credits)
Immunocytochemistry in Diagnostic Cellular Pathology (30 credits)
Clinical Data Interpretation (30 credits)
Implementing Advanced Quality Management (30 credits)
Governance and Risk Management (30 credits)
Robotics and Automation (in Laboratory Science) (30 credits)
Chromatography-Mass Spectrometry Analysis in Healthcare Settings (30 credits)
Analysis of Nucleic Acids (30 credits)
Advanced Human Genetics (30 credits)
Management of Healthcare Associated Infection (30 credits)
Quality Systems Management (30 credits)
Point of Care Testing (30 credits)
Blood Transfusion (30 credits)
Managing Learning and Development in Healthcare (30 credits)

-Year 2:
Students are required to choose 60 credits from this list of options.

Lung Disease (30 credits)
Renal Disease (30 credits)
Diagnosis of Breast Cancer (30 credits)
Immunocytochemistry in Diagnostic Cellular Pathology (30 credits)
Clinical Data Interpretation (30 credits)
Implementing Advanced Quality Management (30 credits)
Governance and Risk Management (30 credits)
Robotics and Automation (in Laboratory Science) (30 credits)
Chromatography-Mass Spectrometry Analysis in Healthcare Settings (30 credits)
Analysis of Nucleic Acids (30 credits)
Advanced Human Genetics (30 credits)
Management of Healthcare Associated Infection (30 credits)
Quality Systems Management (30 credits)
Point of Care Testing (30 credits)
Blood Transfusion (30 credits)
Managing Learning and Development in Healthcare (30 credits)

-Year 3:
Students are required to study the following compulsory courses.

Project (MSc Biomedical Sci) (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Students are assessed through case study orientated reports, production of posters, presentations, contributions to online discussions, tests, online assessments and a research project.

Career options

The programme is directed mainly towards those working in NHS / healthcare laboratories, with the intention of providing opportunities for professional advancement following registration and for continuing professional development.

Biomed Online Learning Programme is open to national and international students but due to the nature of the project the MSc Programme is only open to students working in a hospital/laboratory setting in the UK.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Intelligent Mobile Robots
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
MESc & PhD graduate degree programs in Biomedical Engineering with specializations in Biomaterials, Biomechanics, and Imaging. Biomedical Engineering is a program that promotes the cooperative involvement of clinical and basic researchers in allied disciplines such as imaging, biomaterials, biomechanics and robotics. Read more
MESc & PhD graduate degree programs in Biomedical Engineering with specializations in Biomaterials, Biomechanics, and Imaging.

Biomedical Engineering is a program that promotes the cooperative involvement of clinical and basic researchers in allied disciplines such as imaging, biomaterials, biomechanics and robotics. This program encourages multidisciplinary links between the faculties of Engineering, Medicine & Dentistry, and Health Sciences, Robarts Research Institute and London Health Research Institute, and Western’s teaching hospitals.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=19

Fields of Research

• Biomaterials
• Biomechanics
• Imaging and Robotics

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. Read more

Why this course?

Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics.

This newly-launched MSc course is the first one-year taught course in the world dedicated to Biofluid Mechanics. It covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics.

The one-year full-time programme offers you a unique opportunity to lead the next generation of highly-skilled postgraduates that will form a new model worldwide for academia – with world-class research knowledge, industry – with highly-competitive skills in both biomedical engineering and fluid dynamics, and for society – with better training to work with clinicians.

This course is taught by the Department of Biomedical Engineering, with input from other departments across the Faculty of Engineering and the wider University. You'll be supported throughout the course by a strong team of academics with global connections. You'll benefit from a unique training and an innovative teaching and learning environment.

You'll study

In Semesters 1 and 2, you'll take compulsory classes and a choice of optional classes. 
The remaining months are dedicated to project work, submitted as dissertation (Diploma students) or as a research thesis (MSc students).

Compulsory Classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Research Methodology
Professional Studies in Biomedical Engineering

Optional Classes

Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineeirng
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship and Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology and Marine Population Modelling
Design Management
Risk Management

Masters Research Project

The project provides MSc students with the opportunity to experience the challenges and rewards of independent study in a topic of their own choice; the project may involve an extended literature review, experimental and/or computational work.

Postgraduate Diploma Dissertation

The dissertation is likely to take the form of an extended literature review. Your project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.

Industrial Partnerships

We have established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Fees & funding

How much will my course cost?

All fees quoted are for full-time courses and per academic year unless stated otherwise.

Scotland/EU

2017/18 - £5,500
Rest of UK

2017/18 - £9,000
International

2017/18 - £19,100
How can I fund my course?

Scholarship search

Scottish and non-UK EU postgraduate students

Scottish and non-UK EU postgraduate students starting in 2017 can apply for support from the Student Awards Agency Scotland (SAAS). The support is in the form of a tuition fee loan and for eligible students a living cost loan. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from England

Students ordinarily resident in England can apply for Postgraduate support from Student Finance England. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. Find out more about the support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Wales

Postgraduate students starting in 2017 who are ordinarily resident in Wales can apply for support from Student Finance Wales. The support is a loan of up to £10,280 which can be used for both tuition fees and living costs. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

Students coming from Northern Ireland

Postgraduate students starting in 2017 who are ordinarily resident in Northern Ireland can apply for support from Student Finance NI. The support is a tuition fee loan of up to £5,500. We are waiting on further information being released about this support and how to apply.

Don’t forget to check our scholarship search for more help with fees and funding.

International students

We have a large range of scholarships available to help you fund your studies. Check our scholarship search for more help with fees and funding.

Please note

The fees shown are annual and may be subject to an increase each year. Find out more about fees.

Read less
Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics. Read more

Research opportunities

Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics.

Our new MRes course covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics (CFD), focusing on research. The MRes differs from an MSc in that you'll have the opportunity to perform multidisciplinary research for a longer time, preparing you for a research career and equipping you with world-class research knowledge.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the faculty and the University.

During the course, you'll be supported by a strong team of academics with worldwide connections and you'll be offered a unique training and innovative teaching and learning environment.

Course director: Dr Asimina Kazakidi

Lecturer in Biofluid Mechanics

Course co-director: Professor Dimitris Drikakis

Executive Dean of Engineering and Professor of Engineering Science

What you'll study

This one-year programme consists of compulsory and optional classes in the first two semesters. Each class has timetabled contact hours, delivered predominantly in lectures, laboratories and tutorials.

The MRes research project will be chosen and started in semester one with guidance from a supervisor. Throughout the year you'll be working on your project.

Compulsory classes

Professional Studies in Biomedical Engineering
Research Methodology
MRes project

Elective classes

Biofluid Mechanics
Industrial Software
Medical Science for Engineering
Haemodynamics for Engineers
Numerical Modelling in Biomedical Engineering
Cardiovascular Devices
The Medical Device Regulatory Process
Entrepreneurship & Commercialisation in Biomedical Engineering
Introduction to Biomechanics
Finite Element Methods for Boundary Value Problems and Approximation
Mathematical Biology & Marine Population Modelling
Design Management
Risk Management

Guest lectures

During the course, academics and industrial speakers will be invited as part of the training. You'll also benefit from departmental seminars and knowledge exchange events.

Fees & funding

Fees

All fees quoted are per academic year unless otherwise stated.

Here are our fees for 2017/18:

Scotland/ EU

£4,195
Rest of UK

£4,195
International students

£19,100
Funding

If you can't find what you're looking for, try our scholarship search instead.

The fees shown are annual and may be subject to an increase each year.

Support & development

Careers

The new MRes course aims to train students in the Biofluid Mechanics field, targeting primarily the academic research market, but also the Medical Devices and Simulation/Analysis software industries and other related and new emerging markets.

Our postgraduates will benefit from acquiring world-class training and competitive skills in both biomedical and fluid dynamics disciplines that will make them highly employable at the following markets and related sectors/companies:

academic research
medical device market
simulation & analysis software market
biosimulation market
NHS & the healthcare/medical simulation market
life science research tools & reagents market
We've identified the current key vendors in each of the above markets and aim to create links with the relevant industry and monitor the changing market and employability trends, in order to adjust teaching modules and approaches and to enhance employability of our graduates.

Industrial partnerships

We've already established strong partnerships with industrial companies that have offered their support through the provision of software licenses and/or teaching material.

Student support

From financial advice to our IT facilities, we have loads of different support for all students here at our University. Get all the information you need at Strathlife.

Read less
Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence. Read more

About the course

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

Computational Intelligence encompasses the techniques and methods used to tackle problems not well solved by traditional approaches to computing. The four areas of fuzzy logic, neural networks, evolutionary computing and knowledge based systems encompass much of what is considered to be computational (or artificial) intelligence. There are opportunities to use these techniques in many application areas such as robot control and games development depending on your interests.

Modules include work based on research by the Centre of Computational Intelligence. With an established international reputation, their work focuses on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics, providing theoretically sound solutions to real-world decision making and prediction problems. Past students have published papers with their CCI project supervisors and gone on to PhD study.

Reasons to Study

• Internationally recognised reputation
our internationally recognised Centre of Computational Intelligence (CCI) inputs into the course allowing you to understand the current research issues related to artificial intelligence

• Benefit from our Research Expertise
modules include work-based on research by our Centre for Computational Intelligence (CCI) and focus on the use of fuzzy logic, artificial neural networks, evolutionary computing, mobile robotics and biomedical informatics; providing theoretically sound solutions to real-world decision making and prediction problems

• Flexible study options
full-time, part time or distance learning study options available; making the course suitable for recent graduates and professionals in work

• Dedicated robotics laboratory
have access to our Advanced Mobile Robotics and Intelligent Agents Laboratory. The laboratory contains a variety of mobile robots ranging from the Lego Mindstorms and Pioneers to the Wheelbarrow robot for bomb disposal

• Employment Prospects
artificial Intelligence is a growing industry worldwide, employment opportunities exist in areas such as games development, control systems, software engineering, internet businesses, financial services, mobile communications, programming, and software engineering

Course Structure

Modules

• Computational Intelligence Research Methods
• Artificial Intelligence (AI) Programming
• Mobile Robots
• Fuzzy Logic
• Artificial Neural Networks
• Evolutionary Computing
• Applied Computational Intelligence
• Data Mining
• Individual Project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your project.

Teaching and Assessment

The course consists of an induction unit, eight modules and an individual project. The summer period is devoted to work on the project for full-time students. If you choose to study via distance learning, you would normally take either one module per semester for four years or two modules per semester for four years plus a further year for the project.

Teaching is normally delivered through lectures, seminars, tutorials, workshops, discussions and e-learning packages. Assessment is via coursework only and will usually involve a combination of individual and group work, presentations, essays, reports and projects.

Distance learning material is delivered primarily through our virtual learning environment. Books, DVDs and other learning materials will be sent to you. We aim to replicate the on-site experience as fully as possible by using electronic discussion groups, encouraging contact with tutors through a variety of mediums.

Contact and learning hours

On-site students will have the lessons delivered by the module tutors in slots of three hours. In the full-time route, you can expect to have around 12 hours of timetabled taught sessions each week, with approximately 28 additional hours of independent study. There are also three non-teaching weeks when fulltime students can expect to spend around 40 hours on independent study each week.

Academic expertise

Taught by experienced research staff from the Centre for Computational Intelligence (CCI), an internationally recognised centre highly rated in the most recent Government Research Assessment Exercise, you will gain a professional qualification that gives substantially enhanced career and research prospects in both traditional computing areas and in the expanding area of computational intelligence.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. Read more
Our program allows graduate students to be involved in high level research and development, and the design of a wide range of mechanical systems. UNB’s mechanical engineering program offers students exciting and diverse program options including: biomedical engineering, instrumentation and control, manufacturing engineering, materials characterization and processing, and mechatronics.

Students have access to various labs, and the department is linked with various research groups and institutes, for example, the Advanced Manufacturing Lab (High performance machining, manufacturing and materials characterization), Robotics and Mechanisms Laboratory, Silicon Hall (research lab for micro & nano fabrication and bionanotechnology), Bioenergy and Bioproducts Research Lab, Institute of Biomedical Engineering.

Research Areas

-Acoustics & Vibration
-Advanced Process Controls
-Advanced Manufacturing and Materials Processing
-Biofuels and Biomass Processing
-Biomedical Engineering and Biomaterials
-Composites
-High-performance machining
-Laser machining micro/nano processing
-Material Characterization
-Multiscale modeling in solid and fluid mechanics
-Mechatronics & Design
-Nanostructured Coatings
-Renewable Energy Systems
-Robotics & Applied Mechanics
-Smart Sensors
-Solid Mechanics
-Thermofluids & Aerodynamics

Read less
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. Read more
Electrical and Electronic Engineering is characterised by the need for continuing education and training. Today, most Electrical and Electronic Engineers require more than is delivered in a conventional four-year undergraduate programme. The aim of the MEngSc (Electrical and Electronic Engineering) programme is to provide advanced coursework with options for a research element or industrial element, and additional professional development coursework. Students choose from a range of courses in Analogue, Mixed Signal, and RF Integrated Circuit Design, VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, Adaptive Signal Processing and Advanced Control. A range of electives for the coursework-only stream includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship

Visit the website: http://www.ucc.ie/en/ckr47/

Course Details

The MEngSc (EEE) has three Streams which include coursework only, coursework with a research project, or coursework with an industrial placement. Students following Stream 1 take course modules to the value of 60 credits and carry out a Minor Research Project to the value of 30 credits. Students following Stream 2 take course modules to the value of 60 credits and carry out an Industrial Placement to the value of 30 credits. Students following Stream 3 take course modules to the value of 90 credits, up to 20 credits of which can be in topics such as business, law, and innovation.

Format

In all Streams, students take five core modules from the following range of courses: Advanced Analogue and Mixed Signal Integrated Circuit Design, Advanced RF Integrated Circuit Design, Advanced VLSI Architectures, Intelligent Sensors and Wireless Sensor Networks, Wireless Communications, Robotics and Mechatronics, Advanced Power Electronics and Electric Drives, Optoelectronics, and Adaptive Signal Processing and Advanced Control. In addition, students following Stream 1 (Research Project) and Stream 2 (Industry Placement) carry out a Research Report. Following successful completion of the coursework and Research Report, students in Streams 1 and 2 carry out a research project or industry placement over the summer months.

Students who choose the coursework-only option, Stream 3, take additional courses in lieu of the project or placement. These can be chosen from a range of electives that includes modules in Computer Architecture, Biomedical Design, Microsystems, Nanoelectronics, Innovation, Commercialisation, and Entrepreneurship.

Assessment

Part I consists of coursework modules and mini-project to the value of 60 credits. These are assessed using a combination of written examinations and continuous assessment. Successful completion of the initial tranche of coursework modules qualifies the student to progress to Part II, the research project, industrial placement, or additional coursework to the value of 30 credits in the cases of Streams 1, 2, and 3, respectively.

Placement and Study Abroad Information

For students following Streams 1 and 2, research projects and industrial placements are normally in Ireland. Where the opportunity arises, a research project or work placement may be carried out outside Ireland.

Careers

MEngSc (Electrical and Electronic Engineering) graduates will have a competitive advantage in the jobs market by virtue of having completed advanced coursework in Electrical and Electronic Engineering and, in the case of Streams 1 and 2, having completed a significant research project or work placement.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
The Department of Electrical and Computer Engineering offers graduate programs at the masters (M.E.Sc. and M.Eng.) and doctoral (Ph.D.) level in the following research areas. Read more
The Department of Electrical and Computer Engineering offers graduate programs at the masters (M.E.Sc. and M.Eng.) and doctoral (Ph.D.) level in the following research areas: biomedical systems, communications systems and data networking, applied electrostatics and electromagnetics, microsystems and digital signal processing, power systems engineering, robotics and control and software engineering.

Visit the website: http://grad.uwo.ca/prospective_students/programs/program_NEW.cfm?p=39

Fields of Research

• Applied Electrostatics & Electromagnetics
• Biomedical Systems
• Communication Systems and Data Networking
• Microsystems & Digital Signal Processing
• Power Systems Engineering
• Robotics & Control
• Software Engineering

How to apply

For information on how to apply, please see: http://grad.uwo.ca/prospective_students/applying/index.html

Financing your studies

As one of Canada's leading research institutions, we place great importance on helping you finance your education. It is crucial that you devote your full energy to the successful completion of your studies, so we want to ensure that stable funding is available to you.
For information please see: http://grad.uwo.ca/current_students/student_finances/index.html

Read less
This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. Read more
This exciting programme focuses on the design, development and clinical application of novel rehabilitative and assistive technologies. The programme is delivered by the Aspire Create team, which is engineering the next generation of these technologies, in partnership with clinicians at the Royal National Orthopaedic Hospital.

Degree information

You will engage in research-based learning and work on real-world medical engineering projects which are driven by a clinical need. Throughout the MSc, you will receive core training in “anatomy for engineers", biomechanics and research methodologies, before choosing modules that explore cutting-edge topics ranging from robotics and electronic implants to social cognitive rehabilitation and “disability and development”.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits), two optional modules (30 credits), a group research module (30 credits) and an individual project (60 credits).

Core modules
-Anatomy and Physiology for Engineers
-Assistive Technology Devices and Rehabilitation Robotics
-Biomechanics for Assistive Technologies
-Research Methods and Experiment Design
-Group research projects
-Individual research project

Optional modules - all students participate in two group research projects which put the theory from the core modules into practice. Each project results in a group report and an individual mini-viva.
-Disability and Development
-Electronic Devices and Implant Technologies
-Inclusive Design and Human-Machine Interfaces
-Social Cognitive Rehabilitation

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of 10,000-12,000 words.

Teaching and learning
The programme is delivered through a combination of interactive lectures, seminars and hands-on laboratory sessions, supported by exercise/problem sheets and opportunities for reflection and discussion. Assessment is through coursework, research project reports, mini-vivas, MCQs and written exams.

Careers

Typical career destinations for our graduates range from, but are not limited to: academic researchers, biomedical R&D engineers, clinical scientists, and entrepreneurs who spin out their project work into start-up companies.

Employability
This course will give you the opportunity to enhance your employability by gaining and refining both technical and transferrable skills. Not only will you gain specialist theoretical knowledge, you will also learn how to put this into practice through our research based learning activities. The highly interdisciplinary research focus of this course will give you experience of the academic, clinical and third sectors. Importantly, you will refine your communication skills by interacting with different audiences (technical, clinical and lay) and learn how to pitch your arguments at the right level – this is a highly valued skill in any sector.

Why study this degree at UCL?

Rehabilitation engineering promises to revolutionise the way patients regain their independence. Complementary to drugs and surgery, this unique MSc focuses on how state-of-the-art technologies can be developed and translated into clinical practice.

You will tackle real problems, faced by people with complex and challenging medical conditions, such as spinal cord injuries and stroke.

There are plenty of networking opportunities throughout the course, which is run by internationally renowned UCL academics, in conjunction with clinicians at the Royal National Orthopaedic Hospital; assistive technology specialists from the Aspire charity; and our industrial research partners.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. Read more
The graduate programs in Electrical and Computer Engineering (ECE) attract students from all over the globe; approximately 26 countries have been represented by our graduate students over the past decade. The department endeavors to create a warm, friendly, and collaborative atmosphere in which graduate students are encouraged to develop their full potential.

Graduate class sizes are typically small, allowing for substantial interaction between students and professors. In addition to various research opportunities, there are numerous teaching assistant (TA) positions available during the Fall and Winter terms; graduate students may also participate in the engineering co-op program once eligibility requirements are met.

ECE has developed research strengths in the areas listed below. Of special note is the world-class research conducted by the Sustainable Power Research Group and Emera & NB Power Research Centre for Smart Grid Techologies and the Optical Fiber Systems Research Laboratory (housed within ECE), as well as the research conducted by the Institute of Biomedical Engineering (closely affiliated with ECE) and COBRA (Collaboration Based Robotics and Automation). Emera & NB Power Research Centre for Smart Grid Technologies Our recent graduates have moved on to successful and rewarding careers at other universities, research institutions, power utilities, IT companies and numerous others ranging from local start-ups to large multi-national corporations.

Research Areas

-Biomedical Engineering
-Communications
-Controls and Instrumentation
-Electromagnetic Systems
-Electronics and Digital / Embedded Systems
-Signal Processing
-Software Systems
-Sustainable Energy

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X