• Cardiff University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Bradford Featured Masters Courses
University of Reading Featured Masters Courses
Cranfield University Featured Masters Courses
Bath Spa University Featured Masters Courses
"biomedical" AND "materia…×
0 miles

Masters Degrees (Biomedical Materials)

  • "biomedical" AND "materials" ×
  • clear all
Showing 1 to 15 of 122
Order by 
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. Read more
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. We have close links with the world's leading pharmaceutical and medical device companies and the clinical applications of our research impact many areas of medicine.

The subject

The subject of biomedical materials covers those materials that are used in the context of biology and medicine, usually to evaluate, treat, augment or replace any tissue, organ or function of the body. In surgery, a biomaterial may be a synthetic material used to replace part of a living system or to function in intimate contact with living tissue.

A new area in biomaterials involves the exploration of nanotechnology for drug delivery, biological sensing or tissue regeneration. Examples of these bionanomaterials are small particles that may be used for the delivery of drug molecules to target sites within the body or to detect diseased areas.

Biomaterials are produced using chemical, physical, mechanical processes and they often employ or mimic biological phenomena in order for them to interact with their biological surroundings in defined ways.

Application of research

The clinical applications of our research impact many areas of medicine, including drug delivery, cancer, wound healing, stem cell technology, repair and regeneration of nerve, tendon, cartilage, bone, intevertebral disc, skin, ligament and cornea.

Industry collaboration

We have strong ties with industry, including ongoing collaboration with Smith & Nephew, Johnson & Johnson, and Versamatrix A/S (Denmark), developing novel biomaterial based strategies for wound healing, bone repair, control of inflammation and drug delivery.

Facilities

To underpin the research and teaching activities, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Read less
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. Read more
The Biomedical Materials research degrees cover an exciting area of research in the School focusing both on fundamental understanding of interactions between man-made materials and biological tissues and the development of useful applications. We have close links with the world's leading pharmaceutical and medical device companies and the clinical applications of our research impact many areas of medicine.

The subject

The subject of biomedical materials covers those materials that are used in the context of biology and medicine, usually to evaluate, treat, augment or replace any tissue, organ or function of the body. In surgery, a biomaterial may be a synthetic material used to replace part of a living system or to function in intimate contact with living tissue.

A new area in biomaterials involves the exploration of nanotechnology for drug delivery, biological sensing or tissue regeneration. Examples of these bionanomaterials are small particles that may be used for the delivery of drug molecules to target sites within the body or to detect diseased areas.

Biomaterials are produced using chemical, physical, mechanical processes and they often employ or mimic biological phenomena in order for them to interact with their biological surroundings in defined ways.

Application of research

The clinical applications of our research impact many areas of medicine, including drug delivery, cancer, wound healing, stem cell technology, repair and regeneration of nerve, tendon, cartilage, bone, intevertebral disc, skin, ligament and cornea.

Industry collaboration

We have strong ties with industry, including ongoing collaboration with Smith & Nephew, Johnson & Johnson, and Versamatrix A/S (Denmark), developing novel biomaterial based strategies for wound healing, bone repair, control of inflammation and drug delivery.

Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programmes in Biomedical Engineering is a 1 calendar year conversion programme that is part of a suite of programmes offered in Biomedical Engineering at Queen Mary University of London. This MSc conversion programme is aimed at students who already have an in depth knowledge of an area of Science (e.g. Maths, Physics, Biology or Chemistry), and who wish to convert to a career in Biomedical Engineering

This MSc programme aims to prepare specialists with advanced knowledge and transferable skills in the field of Biomedical Engineering, covering the following topics:

Fundamentals of human physiology;
Ethics and regulatory affairs in the biomedical field;
Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
Mechanics of tissues, cells and sub-cellular components;
Biocompatibility of implantable materials and devices;
Materials and techniques for nanotechnology and nanomedicine.
The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomedical Engineering and Materials. This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomedical Engineering and Materials, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from QMUL.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research.

* All new courses are required to undergo a two-stage internal review and approval process before being advertised to students. Courses that are marked "subject to approval" have successfully completed the first stage of this process. Applications are welcome but we will not make formal offers for this course until it has passed this second (and final) stage.

Read less
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

Degree information

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules - students take both modules listed below (45 credits) and submit a research dissertation (105 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 30 credits drawn from the following:
-Researcher Professional Development
-Mastering Entrepreneurship
-Transferable Skills for Scientists
-Numerical Methods

Dissertation/report
All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Top career destinations for this degree:
-PhD Chemistry, The University of Oxford
-Engineer, Mohan Boiler and Fraser Vessel Inspection Institute
-PhD Nanomaterials, University College London (UCL)
-Phd Physics, University College London (UCL)
-PhD Chemistry, Technische Universität Berlin (Technical Universit

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Read less
There is a growing need by industry for staff trained in computational molecular sciences. Read more
There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide skills transferable to other fields, thereby broadening employment prospects.

Degree information

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules - students take the two modules listed below (45 credits) and submit a research dissertation (90 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 45 credits drawn from the following:
-Mastering Entrepreneurship
-Numerical Methods in Chemistry
-Researcher Professional Development
-Transferable Skills for Scientists
-Choice of one postgraduate lecture module at UCL

Dissertation/report
All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Top career destinations for this degree:
-Chemistry, University College London (UCL)

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Read less
The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. Read more

Mission and goals

The programme provides the student with an Engineering education applied to medical and biological issues, through deep basic and specialist training in various biomedical topics. The educational path is intended to train students for designing equipment, devices, materials and procedures and for a correct introduction, development and management of biomedical technologies inside Companies and Health Structures, as well as freelance. The peculiar multidisciplinary structure of the programme allows developing a strong knowledge in electronics and informatics, mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines (biology, physiology and medicine).

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Career opportunities

Graduated biomedical engineers find employment for the design, development and commercialization of biomedical devices, as well as in the pharmaceutical sector. Career opportunities are found: 1) in manufacturing companies which are active on health-care market with systems for prevention, diagnostics, therapy and rehabilitation; 2) in public and private hospitals for the management of health technologies; 3) in medical plant and equipment service companies; 4) in specialised biomedical laboratories; 5) in biomedical research 6) as freelance.
For a more specific training in scientific research in the area, a Ph.D. in Bioengineering is available.

The programme has 4 advised paths (besides the possibility to develop a personal path with some constraints):
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Presentation

See http://www.polinternational.polimi.it/uploads/media/Biomedical_Engineering_01.pdf
This postgraduate programme provides students with an engineering education applied to medical and biological issues. The educational path is intended to train students in the design of biomedical equipment, devices, materials and procedures and to offer a correct introduction to the management of biomedical technologies in companies and health bodies. The peculiar multidisciplinary structure of the programme allows the development of a strong knowledge in electronics and informatics, in mechanical, chemical and material engineering and promotes the integration of technical studies with life science disciplines like biology, physiology and
medicine. The programme is taught in English.

Subjects

Four specializations available:
- Clinical Engineering
- Electronic Technologies
- Biomechanics and Biomaterials
- Cell, Tissue and Biotechnology Engineering

Mandatory courses for all areas:
- mathematical and digital methods for engineering
- bioengineering of the motor system
- mechanics of biological structures
- bioengineering of autonomic control and respiratory systems
- biofluid dynamics
- biomechanical design
- biomachines (with laboratory)
- biomaterials
- endoprostheses
- biomimetics and tissue engineering
- biotechnological applications and bioreactors
- design of life support systems
- laboratory of tissue characterization
- laboratory of biomaterials + lab. of instrumental analysis
- laboratory of biofluid dynamics
- laboratory of biomechanical design
- computational biomechanics laboratory

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/biomedical-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Develop your scientific skills and explore new specialisms. If you’re a working biomedical scientist take a step towards fully chartered status by studying on our Institute of Biomedical Science (IBMS) accredited distance-learning course. Read more
Develop your scientific skills and explore new specialisms. If you’re a working biomedical scientist take a step towards fully chartered status by studying on our Institute of Biomedical Science (IBMS) accredited distance-learning course.

See the website http://www.anglia.ac.uk/study/postgraduate/biomedical-science

Accredited by the Institute of Biomedical Science (IBMS) and guided by an employers’ panel (including the NHS), this course is a great asset to your professional development, whether you’re working in healthcare or industry.

You’ll have the opportunity to tailor your studies by choosing a specialist pathology area. Through this you can either enhance your knowledge and understanding of your current field, or open up a career path into a new area such as management.

Our tutors will teach you through our Virtual Learning Environment (VLE), where you can download study materials, organise your studies and access online classrooms and study groups.

See the website http://www.anglia.ac.uk/study/postgraduate/biomedical-science

The aims of this course are:
• to provide ongoing professional training for NHS and private pathology laboratory professionals
• to enable you to develop and apply skills of analysis, synthesis, evaluation and application in the biomedical field
• to enable you to develop a range of transferable skills relevant to a wider range of postgraduate employment opportunities
• to enable you to develop a range of practical skills and experience in the biomedical field
• to develop your awareness of the social, economic and ethical aspects in the biomedical field

Careers

Our course will enhance your career prospects and provide a major step towards chartered scientist status. You can personalise your studies to reflect your career goals as a biomedical scientist, whether in health services, biotechnology or pharmaceuticals. You’re also in the perfect position to continue your academic career and move up to our Biomedical Science PhD or Biotechnology PhD.

Core modules

An Introduction to Management
General Pathology
Moving Towards Mastery
Research Methods in Biomedical Science
Dissertation/final project

Optional modules

Cellular Pathology
Clinical Chemistry
Haematology
Medical Microbiology

Assessment

We’ll assess your progress using the portfolios you’ll create for each taught module, as well as your final year dissertation.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Read less
The Department offers an MSc course with four separate streams. Biomedical Engineering with Medical Physics. Biomedical Engineering with Biomechanics. Read more
The Department offers an MSc course with four separate streams:

Biomedical Engineering with Medical Physics

Biomedical Engineering with Biomechanics

Biomedical Engineering with Neurotechnology

Biomedical Engineering with Biomaterials

The Medical Physics stream trains graduates in the physical understanding required for healthcare and medical research, focusing on human physiology, and the use of radiation in treatment and in clinical imaging (especially MRI, ultrasound, X-ray and optical techniques), as well as the signal and image processing methods needed for the design and optimal use of such systems in diagnosis and research.

The Biomechanics stream is focused on bioengineering problems related to major diseases associated with an ageing population, such as cardiovascular disease, glaucoma, and bone and joint disease (osteoarthritis, osteoporosis).

These are major causes of mortality and morbidity, and this stream prepares engineers for a career in these key growth areas.

The Neurotechnology stream covers the development of new technology for the investigation of brain function, focusing on the application of this to benefit society—for example the development of neuroprosthetic devices, new neuroimaging techniques, and developing drugs and robotic assistive devices for those with central nervous system disorders, as well as in biologically-inspired control engineering.

The Biomaterials stream is offered jointly with the Department of Materials.

It addresses the selection and use of biomaterialsin medical and surgical devices, including their application, properties, interaction with tissues and drawbacks. Existing and new biomaterials are studied, including bioactive and biodegradable materials, implants and dental materials.

Modules also cover the development of materials for new applications, the response of cells and the design of materials as scaffolds for tissue engineering, which involves tailoring materials so that they guide stem cells to produce new tissue.

You will be required to choose your stream at the time of application. All four streams lead to the award of the MSc in Biomedical Engineering. The Medical Physics and Biomechanics streams are accredited by the Institute of Physics and Engineering in Medicine (IPEM).

The course is full-time for one calendar year, starting in October. It currently has an annual intake of about 60 students.

Read less
Research profile. The Institute for Materials and Processes (IMP) brings together researchers from materials science and chemical, mechanical and bio-engineering, conducting world-class research into every conceivable kind of material. Read more

Research profile

The Institute for Materials and Processes (IMP) brings together researchers from materials science and chemical, mechanical and bio-engineering, conducting world-class research into every conceivable kind of material.

Work covers the design, synthesis and processing of materials, as well as biomedical and process engineering. IMP has one of the UK's largest carbon capture engineering research groups, and particular strength in biomedical and biological engineering. The Institute has excellent laboratory facilities, including the latest instruments for research in adsorption, biomedical engineering, conversation materials science, high pressure and temperature advanced materials synthesis, ice mechanics, and particular strength in multiphase flows and multiscale modelling. We provide high-quality training in research for both postgraduate students and postdoctoral researchers.

Training and support

The development of transferable skills is a vital part of postgraduate training and a vibrant, interdisciplinary training programme is offered to all research students by the University’s Institute for Academic Development (IAD). The programme concentrates on the professional development of postgraduates, providing courses directly linked to postgraduate study.

Courses run by the IAD are free and have been designed to be as flexible as possible so that you can tailor the content and timing to your own requirements.

Our researchers are strongly encouraged to present their research at conferences and in journal during the course of their PhD.

Every year, the Graduate School organises a Postgraduate Research Conference to showcase the research carried out by students across the Research Institutes

Our researchers are also encouraged and supported to attend transferable skills courses provided by organisations such as the Engineering and Physical Sciences Research Council (EPSRC).

Facilities

The Institute has excellent laboratory facilities, including the latest instruments for research in adsorption, biomedical engineering, conservation materials science, high pressure and temperature advanced materials synthesis, ice mechanics, and multi-phase flows and multiscale modelling.

Research opportunities

We offer a comprehensive range of exciting research opportunities through a choice of postgraduate research degrees: MSc by Research, MPhil and PhD.

Masters by Research

The Master of Philosophy (MPhil) degree resembles a PhD but generally takes two years instead of three and does not carry the same requirement for original contribution to knowledge. You pursue your individual research project under supervision, submitting your thesis at the end of the project.



Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:

• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
• Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
• Mechanics of tissues, cells and sub-cellular components;
• Biocompatibility of implantable materials and devices;
• Materials and techniques for nanotechnology and nanomedicine.

Applications are welcome from students with a background in physical sciences (Chemistry, Physics, Mathematics and Materials Science) or Engineering.The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomaterials and Tissue Engineering.

This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomaterials and Tissue Engineering, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from the College.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research

Read less
​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science. Read more

Course Overview

​Professionally accredited by the Institute of Biomedical Science (IBMS), the course aims to provide a high quality and professionally relevant postgraduate programme focussing on the theoretical knowledge and the practice of Biomedical Science.

Your personal and professional understanding of Biomedical Science will be enhanced through an academically coherent programme of directed and self-directed learning. This will empower you to engage in and critically evaluate relevant contemporary issues through the application and theoretical analysis of practical laboratory based activities and research at Postgraduate level.

See the website https://www.cardiffmet.ac.uk/health/courses/Pages/Biomedical-Science---MSc.aspx

​Course Content​​

The programme will emphasise the development of analytical and critical skills and on problem identification and analysis within a Biomedical Sciences context. You will be taught by a team of experienced academics, researchers and professionally qualified staff. A number of the teaching team are also HCPC registered Biomedical Scientists.

Core modules are as follows:
- Molecular Biology
- Immunology
- ​Analytical and Diagnostic Techniques
- Research Methods in Biomedical Sciences

Option modules include:
- Medical Biochemistry and Advanced Topics in Medical Biochemistry
- Immunohaematology and Advanced Topics in Immunhaematology
- Medical Microbiology and Advanced Topics in Medical Microbiology and Infection
- Cellular and Molecular Pathology and Advanced Topics in Cellular and Molecular Pathology

Please note there is no guarantee that all modules will be offered every year. Provision is subject to student numbers and viability. An additional three modules are required for the research dissertation.

If you are admitted to the Master's scheme but subsequently are unable or not permitted to progress, you may, depending upon the number of credits attained at the time of exit, qualify for one of the following awards:
- Postgraduate Certificate (PgC): No fewer than 60 credits
- Postgraduate Diploma (PgD): No fewer than 120 credits
- Master of Science (MSc): No fewer than 180 credits

Candidature for the MSc is five years for part-time students i.e. the course must be completed and dissertation submitted within five years of registering.

Learning & Teaching​

​A variety of teaching strategies are employed to reflect the following:
- the requirements of the particular topic
- the existence of background experience within the group
- the level and type of study required at level 7

Lectures are the most prevalent teaching method for the introduction to module material, where the major function is to provide a basic framework, to generate interest in the subject concerned and to explain complex points. Lectures are complemented by tutorial sessions designed to encourage a more detailed examination of issues. Students are issued, in their module handbook, with a programme schedule of topics to be covered in lectures and supporting tutorials for all subjects, along with lists of references to guide their supplementary reading. The VLE will also host supporting materials.

Tutorials and related small group work is an important part of teaching and learning. It encourages the depth of discussion and application appropriate to higher degree work. The major aim is to develop skills related to thinking, discussion and presentation of information. It helps to develop analytical and critical appraisal skills.

Practical Work/Demonstration sessions in certain modules, such as Analytical and Diagnostic Techniques, Molecular Biology and the Dissertation, complement and extend the theoretical aspects of study and help to develop the students' skills of investigation, analysis, critical evaluation and reflection.

Case Studies are used throughout the programme as a means of encouraging students to apply their theoretical knowledge of biomedical science to real patients and thus take a holistic view of diagnostic medicine. Real cases are used and students are encouraged to integrate knowledge from a number of modules and to reflect on the possible outcomes
In addition to the contact hours per modules (approx. 40 hours per 20 credit module) the student will be expected to undertake a certain number of student led hours (approx. 160 per 20 credit module) to achieve an overall 200 hours of student effort per 20 credit module.

- Academic Support
Students are supported at each stage of learning and assessment. The Programme Director is responsible for overall academic management of the programme and support for the student. Module Leaders are responsible for academic guidance and support for each module offered and for academic feedback on student progress. The Project Manager is responsible for all the process regarding the project work and the dissertation. Personal tutorials will be arranged with your Personal tutor throughout the programme, and if you are experiencing any difficulties with your study for example problems with coursework or preparation for examinations, then there will always be a member of staff - the Programme Director, Module Leader or personal tutor available to assist you.

Assessment

It is recognised that assessment is a necessary part of an evaluation of a student's suitability for an award and involves testing and developing the higher-level cognitive skills of analysis, synthesis and evaluation. For this reason, assessment is designed to measure the extent to which the student is able to satisfy the intended learning outcome of each module. The learning outcomes are assessed within the modules through a variety of methods including:
- unseen examinations
- essays
- practical based laboratory exercises
- laboratory reports
- case studies
- poster presentation
- case study presentation
- abstract writing and journal article reviews

Time limited examinations are seen as an end of module check on student academic attainment in certain modules where a detailed understanding of contemporary scientific thinking, often research lead, is deemed to be an essential currency.

In addition, assignments are used either in addition to or as an alternative to written examinations in certain modules where they best reflect breadth of understanding.

The assessment schedule for the taught modules will be supplied by the programme director at the beginning of the programme. The module leader will supply the assessment titles and guidelines/criteria to undertake the assignments and provide feedback to the students.

Employability & Careers​

The course will prepare you for the next stage of your career, whether pursuing further research, or professional study, or entering employment in the field of Biomedical Science. The course will also enhance the career prospects of those aspiring to middle and senior management positions within the NHS Pathology Service and the commercial sector.

Find information on Scholarships here https://www.cardiffmet.ac.uk/scholarships

Find out how to apply here https://www.cardiffmet.ac.uk/howtoapply

Read less
Degree. Master of Science (two years) with a major in Biomedical Engineering. Teaching language. English. Read more
Degree: Master of Science (two years) with a major in Biomedical Engineering
Teaching language: English

Biomedical Engineering encompasses fundamental concepts in engineering, biology and medicine to develop innovative approaches and new devices, materials, implants, algorithms, processes and systems for the medical industry. These could be used for the assessment and evaluation of technology; for prevention, diagnosis, and treatment of diseases; for patient care and rehabilitation and for improving medical practice and health care delivery.

The first year of the Biomedical Engineering programme is focused on mandatory courses expanding students’ engineering skills and knowledge in areas like anatomy and physiology but also biology and biochemistry. Courses in mathematics, statistics, multidimensional biomedical signal generation and analysis, combined with medical informatics and biomedical modelling and simulation, create a solid foundation for the continuation of the programme.

In the second year, three areas of specialisation, medical informatics, medical imaging and bioengineering, are introduced. Coinciding with the specialisation, a course in philosophy of science is mandatory, preparing and supporting the onset of the degree project.
A graduate of the Biomedical Engineering programme should be able to:

• formulate and solve engineering problems in the biomedical domain, encompassing the design of devices, algorithms, systems, and processes to improve human health and integrating a thorough understanding of the life sciences.
• use, propose and evaluate engineering tools and approaches.
• identify and manage the particular problems related to the acquisition, processing and interpretation of biomedical signals and images.
• integrate engineering and life science knowledge, using modelling and simulation techniques.
• communicate engineering problems in the life science domain.

The Biomedical Engineering curriculum supports and sustains "Engineering for Health" through a relevant mixture of mandatory and elective courses. This enables both broad-based and in-depth studies, which emphasises the importance of multidisciplinary and collaborative approaches to real-world engineering problems in biology and medicine.

Welcome to the Institute of Technology at Linköping University

Read less
This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery. Read more

About the course

This non-clinical course is run jointly with the Faculty of Engineering. It gives you a comprehensive education in basic materials science and the use of materials in dentistry and surgery.

You’ll be taught by some of the leading academics in the fields of bio and dental materials science, tissue engineering, materials characterisation and biomedical engineering. You’ll also learn the principles of research and different techniques for evaluating dental materials and related health technologies.

Your career

We offer clinical and non-clinical courses that will further your career and develop your interests. Many of our clinical graduates go on to specialist dental practice, hospital practice or academic posts.

World-leading dental school

Our internationally recognised oral and dental research is organised into two overarching themes: ‘clinical and person centred’ and ‘basic and applied’. These themes are supported by three interdisciplinary research groups: Bioengineering and Health Technologies, Integrated Bioscience, and Person Centred and Population Oral Health.

We believe that dental science should not be constrained by the traditional boundaries created by specific clinical disciplines and that progress derives from a multidisciplinary approach. Our research supports our teaching enabling a blended approach to learning.
Your course will make the most of virtual learning environments and advanced practical sessions, as well as traditional lectures and seminars.

Facilities

You’ll develop your clinical skills in one of our two clinical skills labs or in our new virtual reality Simulation Suite where you can use haptic technology to undertake a range of clinical techniques.

You’ll complete your clinical training in Sheffield’s Charles Clifford Dental Hospital, part of the Sheffield Teaching Hospitals NHS Foundation Trust. There are 150 dental units with modern facilities for treatment under sedation, a well-equipped dental radiography department, oral pathology laboratories and a hospital dental production laboratory.

We have new modern research facilities and laboratories for tissue culture, molecular biology, materials science and histology- microscopy. All laboratories have dedicated technical support and academic expertise to guide you.

Core modules

Current Concepts in Dentistry; Dental Materials Science; Selecting Dental Materials for Clinical Applications; Science Writing and Health Informatics; Polymer Materials Chemistry; Structural and Physical Properties of Dental and Biomaterials; Group Projects and Developing Research; Introduction to Digital Dentistry and Dental Manufacturing; Dissertation.

Teaching

Teaching is through lectures, seminars and tutorials, personal academic study and self-directed learning, research project.

Assessment

You’ll be assessed on assignments, coursework, examination and research project dissertation.

Read less
This course aims to provide a balance between theoretical, practical and biomedical skills, and develop your levels of critical enquiry so you can pursue the research projects and communication of ideas and concepts. Read more
This course aims to provide a balance between theoretical, practical and biomedical skills, and develop your levels of critical enquiry so you can pursue the research projects and communication of ideas and concepts. It encourages creative approaches to contemporary research in biomedical science and communication through creative thinking, research methods, computer systems, case studies and practical sessions. You will evaluate how these various approaches can assist you in finding future employment and formulating your own experiments designs and research project. You will develop an enhanced understanding and sophisticated appreciation of biomedical science.

Key benefits:

• Research-led teaching that develops high priority technical and employability skills, through a series of lectures, tutorials and journal clubs
• Projects (dissertations) in active research groups
• Opportunities for development through a seminar series and guest lectures presented by clinicians and international speakers

Visit the website: http://www.salford.ac.uk/pgt-courses/biomedical-science

Suitable for

This course is for UK and international graduates from a wide range of relevant disciplines who wish to gain knowledge in the field of biomedicine and acquire the career-enhancing skills in the rapidly expanding fields of biomedical research, teaching, and laboratory management.

Programme details

This course has both full-time and part-time routes, comprising of three 14-week semesters or five 14-week semesters, which you can take within one or two years respectively.

Format

Teaching sessions include lectures, laboratory practicals, tutorials, guest lectures and guided reading. Lectures provide a thorough theoretical basis for the course subjects and are delivered by internationally recognised, research active staff. A variety of other teaching approaches including tutorials, case studies, and workshops reinforce theoretical knowledge and facilitate the development of individual and group based research and transferable skills.

Practical sessions demonstrate techniques and methods used in biomedicine, and provide an opportunity for you to learn complex experimental approaches and operate laboratory equipment. Guided reading will recommend key articles and other materials to help you learn. Guest expert seminars from clinicians and academics will provide insight into modern biomedical research.

The research project will enable you to start your own research and be part of active, internationally recognised research teams, where you will practice the application of relevant biomedical techniques and skills valuable for your future employment in biomedical sector.

Module titles

• Cellular Basis of Disease
• Infection and Immunity
• Disorders of the Blood and Circulatory System
• Research and Analytical Skills
• Research Project

Assessment

Assessment is by a combination of written examinations, oral presentations, coursework, laboratory reports and submission of the dissertation.

Career potential

Biomedical Science graduates are actively employed in various sectors as research assistants or research laboratory technicians in clinical and research laboratories, pharmaceuticals, drug design as well as lecturers in the field of education in schools and universities or continued their education by pursuing PhD studies.

We aim to produce graduates who meet the needs of their future employers: highly skilled practitioners and excellent communicators who are seeking to push the boundaries in the rapidly growing Biomedicine sector.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less

Show 10 15 30 per page



Cookie Policy    X